

САВЕТОВАЊЕ "МЕТЕОРОЛОШКИ ПОДАЦИ - НАЦИОНАЛНО БЛАГО"

ОРГАНИЗАЦИОНИ ОДБОР

Председник:

Никола Дутина, яийлинккірађ.
Заменик председника:
Владимир М. Димитријевић, яийл.мей.
Секретар:
Борјан Маринковић, йрофесор
Чланови:
Зоран Бабић, gийл.меш.
Рамила Војиновић Кљаић, яиил.меии.
Југослав Николић, gийл.мей.
Бојан Палмар, фийлинж.ірар
Будимир Смиљанић, gийл.еци.
Зоран Вучинић, guйл.мей.
Анђелко Живковић, gийл.меш.
Јованка Игњатовић, gийл.инк.ipaђ.
Душан Кљаић, quйл.меш.
Нена Ковачевић, gииллинж.iрађ.
Бориша Кочић, gииллинж. саоб.
Недељко Тепић, gийлинж.саоб.

СТРУЧНИ ОДБОР

спонЗОРи

РЕПУБЛИЧКИ ХИДРОМЕТЕОРОЛОШКИ ЗАВОД СРБИЈЕ

СЕ ЗАХВАЉУЈЕ СЛЕДЕЋИМ СПОНЗОРИМА
коли су помогли приликом

ОБЕЛЕЖАВАЊА ЈУБИЛЕЈА
"150 ГОДИНА МЕТЕОРОЛОГИЈЕ У СРБИЈИ"
"ПОЛИЕСТЕР" - ПРИБОЈ
ЈП "ЕЛЕКТРОПРИВРЕДА СРБИЈЕ" - БЕОГРАД
YU БАНКА АД - БЕОГРАД "СВЕТА РАКЕТА" - БЕОГРАД
"ЦЕНТАР" - ЗРЕЊАНИН
ДЕПОЗИТНО - КРЕДИТНА БАНКА АД НОВИ БЕОГРАД
"СРБИЈАВОДЕ" ЈВП БЕОГРАД "ДУНАВ" - НОВИ САД
"ЕЛЕКТРОИСТОК" - БЕОГРАД
"ТАМИШ" ДД - ПАНЧЕВО
"МЕДИА" - ЗЕМУН
"ABA EURO SHOP" - BEOGRAD
"ПЕКА ПРОМЕТ" ЗЕМУН
"ЛОВЋЕН ЛИФТ" - БЕОГРАД
"МАКПЕТРОЛ МАРКЕТИНГ" - БЕОГРАД
"ЕЛИНГ"-БЕОГРАД МП "ВЕЛИКА МОРАВА" - БЕОГРАД
"Saga InfoTech" - БЕОГРАД
"NENEX - SOFT" - БЕОГРАД
БОНУМ ИНЖЕЊЕРИНГ - БЕОГРАД

САДРЖАJ
МЕТЕОРОЛОГИЈА И СРЕДСТВА ЈАВНОГ ИНФОРМИСАЊА
ЗАШТТ СУ МЕТОРОЛОШКИ ПОДАЦИ НАЦИОНАЛНО БЛАГО 11
САРАДНИ СА КОРИСНИЦИМА МЕТЕОРОЛОШКИХ ПОДАТАКА ${ }^{13}$нЕдЕЉКо тодоРовиЋНРАЯЕЊЕ МЕТЕОРОЛОШКИХ ИЗВЕШТАЈА У ЈАВНОСТИДИСКРИМИНАЦИОНА АНАЛИЗА ПРАЋЕЊА МЕТЕОРОЛОШКИХ ИЗВЕШТААА С ОБЗИРОМНА
ДОЧИО МЕМАЦНАФСКЕ КАРАКТЕРИСТИКЕ ИСТИТАНИКА23
неде.БКО ТоДоРОвиъ
РАДеНКо павловЙ
МилеНа СИМЈАНОвски
ДЕМАБА КРПИИЋ
ИНФОРМАЦИЕЕ О КЛИМИ НА ИНТЕРНЕТУ
УЛОГА МЕТЕОРОЛОГИЈЕ У СИСТЕМУ ПРЕВЕНЦИЈА И ЗАШТИТЕ ОД ЕЛЕМЕНТАРНИХ НЕПОО ОДА
воРве КАРДУМ
ІоЈАва ГРАДА у воіводини
ТОРЕЕЕ КАРДДОМ ТУЧЕНИХ ПОВРШИНА У СРБИЈИ
ІРОТИВГРАДНА РАКЕТА - ДИНАМИКА УТРОШКК ТОКОМ СЕЗОН
АНА СТАНКовит
СЛОБОДАНКА СТАНКОВИТТ
ЧЕРНОБИЉ - ЕЛЕМЕНТАРНА НЕПОГОДА СВЕТСКИХ РАЗМЕРА
РуЖицА РАДовановит Булиъ
ИвАН БУлй
СПЕКТАР ДИМЕНЗИЈА ЗРНА ТРАДА (И СУТРАДИЦЕ) У ПЕТНАЕСТОДНЕВНИМПЕРИОДИМА СЕЗОНЕ ОДБРАНЕ ОД ГРАДА У НИЗУ 1984.- 1997. ГОДИНЕ
Ружица РАдовАНОвиъ Булиъ
иван БУлй
ДЕСАНКА ХРКАЛОВИТ
ДНЕВНИ ХОД ПОІАРЕ ГР НА И СУТРАДИLЕ У ПЕТНАЕСТОДНЕВНИМ ІЕРИОДИМА СЕЗОНЕ ОДБРАНЕ ОД ГРАДА У НИЗУ 1984. - 1997. ГОДИНЕ
иван Булй
ППТИМАЛНО ТЕМПИРАњЕ РАКЕТА
ЗОРАН МАРКОВИЋ
ha
слободан голуБовиъ
АНА ВУЧиНА
АСПИТИВАњЕ РЕАТЕНСА У ИЗОТЕРМНОЈ КОМОРИ РХМЗ-
станислав БаЈиъ
СЛАВКО МЕНТУС
РАЗВОЈ ДОМАТИХ ІІРОТИВГРАЯНИХ РЕАТЕНАСА У СВЕТПУ ЗАХТЕВА ХИДРОМЕТЕОРОЛОШКО
завода СРБиЈе
ЗОРиLA БAPGAPOW
ЗоРАН вУчинй
ЗОРАН ВУЧинй
ДРАГАН ЈАНКОВЙ
БРАНИСЛАВА КАПО
РЕКОНСТРУКЦИН ПОПЛ АВНО Т ТАЛАСА У СЛИВУ РЕКЕ ГРУЖЕ У ТОКУ МАЈА 1996. ГОДИНЕ И
ПРЕДЛОГ МЕРА ОДБРАНЕ ОД ЕКСТРЕМНИХ ПАДАВИНА НА СЛИВУ
владИМИР ДЕлИТ
ҮЛОГА МЕТЕОРОЛОГИЈЕ У СИСТЕМУ ПРЕВЕНЦИЈЕ И ЗАШТИТЕ ОДЕЛЕМЕНТАРНИХ НЕПОГОД И ИНДУСТРИЈСКИХ КАТАСТРОФА (УДЕСА)
НАДА ПАВЛОВИТ БЕРДОН
МЕРЕЊЕ КИНЕТИЧКЕ ЕНЕРГИЈЕ ЗРНА ГРАДА ПОМОЋУ ГРАДОМЕРА

СЛОБОДАН ГОЛУБОВИТ
ПРЕОВЛАТУУУТ ПРАВАЦ КРЕТАळА КОНВЕКТИВНЕ ОБЈАЧНОСТИ У ОДНОСУ НА ВИСИНСКи вЕТАР
НАДА ПАВЛОВИК БЕРДОН
МЕЗОАНАЛИЗА ПРИЗЕМН
МЕЗОАНАЛИЗА ПРИЗЕМНИХ ПОДАТАКА У ИЗРАЗИТО ГРАДОБИТНОМДАНУ
ЗНАЧАЈ МЕТЕОРОЛОГИЈЕ У ПОЉОПРИВРЕДИ
добриволе Живковит
ПРОСТОРНА РАСПОДЕЛА СУМА ЕФЕКТИВНИХ ТЕМПЕРАТУРА КАО ОСНОВ ЗА РАЦИОНАЛНО
ГАЈЕЊЕ ОЗИМЕ ПШЕНИЦЕ И КУКУРУЗА НА ТЕРИТОРИЈИ РЕПУБЛИКЕ СРБИЈЕ
ПЕТАР СПІАСОВ
КОРИШПЕЊЕ ОПЕРАТИВНИХ АГРОМЕТЕОРОЛОШКИХ ИНФОРМАЦИЈА ЗА ПРОЦЕНУ ВОДНОГ БИЛАНСА пољопривРЕдних куптУРА
СЛАВИЦА РАДОВАНОВИЋ
ИСПИТИВАҒЕ ПОТЕНЦИЈАЛНЕ ЕвАПОТРАНСПИРАЦИЈЕ И ДЕФИЦИТА ПАДАВИНА НА ПОДРУЧЈУ СРБИЈЕ
свЕТИМиР ДРАговИЋ
дивиЈА МАКСИМовИъ

БоРивоге пІЕлй
ПРИМЕНА МЕТЕОРОЛОШКИХ ПОДАТАКА У АНАЛИЗИ вОДНОГ БИЛАНСА ЗЕМЈЬИТА И СУШЕ ЗА
наводњАвањА
ГоРДАНА ІІЕКУЛАРАL
ПРОСТОРНА РАСПОДЕЛА НЕКИХ ЕЛЕМЕНАТА КЛИМЕ ПОДРУЧЈА СЛИВА РЕКЕ КАМЕНИЦЕ
УЛОГА И ЗНАЧАЈ МЕТЕОРОЛОГИЈЕ У ШІУМАРСТВУ
дРАГИцА СТОЈи.Бковит
Jован TAБAKOB
ГОРДАНА ІІЕКУДАРАД
БИЛАНС НАДИЗДАНСКЕ ЗОНЕ НА ПОДРУЧЈУ М. С. ВРШАЦ
ЗОРАН КРАЈИНОВИ
СМИЈА БОРТЕВИТ
ЛЕТЬА СУША У 1998. ГОДИНИНА ТЕРИТОРИЈИ СР ЈУГОСЛАВИЈЕ

BPEME И САОБРАЋАЈ

ऽийа
МЕТЕОРОЛОШКИ ПОДАНИ У ВАЗДУХоплостВУ
МЕТЕОРОЛОГИЈА У сЛУЖБИ ВОДОПРИВРЕДЕ
АНГЕЛИНА ВУКМИРОВИТ
БРАНИСЛДАВА КАПОР
АНАЛИЗА ХИДРОЛОШКИХ И МЕТЕОРОЛОшКИХ УСЛОвА НА СЛИвУ PЕКЕ коЛУБАРЕ
сиир татовит
ПРИМЕНА ССАРР МОДЕЛА ЗА ПРОГНОЗУ ОТИЦАЈА СА СЛИВА РЕКЕ КОЛУБАРЕ ДО ХИДРОЛОШКЕ СТАНИЦЕ БЕЛИ БРОД
НЕНА КОВАЧЕВИТ
НАДЕЖДА ЈОВАНОВИЋ
ПРОПНОЗА ЛЕДЕНИХ ПОЈАВА НА РЕКАМ 204

БОРЈАНКА ПАЛМАР
ДВА АСПЕКТА ПРИМЕНЕ КОНЦЕПТУАЛНИХ хиДРОЛОШКИХ МОДЕЛА у водоПРИВРЕДИ
 213

СПОМЕНКО Ј.МИХАЛЛОВИ
љуУБИцА МИХАлЛОВЙ
МИоДРА ОБРАДоВИТ
ВЛАДИМИР М. ДИМИТРИЈЕВИТ
АЛЕКСАНДАРОПРА
ПОВЕЗАНОСТ ГЕОМАГНЕТСКИХ, ЈОНОСФЕРСКИХ ПОРЕМЕЋАЈА И ДНЕВНОГ ХОДА ТЕМІІЕРАТУРЕ ВАЗДУХА
ДРАГОМИР ҒУКАНОВИЋ
МЕТЕОРОЛОНКА АКТИВНОСТ У ЗДРАВСТВЕНОЈ ЗАІІТИТИ ЧОВЕК

СТЕВАНМ. СТАНКОВИИ
МЕТЕОРОЛОШКИ ПОДАЦИ У ФУНКЦИЈИ ТУРИСТИЧКЕ ТЕОГРАФИЈ
ДАнило КРСТИЋ
дРАГИцА КРСТИЋ

ТОПЛОТНИ КОНФОР СТАНА КАО УСЛОВ дОБРОГ ЗДРАВљЬА
256
МЕТЕОРОЛОГИЈА У ФУНКЦИЈИ ПРОЈЕКТОВАЊА, ИЗГРАД円Е И ЕКСПЛОАТАЦИЈЕ ЗНАЧАЈНИХ ПРИВРЕДНИХ ОБЈЕКАТА
михаило миливолЕвит
ЗОРАН НИКИК
ЗНАЧА МЕТЕОРОООШКИХ ПОДАТАКА ЗА ИЗУЧАВАЊЕ БАЊСКИХ ХИДРОГЕОТЕРМАЛНИХ СИСТЕМА
bOPJAHKA ПААЛМАР
ивица Николиъ
МИРА ИВ.БАНИН
ПРАТЕЊЕ И АНАЛИЗА вОДНОГ РЕЖИМА - УЛОГ И И ЗНАЧАЈ ДОПУНСКЕ ЕЖЕ СТАНИЦА ЗА
ПРОЈЕКТОВАњЕ У ПРИВРЕДИ и вОДОПРИВРЕДИ
Голко ненадИт
ЛИИЉАНА БУКИТ
СМИЈА воРТЕВИТ
ГоРДАНА Јованови
КАРАКТЕРИСТИКЕ КИШЕ НОШЕНЕ вЕТРОМ У БЕОГРАДУ
ДРАГОМИР ЂУКАНОВИЋ
МЕТЕОРОЛОШКА АКТИВНОСТ У ЕЛЕКТРОПРИВРЕДИ
ДРАГОМИР ъУКАНОВИЋ
тихомиР Поповиъ
МЕТЕОРОЛОШКА АКТИВНОСТ У ЕЛЕКТРОПРЕНОСНОМ СИСТЕМУ 300
ТЕЕІІЕРАТРРЕ КОЛОВОЗНЕ КОНСТРУКЦИЈЕ У БЕОГРАДУ
МИРОСЛАВ ОЦОКОЉИТ
ИСТОРИЈСКЕ МАКСИМАЛНЕ ПАДАВИНЕ У БЕОГРАДУ И ЊИХОв УРБАНИ АСПЕКТ
тИХОМИР ПОПОВИъ
ОЛИВЕРА ЈОВАНОВИТ
оливЕРА Јовановй
хомир поповит
ОЦЕНА МОГУЋНОСТИ КОРИШЋЕЊА ЕНЕРГИЈЕ СУНЦА И ВЕТРА НА ТЕРИТОРИЈИ СР ЈУГОСЛАВИЈЕ
СЛОБОДАН Ж. КАТУНАЦ
ДЕСЕТОГОДИШНЬА ПРИМЕНА ФОТОНАПОНСКИХ ПАНЕЛА У СЛУЖБАМА ХИДРОМЕТЕОРОЛОШКО ЗАВОДА СРБИЈЕ
слАВКО КостосКИ
РАДМИЛА ВОННОВИЋ-КЈАЈИЋ
ДРАГАН УРОШЕВИТ
УТИЦА МЕТЕОРОЛОШКИХ УСЛОВА НА РАСПРОСТИРАњЕ СУМПОР-ДИОКСИДА ЕМИТОВАНОГ из То "ВРЕОцИ"
миодраГ ДЕДИТ
ОГЛЕДНИ СЛИВ ГОРњЕГ ТОКА РЕКЕ ТОПЛИЦЕ
МЕТЕОРОЛОШКИ ПОДАЦИ У ФУНКЦИЈИ РАЗВОЈА МЕТЕОРОЛОШКЕ НАУКЕ

[^0]ЗОРАН ВАСИЈЕВИИ
КИМ А НИШ А
тыда туцит
ПРЕГЛЕД РЕЗУЛТАТА РЕКОНСТРУКЦИЈЕ КЛИМЕ У ЈУГОСЛАВИЈИ ДЕНДРОХРОНОЛОШКОМ МЕТОДОМ
мЛА аЕен ъуриЋ
НАЛИЗА ТРЕНДОВА НИЗОВА ППДДАВИНА И ТЕМПЕРАТУРЕ У НАШОЈ ЗЕМЉИ У ОДНОСУ НА Ел НИњО пЕРИОДЕ

Златица попов

ЗОРАН НИКОЛИЋ
БРАНКО МИЦЕВ
ААДА РУДАН
Славица мицев
ВЕСНА ДРОБњАК
РАСПОДЈЕЛА И ИСПИТИВ АњЕ ХОМОГЕНОСТИ $48 Ч$ И 72 y КОЛИЧИНА ПАДАВИНА ЗА ЦЕТИЊЕ
ИНФОРМАЦИОНИ СИСТЕМ И МЕТЕОРОЛОШКИ ПОДАЦИ
БРАНИСЛАВ МИЛАКАРА

ЗА ХИДРОЛОШКЕ ПРОГНОЗЕ И ЊЕНО УКЛАПАФЕ У ИНФОРМАЦИОНИ СИСТЕМ РХМЗ СРБИЈЕ
виша тасй
ДРАГАН МИЛИВОЈЕВИТ
МИЛАН РАДОІКОВИЋ
УTОМАТСКАМЕРНА СТАНИЦА ЗА ПРАТЕЊЕ МЕТЕОРОЛОШКИХ ИЕКОЛОШКИХ ПАРАМЕТАРА РЕАЛНОМ BPEMEH
ЗоРАН вучинй
АУТОМАТИЗАЦИЈА РАДА РАДАРСКОГ ЦЕНТРА ОДБРАНЕ ОД ГРАДА У СРБИЈИ
Бибана СТавРЙ
СТАТИСТИЧКА АНАЛИЗА ОДНОСА РЕЛАТИВНОГ ОСУНЧАВАळА И СРЕДЮЕ КОЛИЧИНЕ ОБЛАЧНОСТИ
МЕТОЦЕ УТВР૬ИВАЊА ХОМОГЕНОСТИ КЛИМАТОЛОШКИХ ПОДАТАКА И МОГУЋНОСТИ
ПРАКТИЧНЕ ПРИМЕНЕ НА НИЗОВЕ МЕТЕОРОЛОШКИХ ПОДАТАКА НА ТЕРИТОРИЈИ СРБИЈ
драгАН бУКй
РОГРАМ ЗА ЛОГИЧКУ КОНТРОЛУ ДНЕВНИКА ГЛАВНЕ МЕТЕОРОЛОШКЕ СТАНИЦЕ
РАДОВАА-ОСОБйт дРАГАН
АDIS-ОСОБИНЕ, МОГУЋНОСТИ И ПРИМЕНЕ
оливЕРА ЈовАНОВИТ
ТИХОМИР ПОПОВИЋ̆
ТРЕНД СРЕДШЕ ГОДИШЕЕ ТЕМПЕРАТУРЕ ВАЗДУХА
иилан БУлатовй
УТОМАТИЗАЦИЈА МЕТЕОРОЛОШКИХ ОСМАТРАњА
МИЛАН КОСТИТ
УТОМАТИЗОВАНА МЕТЕОРОЛОШКА ОСМАТРАЊА НА АЕРОДРОМИМА
ОДСТУПАЊЕ СТВАРНЕ ОД ДЕФИНИСАНЕ ПРЕЦИЗНОСТИ МЕРЕЊА МЕТЕОРОЛОШКИХ ЕЛЕМЕНАТА

ЗАІІІТ СУ МЕТЕОРОЛОІІКИ ПОДАЦИ НАЦИОНАЛНО БЛАГО

Др Драг̃омир М. Ђукановић, дийл. меии. 11080 Земун, Данила Медаковића 4/6

Из разматрања досадашње метеоролошк активности у остварењу уочених потреба и кеља да се бројним људским делатностима омогући приступ резултатима проучавањ метеоролошких феномена, било да делуу правцу побољшања квалитета живот или да доприносе заштити људских живота и материјалних добара, проистекло је сазнање о потреби да се Саветовању пово дом обележавања јубиларних годишњиц метеорологије у Србији да назив Мете оролошки подаци - национално благо

Терминолошко тражење аналогије мете оролошких података са уобичајено употребљаваним терминима у смислу националне баштине у виду историјског наслеђ (објеката, рукописа, фресака, описа исто ријских догађаја и др.) могу створити из весне недоумице у смислу неадекватности ириступа и довести до питања: зашто су метеоролошки подаци национално благо?

у одговору на евентуално постављено пи тање зашто је метеоролошким подацим дат атрибут национално благо може се навести следеће:

- Потреба да се забележе догађаји у вези са временским феноменима је била оэигледна одавно, на шта указују најранији записи о великим променама времена у прошлости;
- Метеоролошки феномени, који на одређени начин утиэу на живот човека у скоро свим његовим делатностима се, пре

свега, карактеришу великом промељивошћу у времену и простору;

- Велика променљивост метеоролошких елемената упућује на потребу њиховог регистровања, систематизовања и проучавања на одређеној територији, конкретно и посебно на територији на којој се одвија живот једног народа;
- Све што се догађа на територији где један народ живи, укључујући и природне феномене, као што су метеоролошки, долази у домен националног интереса и потреба да се они што боље упознају, како би се могли употребити на корист то народа на његовој територији;
- Метсоролошки феномени, који ствари представљају непоновљива збивања која нам пружа природа и поднебље, одли кују се специфичностима историјско обележја, која заслужују да буду описани и забележени. Наравно, на начин и у облику који ће га најверније приказати садашњим и будућим генерацијама
- Једно од основних обележја метеоролошке активности јесте да у свом кон тинуитету испуњава, поред задовољавања текућих потреба човека, и национални ин терес. Сंви догађаји који обележавају ме теоролошке феномене на прикладан начи се обележавају записују и као мете оролошко-климатолошка и статистичка опсервациона документација, прикупљају,

сређууу и чувају као драгоцени део на- озбиљност и лепота допунских објашционалне баштине

- Освртом на историјат развоја метеорологије у Србији, имајући у виду ентузијазам и прегалаштво њених пионира Владимира Јакшића и Милана Недељковића и потоњих великана Милутина Миланковића и Павла Вујевића - без напора се одмах долази у сферу размишљања о њиховом националном значају и величини, па, према томе, и о њиховом раду и заоставштини,
_ Ко је само једанпут имао потребу и прилику да се сусретне и да користи део ове заоставштине у облику метеоролошких података, схватио је значај и величину ове документације. Начин и прецизност бележења мерних података,

њења појединих метеоролошких, сеизми чких и других феномена, од стране пажљиво одабраних осматрача, од пре 100 и више година, фасцинантни су.

Имајући у виду напред речено, данашње генерације метеоролога имају професионалну и националну обавезу да одрже континуитет прикупљања и обраде мете оролошких података у Србији, јер они заиста представљају део националног блага.

Одговор на евентуално питање зашто су метеоролошки подаци национално благо је пред нама. Само га треба проширити и обогатити сазнањима која ће га више ос ветлити и приказати на прави наэин и у пуној вредности.

МЕТЕОРОЛОГИЈА И СРЕДСТВА
ЈАВНОГ ИНФОРМИСАЊА

О САРАДЊИ СА КОРИСНИЦИМА МЕТЕОРОЛОШКИХ

 ПОДАТАКА
Др Драг̄омир М. Ђукановић, дийл. мейи.
 11080 Земун, Данила Медаковића 4/6

Abstract

Use of the different meteorological data in the particular human activities has various forms and volumes; it can be of operational or studying nature. Establishing the relationship between meteorological changes and climatic conditions and happenings, represents the current interest. That is highly relevant for their modern development. In practice, meteorology enables us to understand the influence meteorological factors have and points to the ways of lessening the harmful effects. That is why it is necessary to expand a cooperation between the Republic Hydrometeorological Service of Serbia and the users of the meteorological data - national treasure, in the economic and noneconomic sectors.

\section*{Абс $\bar{u} p а к \bar{u}$}

Кориићење мейеоролоиких йодайака у йојединим вудским делайносииима је са различийим облицима и обимом, ойерайивног̄ и сйудијског каракйера. Уйврђивање корелационих односа између йромена меиееоролошких и климайолошких услова и збивања у бројним ак $\overline{\text { иивносииима човека йредсииавља акйиуелнос̄ㅜ, која је од значаја за }}$ њихов савремени развој. Примењена мейеоролог̄ија омойућује уйознавање уӣицаја ме- њиховог дејсиива. Зайо је нужно йроширење сарадње између Рейубличког̆ хидромейиеоролошког̆ завода Србије и корисника мейеоролошких йодайиака - националног̆ благ̄а, у $\bar{и} р и в р е д н и м ~ и ~ н е и ̆ р и в р е д н и м ~ д е л а \bar{u} н о с \overline{ш и и м а . ~}$

Када се говори о метеоролошким по- стављена истраживања продубљују и дацима као о националном благу, неоп- проширују на све већи број људских ативходно је, на осноциолам благу, неоп искустава, а у циљу добијања представе о њиховом значају уопште, обавити увид у ширину и специфичности појединих корисника тог блага.

Сазнање да метеоролошки подаци заиста представљају значајан део националног блага произилази из резултата научноистраживачких човекових активности и њиховог коришћења у практичне сврхе у многим људским делатностима.

Опсервације, евидентирање и анализа добијених података о временским стањима и климатским условима дуги низ година нотврђују уочене потребе да се успо-

ности.

Извлачење закључака о променама вре мена и климатским карактеристикама на одређеној територији обављају се на основу опсервационе метеоролошко-климатолошке документације, која у ствари представља стварни део националног блага, било да се користи у оперативном метеоролошко-прогностичком смислу или као драгоцени климатолошко-статистички фонд метеоролошко-климатолошких података за разне врсте истраживања

Коришћење опсервационе метеоролошке документације је са различитим облицима и обимом у појединим људским актив-

ностима. У некима је тежиште коришћења оперативног карактера, за краћи или дужи период временских прогноза, а код других за потребе програмирања, пројектовања изградње и експлоатације појединих об јеката.

У оквиру разматрања коришћења метеоролошких података, као дела националног блага, у појединим људским делатностима, корисно је да се успостави и организује истраживачки рад, који би обухватио упоредна праћења промена појединих временских стања и метеоролошких елемената, с једне стране и елемената, који карактеришу стања и промене у одређеној, истраживањима подвргнутој, људској делатности, с друге стране.

На тај начин се долази до упознавања корелационих односа и закључака који помажу да се метеоролошки подаци истовремено користе у оперативне сврхе и као део статистичжког метеоролошкоклиматолошког фонда података за потребе даљих истраживања, са значајним тежиштем на практично коришћење.

Такође се у овом смислу могу користити метеоролошки подаци који се добијају из редовног опсервирања на метеоролошким станицама, са апликацијом и усмерењем на постављене захтеве у конкретној активности.

Сваки истраживачки подухват, у било којој људској активности, који је на одређен начин повезан са потребом коришћења метеоролошких података условљава ост варење сарадне са стручним консултантом одговарајуће метеоролошке специјаности, у циљу претходног заједничког сагледавања пројектног задатка, његовог обима и циља.

На тај начин се избегавају тешкоће и пропусти који се могу појавити у каснијем раду, као што су:

- неискориићеъе све йосйојеће ойсервационе докуменйације u

йройусі̄ да се, због̄ сйецифичносӣи адайка, не искорисйе мог̄ућносиии евен$\overline{\text { йуалног } с \bar{\imath} е ц и ј а л н о \overline{z, ~ д о и ̆ у н с к о г ~ м е р е њ а, ~}}$ са шиио мање $\overline{\text { й }}$ рошкова, уз исйуњење йоийребних крийеријума о квалиииеейу $\bar{u} а$ квих мерења.

У таквој сарадњи се поуздано остварује оптималан ефекат интердисциплинарног и мултидисциплинарног запажања корелативних веза и проналажења њихових наіприкладнијих интерпретација и доношења адекватних закључака.

Из овакве сарадње произилази низ квантитативно и квалитативно корисних идеја, не само у односу на конкретан заједнички програм, него и у односу на нова, до тада незапажена, гледања на начин решавања појединих питања, са одговарајућом методологијом рада.

у домену примењене метеорологије, метеоролози треба да постану носиоци схватања, која карактеришу следеће особине:

- сииално йраћеъе свеииске лийерайуре из ове облас $\overline{\text { й }}, и$
- флексибилно и ойворено йосйављање не само мейеоролог̄а йојединаца негго и иеле мейеоролошке службе йрема йос$\overline{\text { йојећим и йойенцијалним корисницима }}$ мейеооролошких йодайика у йривредним и нейривредним делайиносйима.

Шири прилаз оваквом начину гледања допири прилаз оваквом начину гледања до-
принеће јачању улоге Метеоролошке службе и реализацији испуњења основне теме и назива Саветовања Метеоролошки подаци - национално благо.

ПРАТЕЊЕ МЕТЕОРОЛОІІІИХ ИЗВЕІІІТАЈА

 У ЈАВНОСТИНедељко Тодоровић, дийл. мей.
Рейублички хидромейеоролоики завод Србије,
Кнеза Вииеслава бб, 11030 Беойрад, Јуӣославцја

The aim of this paper is to examine if general public in Belgracte and wider surroundings follows meteorological reports and believes them. The research was carried out during 1996 and 1997 on the sample of 341 examinees who are older than 14. Variables elaborated in this paper are the part of a questionaire which is a base for a deeper research titled "Public Opinion and Meteorology". The distributions of examinees (apsolute and relative frequencies) on categories of each variable are given. To examine the differences in following meteorological reports and believing to them, considering some socio-demographic characteristics of examinees, chi-square test is used. The results show that 85% of examinees follow meteorological reports, and of $83,5 \%$ believe them. The most common way of their following is by television, and half of examinees hold that the meteorological information presented by meteorologists themselves are more reliable than information presented by speakers on TV and radio and majority think that, meteorologists should have their own presentation in media. Meteorological reports are followed by older examinees with very high or very low education significantly more often than by the others. Examinees older than 60, and between 31 and 40, those with low education, and those who live in rural areas near Belgrade believe to meteorologists significantly more often than the others.

Абсӣракий
 оролоике извешйије и верује ли у вих. Исйраживање је урабено у моку 1996/97 г̈одине на узорку од 341 исйийаника свих сйаросних їруйа изнад 14 гॅодина. Варијабле обраБене у овом раду део су уйийиника који је основа ширег исйраживана йод насловом "Јавно мнене и мейеоролог̄ија". Осим йриказа дисйрибуције исйийаника (айсолуиинне и релайивне фреквеније) йо кайиегоријама сваке исйиииване варијабле, за исйииивање разлика у ираћену и веровању с обзиром на неке со-цио-демографске каракйерисиике исииааника уиоиребьен је мешод ки-квадраи месиа Ре-

 $\overline{\text { рраме сииарији исйииании и они са високим и врло ниским образованем а метеоролозима }}$ чеиће веруіу исйийании у кайег̄оријана йреко 60 и од 31 до 40 година сииаросйии врло слабог̆ образоваьа и они са йребивалииием у селима околине Беойрада

1. УВОД

Многе људске делатности у директној су за- кодневних делатности у непосредној су завис-
 висности од временских прилика. Безбедност и ефикасност човекове делатности у оквдру
 нриврена саобраћај (Чобанов, 1992-1-3), тури зам здравство (WMO No-160; Цретаорић остали, 1988.24-25), спорт (WMO No-835. To доровић, 1996) и. других не мање важних сва

ности од поуздане информације о временским Зато је правовремена, поуздана и специфично представљена метеоролошка информација од великог значаја за све заиттересоваве бориснике. Метеороношта пракса је показала да је сарадња између метеоролошке службе и корисника метеороноиких информашја и ко-

новна. У питању је само степен њене доступ ности и непосредне употребе. Резултати истраживања требали би да укажу на тешконе праћењу извештаја о времену (доступност, ра зумевање, веровање и слично), т. да се утрд ром на иихове социо-демографске сарактер ром на жихое соцо-деморри метороноше
 инормашја о стра сорисиа у литера тури је снабо обранеп Познато је да даваоии метеоролошних инормаишја користе разли чит начине за нихово представдане јавност и да начин на који су обииковане на зависи увек само од даваоца веһ и од медија. Меьутвм чепознато је каго те извештај прима и доживлава јавност На подручіу Београда и шире околине урађено је опширно истраживање под насловом "Јавно мнење метеорологија" које је засновано на Упитнику (ЈММ) који садржи 103 варијабле од којих је у овом раду одабрано 12 које се односе на начин шраћења извештаја о времену Упитник ј саставио и анкету спровео аутор.

ЦИЉЕВИ ИСТРАЖИВАНА И

ХИПОТЕЗЕ

Први циљ рада је да се истражи да ли се и на који најчешћи начин прате у јавности извештаји о времену, да ли се у њих верује и које су најчешће примедбе везане уз презен тацију тих информација. Други циљ је да се уочи да ли се испитаници разликују у односу на праћење метеоролошких извештаја и веро вања и њих с обзиром на неке социодемограф ске карактеристике. У складу са циљем постављене су четири нулте хипотезе:
X1 - испитаници различитих старосних група не разликууу се у праћењу метеоролошки извештаја и веровању у њих
X2 - испитаници различитог пола не разликују се у праћењу метеоролошких извештаја и веровању у њих,

исшитаника (старост, пол, образовање, радна активност, место становања) приближно одговара демографској структури становноштва на ериторији града Београда према попису из

 белама од 1 до 4 које су врихазаве у рану Коришћен је квотни узорак но староств полу Коришнен је квоми узор је мало померен у мађој и образованијој структури а пошто ј

3.2. Избор варијабли

Варијабле из целокупног истраживања подељене су у блокове: I Подаци о испитанику, II Праћење метеоролошких извештаја, III Коришћење метеоролошких извештаја, IV Синоптика, V Медицинска метеорологија, VI Климатологија, VII Утицај на време и заштита родине и VII Знане из метеорологије. У носе иа шраһене метеоролошких извештаја а
 зане у табелама од 5 до 16 .

3.3. Методи обраде података

Подаци су обрађени на дескриптивном нивоу који најпре укључује израчунавање дистрибуција (апсолутних и релативних фреквенција) испитаника по категоријама сваке од испитиваних варијабли. Затим су урађене табеле контингенције с припадајућим параметрима, а главна статистичка обрада извршена је хикритична вредност статистичке значајности узета је вредност грешке мања од 5% (Ивановић, 1973:310-328).

РЕЗУЛТАТИ ИСТРАЖИВАЊА И

 ИНТЕРПРЕТАЦИЈА
4.1. Дескриптивни подац

У табелама од 5 до 16 приказане су дистрибуције испитаника (апсолутне и релативне фреквенције) по категоријама 12 варијабли које описују праћење извештаја о времену.
Ако посматрамо варијаблу која нам указује на ираћење метеоролошких извештаја независно од начина (табела 5) уочљиво је да веома висок проценат (85%) испитаника прати извештаје о времену, а да је оних који их никада не прате свега $2,6 \%$. Расподела испитаника по катего-

начин испитаници прате извештаје о времену јасно указује да је праћење путем телевизије надзаса то таја метеоролошке извештаје прати више ои м јогт yвer y висогом проценту, шутем новина јон $\%$) воко мано исшитачика се инфороие о ррену путем телефона, бино

 (свега 4,4\%); (табеле 6,7,8 и 9).

У метеоролошкој пракси је примећено да се информације о времену непотпуно или чак погрешно преносе јавности путем медија, пре свега путем телевизије и радија. Дистрибуција испитаника по категоријама варијабли које се односе на мишљење испитаника о овом проб лему дата је у табелама 10 и 11. Види се да 12.9% испитаника уочава тај проблем и сматра формапија метеоролога. Такоде, половина испитаника (50.4%) сматра да професионални метеоролози веродостојније саопштавају метеоролошке информације у односу на спикере и водитеље телевизије и радија, а само 9.7% сматра супротно.

у вези тог проблема тј. у прилог тачније представљања изворних метеоролошких ин формација иду и резултати дати у табелама 12 и 13 . Види се да $66,9 \%$ испитаника сматра да би метеоролози требали да имају посебне тер мине на телевизији и радију, а $52,2 \%$ да би и у новинама требало да буде више простора за представљање метеоролошких прилика.

У неформалним разговорима, а понекад и кроз шалу на медијима се често чује исказ: "Мете оролози су рекли да ће бити сунчано, нонесите кишобран". Оваква критика може се оповргнути резултатом датим у табели 14 , где је приказана расподела испитаника по катего ријама варијабле" Да ли верујете метеоролозима" и која даје информацију да исшитаници на подручју Београда у $83,5 \%$ случајева верују метеоролозима (од тога $24,6 \%$ кате орички да) наспрам 11.7% испитаника који имају супротно мишљење (од тога свега 3.5% категорички не)
У табелама 15 и 16 , где су дате расподеле испитаника по категоријама које се такође од носе на веровање, види се заступљеност испитаника који не верују метеоролозима (5.6\% 4.7\%). У високом проценту испитаници не раве разлику у веровању старијем и млађем $(75,1 \%)$ и мушкарцима и женама мете-

ролозвма ($83,3 \%$), али се примећује склоност аа више верују старијем у односу на млађег жену ($7,6 \%$ према $4,4 \%$) Ово одступање у веровану највероватвије је последица неких соииолошких и културолошких ставова испи таника.

4.2. Аиализа табела контингеције

Од 12 варијабли које описују простор који се односи на праћење извештаја о времену изабране су две најкарактеристичније тј. праћење метеоролошких извештаја уопште, независно од начина, а с тим у вези и веровање у њих. Следи приказ резултата истраживања да ли на праћење и веровање уимулиште. У свим приказаяим табелама веза између варијабли је статистички значајна, једино је у појединим ћелијама табела (углавном у категоријама не знам, углавно не и не) апсолутна заступљеност исшитаника мала тако да закључке треба доносити с опрезом.

Веза између варијабли "године старости" и "да ли пратите извештаје о времену" приказана је у табели 17. Уочљиво је да у категорији " да, скоро свакодневно" варијабле која се односи на праћење заступљеност испитаника има тенденцију пораста са годинама старости. Категорија испитаника старих преко 60 година релативно скоро двоструко чешће, а категорија од 51 до 60 година релативно знатно чешће свакодневно прате извештаје о времену него што су заступљени у узорку. Удео категорија од 41 до 50 и од 31 до 40 година старости које скоро свакодневно прате извештаје о времену релативно је подједнак њиховој заступљености у укупном узорку. Млађи испитаници приметно ређе прате извештаје о времену у односу на њихову заступљеност у узорку. У категорији "углавном да" варијабле која се односи на праћење, удео свих старосних група релативно је сразмеран њиховом уделу у узорку. Због апсолутно малог броја испитаника у категоријама" углавном не" и "не" није захвално прецизирати тенденције заступљности по старосним категоријама сем можда да се напомене да најмлађе категорије испитаника (до 20 година) релативно скоро троструко ређе прате извептаје о времену него што су заступљени у узорку.
Веза између варијабли " године старости" и "да ли верујете метеоролозима" приказана је у табели 18. Запажа се да у категорији испитаника еа одговором "да" у варијабли која се односи на веровање метеоролозима категорије исни-

таника преко 60 и од 31 до 40 година релативно нешто чешће верују метеоролозима него што су застушљени у узорку, а остале старосне категорије релативно нешто ређе. Испитаници свих старосних категорија који углавном верују метеоролозима сразмерно су заступљени уделу свеке од тих категорија у узорку.
Веза између варијабле "пол" с једне стране и варијабли "да ли пратите извештаје о времену" ($1=0,8602$) и "да ли верујете метеоролозима ($1=0,2266$) с друге стране није статистички значајна. Дакле, пол није фактор који би утидао на пракеше метеороло ких извештаја п веровање у њих

Везе између варијабле "образовање" и варијабли "да ли пратите извештаје о времену" и "да ли верујете метеоролозима" статистички су значајне и приазане су у табелама високог вишег образоваюа в они са шано високог и вом шконом релативно мало чеште шрате (скоро свакодневно) метеоролоите извештаје (скро што су застушьени у узорку а испитаници за завршеном основном и срепном школом релативно ређе Истетанит свих образовних

5. ЗАКЉУЧАК

Истраживање је показало да се на подручју Београда метеоролошки извештаји у високом мромем телевизије (821% свих испитаника) Тагође може се рећи $(83,5 \%)$ у метеоролошке извештаје да ноловина $(50,4 \%)$ их сматра на их мете оролози веродостојније саошштавају него спикери и водители тедевизпје и рапија и да би метеоролози требали да имају своје посебве термине ($66,9 \%$). Постављене хисотезе тести ране су методом хи-квадрат теста а шри интерпретацији табела узета је у обзир чињеница да је апсолутни број испитаника који не прате и не верују у метеоролошке извештаје врло мали. Потврђена је само друга хипотеза према којој се испитаници различитог пола не разликују у праћењу и веровању у метеоролошке извештаје. Потврђен је и део четврте хипотезе који се односи на праћење, што значи да се испитаници у праћењу метеоролошких извептаја не разликују по пребивалишту, а део хипотезе који се односи на веровање није потврђен, тј. испитаници се у веровању у метеоролошке извештаје разликују по пребивалишту. Испитаници из ужег дела града приметно ређе верују метеоролозима, а они из села у околини приметно чешће. Прва и

категорија који углавном прате извештаје времену сразмерно су застунљени уделу свеке од тих категорија у узорку. Кад је у питању веровање метеоролозвма, у категорији испи таника који апсолутно верују (одговор "да") јних са завршеном средњом школом щримено

 аступљени у узорку. Испитаница свых обр
 укушном узорку
Веза између варијабли "пребивалиште" и "да и пратите извештаје о времену" није ста истички значајна ($\Pi=0,0799$), што значи да ручіу Мегроролошких и ол пребиванитт ужи део града, шриградско населе, село у околини града) Веза измеьу варијабни "преби алиште" " "да ли верујете метеоро ооима статвстчки је значајна и шриғазана је у та бели 21. Испитаници из ужег нела града приметно ређе верују метеоролозима, а они из седа у околини прмметво чешће вего што су заступљени у узорку. Испитаници који углав сом верују не разиивууу се битно према преби итно према преби валишту

друга хипотеза нису прихваћене. Праћење ме теоролошких извешттаја има тенденцију пора та са повећањем година старости. Мете ровими статативно чешће верууу ис 31 до 40 година, а релативно ређе остал старосне категорије Испитаници високог вишег образовања п они са непотпуном основом школом релативно чешће скоро свакод невно прате извештаје о времену, а они са завршеном основном и средњом школом релативно ређе. Испитанипи са вепотпуном основном школом знатно чешће, а они са завршеном средњом школом приметно ређе верују метеоролозима у односу на остале образовне категорије.

Из резултата истраживања видљиво је да јавност прати метеоролошке извештаје и да верује метеоролозима. Добијене разлике измеду група испитаника различитих социодемографских карактеристика добиће потнунији смисао када буду разматране у склону других обележја као што су нпр. занимање, коришћење метеоролошких информација, утицај времена на здрављье, познавање терминологије и основно знање из метеорологије.

Табела 2. Пол испитаника

		мушки		женски		укупно	
асполутно		164		177		341	
\%		48.1		51.9		100	
Табела 3. Образовање							
	научни степен	факул-тет	виша школа	средња школа	основна школа	неп. ос. школа	укупно
апсол.	7	65	35	161	44	29	341
\%	2.1	19.1	10.3	47.2	12.9	8.5	100

Табела 4. Пребивалиште

Табела 4. Пребивалиште				пригр. насеље
	ужи део града	103	укупно околини	
апсолутно	181	57	30	31
$\%$	53.1	16.7	30.2	100

Табела 5. Да ли пратите извештаје о времену

	да, скоро сва- копнев.	углавном да	углавном не	не, никада	укупно
апсолутно	128	162	42	9	341
$\%$	37.5	47.5	12.3	2.6	100

Табела 6. Да ли пратите извештаје о времену путем телевизқј.						
	да, скоро сва- коднев.	углавном да	углавном не	не, никада	укупно	
апсолутно	141	139	50	11	341	
$\%$	41.3	40.8	14.7	3.2	100	

Табела 7. Да ли пратите извештаје о времену путем радија.
Табела 7. Да ли пратите извештаје о времену путем радија.

	да, скоро сва- коднев.	углавном да	углавном не	не, никада	укупно
апсолутно	91	100	89	61	341
$\%$	26.7	29.3	26.1	17.9	100

Табела 8. Да ли пратите извештаје о времену путем новина.							
да, скоро сва- коднев. углавном да углавном не	не, никада	укупно					
апсолутно	43	109	111	78	341		
$\%$	12.6	32.0	32.6	22.9	100		

Табела 9. Да ли се лично телефоном инфоришете о времену.						
	да, скоро сва- коднев.	углавном да	углавном не	не, никада	укупно	
апсолутно	6	9	48	278	341	
$\%$	1.8	2.6	14.1	81.5	100	

Табела 10. Сматрате ли да спикери и водительи тв и радио-програма преносе оригинални, неиз мењени текст метеоролога.

	мењени текст метеоролога.					
	да	на примекујем разлику	уопште не обраћ. пажжу на то	не разликујем спикера од метеор.	не	укупно
апсолут.	128	65	79	25	44	341
$\%$	37.5	19.1	23.2	7.3	12.9	100

Табела 11. Сматрате ли да професионални метеоролози веродостојније (убедљивије) саопштавају извештаје о времеву у односу на спикере и водитеље тв и радиопрограма.

| | да |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Табела 12. Сматрате ли да би метеоролози требали да имају своје посебне термине за извештаје о

времену на телевизији и радију.	не знам	не	укупно	
апсолутно	да	228	63	50
$\%$	66.9	18.5	14.7	341

Табела 13. Сматрате ли да би у дневним новинама требало да буде више простора о времену (да

\qquad

Табела 14. Да ли верујете метеоролозим

Табела 15. Којем метеорологу више веруіете

Табела 16. Којем метеорологу више верујете

	мушкарду	подједнако	нити једном	жени	укупно
апсолутно	26	284	16	15	341
\%	7.6	83.3	4.7	4.4	100

године старости		да, скоро свакодневно	углавном да	углавном не	не, никада	укупно
. >60	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 66,7 \\ & 23,4 \end{aligned}$	$\begin{aligned} & \hline 13 \\ & 28,9 \\ & 8,0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2,2 \\ & 2,4 \end{aligned}$	$\begin{aligned} & 1 \\ & 2,2 \\ & 1,1 \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 13,2 \end{aligned}$
51-60	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 62,5 \\ & 15,6 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 37,5 \\ & 7,4 \end{aligned}$			$\begin{aligned} & 32 \\ & 9,4 \end{aligned}$
41-50	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 34,9 \\ & 17,2 \end{aligned}$	$\begin{aligned} & \hline 36 \\ & 57,1 \\ & 22,2 \end{aligned}$	$\begin{aligned} & 4 \\ & 6,3 \\ & 9,5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1,6 \\ & 11,1 \end{aligned}$	$\begin{aligned} & \hline 63 \\ & 18,5 \end{aligned}$
31-40	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 21 \\ & 32,3 \\ & 16,4 \end{aligned}$	$\begin{aligned} & \hline 38 \\ & 58,5 \\ & 23,5 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 6,2 \\ & 9,5 \end{aligned}$	$\begin{aligned} & 2 \\ & 3,1 \\ & 22,2 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 19,1 \end{aligned}$
21-30	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 22 \\ & 29,7 \\ & 17,2 \end{aligned}$	$\begin{array}{l\|} \hline 37 \\ 50,0 \\ 22,8 \end{array}$	$\begin{aligned} & 12 \\ & 16,2 \\ & 28,6 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 4,1 \\ & 33,3 \end{aligned}$	$\begin{aligned} & \hline 74 \\ & 21,7 \end{aligned}$
$=<20$	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 13 \\ & 21,0 \\ & 10,2 \end{aligned}$	$\begin{array}{\|l\|} \hline 26 \\ 41,9 \\ 16,0 \end{array}$	$\begin{aligned} & \hline 21 \\ & 33,9 \\ & 50,0 \end{aligned}$	$\begin{aligned} & 2 \\ & 3,2 \\ & 22,2 \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 18,2 \end{aligned}$
укупно	anc. \%	$\begin{aligned} & \hline 128 \\ & 37,5 \end{aligned}$	$\begin{array}{\|c\|} \hline 162 \\ 47,5 \end{array}$	$\begin{aligned} & \hline 42 \\ & 12,3 \end{aligned}$	$\begin{aligned} & 9 \\ & 2,6 \end{aligned}$	$\begin{array}{\|l\|} \hline 341 \\ 100 \\ \hline \end{array}$

Хи-квадрат=66,76 $\quad \Pi=0.00000$

Табела 18. Године старости - веровање

године старости		да	углавном да	не знам	углавном не	не	укупно
>60	апс.	21	20	-	1	3	45
	$\%$	46,7	44,4	-	2,2	6,7	13,2
	$\%$	25,0	10,0	-	3,6	25,0	
$51-60$	апс.	8	21	1	6	-	32
	$\%$	25,0	65,6	3,1	6,3	-	9,4
	$\%$	9,5	10,4	6,3	7,1	-	
$41-50$	апс.	15	38	5	4	1	63
	$\%$	23,8	60,3	7,9	6,3	1,6	18,5
	$\%$	17,9	18,9	31,3	14,3	8,3	
$31-40$	апс.	21	34	1	6	3	65
	$\%$	32,3	52,3	1,5	9,2	4,6	19,1
	$\%$	25,0	16,9	6,3	21,4	25,0	
$21-30$	ппс.	10	49	2	12	1	74
	$\%$	13,5	66,2	2,7	16,2	1,4	21,7
	$\%$	11,9	24,4	12,5	42,9	8,3	
$=<20$	апс.	9	39	7	3	4	62
	$\%$	14,5	62,9	11,3	4,8	6,5	18,2
	$\%$	10,7	19,4	43,8	10,7	33,3	
укупно	апс.	84	201	16	28	12	341
	$\%$	24,6	58,9	4,7	8,2	3,5	100

Табела 19. Образовање - праћење

образо- вање		да, скоро свакодневно	углавном да	углавном не	не, никада	укупно
научни степен	$\begin{aligned} & \text { апс. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 42,9 \\ & 2,3 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 57,1 \\ & 2,5 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 7 \\ & 2,1 \end{aligned}$
факултет	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 29 \\ & 44,6 \\ & 22,7 \end{aligned}$	$\begin{aligned} & 32 \\ & 49,2 \\ & 19,8 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3,1 \\ & 4,8 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3,1 \\ & 22,2 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 19,1 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { вишата } \\ \text { школа } \end{array}$	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 16 \\ & 45,7 \\ & 12,5 \end{aligned}$	$\begin{aligned} & 16 \\ & 45,7 \\ & 9,9 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 5,7 \\ & 4,8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2,9 \\ & 11,1 \end{aligned}$	$\begin{aligned} & \hline 35 \\ & 10,3 \end{aligned}$
средња школа	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 52 \\ & 32,3 \\ & 40,6 \end{aligned}$	$\begin{aligned} & \hline 79 \\ & 49,1 \\ & 48,8 \end{aligned}$	$\begin{aligned} & \hline 27 \\ & 16,8 \\ & 64,3 \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ 1,9 \\ 33,3 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 47,2 \end{aligned}$
основна школа	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 12 \\ & 27,3 \\ & 9,4 \end{aligned}$	$\begin{aligned} & 20 \\ & 45,5 \\ & 12,3 \end{aligned}$	$\begin{array}{l\|} \hline 11 \\ 25,0 \\ 26,2 \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 2,3 \\ 11,1 \end{array}$	$\begin{aligned} & \hline 44 \\ & 12,9 \end{aligned}$
непот.ос. школа	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 55,2 \\ & 12,5 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 37,9 \\ 6,8 \\ \hline \end{array}$		$\begin{aligned} & \hline 2 \\ & 6,9 \\ & 22,2 \end{aligned}$	$\begin{aligned} & \hline 29 \\ & 8,5 \end{aligned}$
укупно	$\begin{aligned} & \hline \text { anc. } \\ & \% \end{aligned}$	$\begin{aligned} & 128 \\ & 37,5 \end{aligned}$	$\begin{aligned} & 162 \\ & 47,5 \end{aligned}$	$\begin{array}{\|l\|} \hline 42 \\ 12,3 \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ 2,6 \\ \hline \end{array}$	$\begin{aligned} & \hline 341 \\ & 100 \\ & \hline \end{aligned}$

Табела 20. Образовање - веровање

образовање		да	углавном да	не знам	yглавном не	не	укупно
научни степен	$\begin{array}{\|l\|} \hline \text { anc. } \\ \% \\ \% \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & 14,3 \\ & 1,2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6 \\ 85,7 \\ 3,0 \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline 7 \\ 2,1 \end{array}$
$\begin{aligned} & \text { факул- } \\ & \text { тет } \end{aligned}$	$\begin{array}{\|l} \hline \text { aric. } \\ \% \\ \% \\ \hline \end{array}$	$\begin{aligned} & \hline 19 \\ & 29,2 \\ & 22,6 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 33 \\ 50,8 \\ 16,4 \\ \hline \end{array}$	$\begin{aligned} & \hline 2 \\ & 3,1 \\ & 12,5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 15,4 \\ & 35,7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1,5 \\ 8,3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 65 \\ 19,1 \end{array}$
$\begin{aligned} & \hline \text { вишा } \\ & \text { пккола } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { anc. } \\ \% \\ \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ 25,7 \\ 10,7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \\ 68,6 \\ 11,9 \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & 2,9 \\ & 6,3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2,9 \\ 3,6 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 35 \\ 10,3 \\ \hline \end{array}$
средња школа	$\begin{array}{\|l\|l} \hline \text { anc. } \\ \% \\ \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ 18,6 \\ 35,7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 102 \\ 63,4 \\ 50,7 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & 5,6 \\ & 563 \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \\ 9,3 \\ 53,6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ 3,1 \\ 41,7 \end{array}$	$\begin{aligned} & 161 \\ & 47,2 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { основна } \\ \text { школа } \end{array}$	$\begin{array}{\|l\|l} \hline \text { anc. } \\ \% \\ \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ 27,3 \\ 14,3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 21 \\ 47,7 \\ 10,4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ 9,1 \\ 25,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 4,5 \\ 7,1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 11,4 \\ 41,7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 44 \\ 12,9 \\ \hline \end{array}$
непот.ос. школа	$\begin{array}{\|l\|l} \hline \text { anc. } \\ \% \\ \% \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ 44,8 \\ 15,5 \\ \hline \end{array}$	$\begin{aligned} & \hline 15 \\ & 51,7 \\ & 7,5 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 1 \\ 3,4 \\ 8,3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 29 \\ 8,5 \end{array}$
укупно	$\begin{aligned} & \text { anc. } \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 84 \\ 24,6 \\ \hline \end{array}$	$\begin{aligned} & \hline 201 \\ & 58,9 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 4,7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ 8,2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ 3,5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 341 \\ 100 \\ \hline \end{array}$

Табела 21. Пребивалиште- вероваве

пребивалиште		да	углавном да	не знам	углавном не	не	укупно
ужи део града	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28 \\ & 15,5 \\ & 33,3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 114 \\ & 63,0 \\ & 56,7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 13 \\ 7,2 \\ 81,3 \\ \hline \end{array}$	$\begin{aligned} & \hline 21 \\ & 11,6 \\ & 75,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2,8 \\ & 41,7 \\ & \hline \end{aligned}$	$\begin{aligned} & 181 \\ & 53,1 \end{aligned}$
ириград насеље	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13 \\ & 22,8 \\ & 15,5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 59,6 \\ & 16,9 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 3,5 \\ 12,5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 8,8 \\ 17,9 \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \\ & 5,3 \\ & 25,0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 57 \\ 16,7 \end{array}$
село y околини	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43 \\ & 41,7 \\ & 51,2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 53 \\ & 51,5 \\ & 26,4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 1,0 \\ 6,3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 1,9 \\ 7,1 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & 3,9 \\ & 33,3 \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 30,2 \end{aligned}$
укупно	$\begin{aligned} & \text { ance. } \\ & \text { ar } \end{aligned}$	$\begin{array}{\|l\|} \hline 84 \\ 24,6 \\ \hline \end{array}$	$\begin{aligned} & 201 \\ & 58,9 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 4,7 \\ \hline \end{array}$	$\begin{aligned} & \hline 28 \\ & 8,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 3,5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 341 \\ & 100 \\ & \hline \end{aligned}$

ЛИТЕРАТУРА:

Група аутора (Цветановић,С; Ђекић,М; Стожинић,С; Војновић-Кљајић, Р; Трамошљанин, М; Јовановић,О.) (1988): Утицај времена на здравље људи. Научна књига. Београд Ивановић, Б.(1973): Теоријска статистика. Научна књига. Београд Мијановић, Ј.(1996): Демографска слика Београда. Педагошка стварност, XLI, 1-2, 7-26. Плазинић, С.(1985): Техничка метеорологија. Научна књига. Београд Тодоровић, Н.(1997): Временске прилике и маратон. Физичка култура, 50, 3, 201-206. Чобанов, 3.(1992): Ваздухопловна метеорологија. Научна књига. Београд WMO, No-160.(1964): A survey of human biometeorology. WMO. Geneva. WMO, No-835.(1996): Weather and sport. WMO. Geneva.

ДИСКРИМИНАЦИОНА АНАЛИИЗА ПІРАТЕЊА
 МЕТЕОРОЛОІІКИХ ИЗВЕІІІТАЈА С ОБЗИРОМ НА СОЦИО-ДЕМОГРАФСКЕ КАРАКТЕРИСТИКЕ ИСПИТАНИКА

Недељько Тодоровић, дийл. меїи.

Рейублички хидромейеоролоики завод Србије,
Киеза Вииеслава бб, 11030 Беойрад, Југ̃ославија
Abstract
The aim of this paper is to examine if the following of meteorological reports by the citizens of Belgrade and The aim of this paper is to examine if the following of meteorological reports by the citizens of Belgrade and
wider surrounding differs considering the age, sex, education and area of living. The examination was caried wider surrounding differs considering the age, sex, education and area of living. The examination was caried out during 1996 and 1997 on the sample of 341 examinees older than 14. Variables, elaborated in this paper
are the part of a questionaire which is a base for a deeper research titled "Public Opinion and Meteorology". are the part of a questionaire which is a base for a deeper research titled "Public Opinion and Meteorology". ports considering their age and area of living, and do not differ considering their sex and education. ports considering their age and area of living, and do not differ
Абсйрак \bar{u}

Абсйракй
меӣиеоролоиких извешйиаја на йодручју Беойрада и
 иире околине разликује ирема годинама сшаросии, иолу, образоваюу и иребивалииииу исии-

 анализе добијено је да се исйийианици у йраћену мейеоролошких извешйиаја сйиайисйиички значајно разликују с обзиром на године с烏аросӣии и йребивалишйие, а не разликују с обзиром на йол иобразовање.

1. УВОД

Метеоролошка информација од значаја је сваком човеку било да је користи за обављьање своје професионалне делатности, било за одмор (Плазинић, 1985:1-6; Чобанов, 1992:1-3 WMO, No-160 ; WMO, No-835; Цветановић и остали, 1988:24-25; Тодоровић, 1996). Истраживање јавног мнења на подручју Београда (Тодоровић, 1998, у штампи) показало је да се метеоролошке информације у високом проценту прате (85%) и да им се верује ($83,5 \%$). Најчешћи начин праћења је путем телевизије, половина испитаника сматра да метеоролози веродостојније у односу на спикере и водитеље саопштавају метеоролошке информације, а знатна већина да би метеоролози требали да имају своје посебне термине на телевизији и радију. Методом хи-квадрат теста добијено је да статистички значајпо чешће од осталих извепттаје о времену прате старији испитаници, они са високим и врло ниским образовањем и да метеоролозима чешће верууу испитаници преко 60 и од 31 до 40 година старости, врло

слабог образовања и они са пребивалиштем у селима околине Београда. Резултати истразивања у овом раду требало би да укажу на тешкоће у праћењу извештаја о времену (доступност, разумевање, веровање, итд) тј. да се утврди за које би категорије становништва, с обзиром на њихове социо-демографске карактеристике, требало црилагодити метеоролошке информације.

2. ЦИЉЕВИ ИСТРАЖИВА円А И ХИПОТЕЗЕ

Циљ рада је да се утврди да ли се праћење метеоролошких извештаја на подручју Београда и шире околине разликује према годинама старости, полу, образовању и пребивалишту испитаника. У складу с циљем рада постављене су четири нулте хишотезе:

X1 - у простору праћења метеоролошких ин-

формација не постоје разлике у начину праћења с обзиром на године старости испитаника,
X2 - у простору праћења метеоролошких информација не постоје разлике у начину праћења с обзиром на пол исшитаника,
X3 - у простору праћења метеоролошких информација не постоје разлике у начину праћења с обзиром на образовање испитаника,
X4-у простору праћења метеоролошких инрормација не постоје разлике у начину праћења с обзқром на пребивалиште испитаника

3. МЕТОДИ РАДА

3.1. Узорак испитаника

Узорак целокушног истраживања, па тако и овог дела, сачињава 341 испитаник са подручја града Београда (ужи део града, приградска насеља и села ван урбаног дела). Структура исшитаника (старост, нол, образовање, радна активност, место становања) приближно одговара демографској структури становноштва на територији града Београда према попису из 1991. године, уз напомену да су испитаници били старији од 14 година (Мијановић, 1996). Подаци о структури испитаника налазе се у табелама од 1 до 4 у раду "Праћење метеоролошких извештаја у јавности" . Коришћен је квотни узорак но старости, полу и образовању и може да се примети да је незнатно померен ка млађој и образованијој структури него што је према попису установљено.

3.2. Избор варијабли

Простор праћења извештаја о времену чини 8 од постојећих 12 варијабли из Упитника (JMM). Осам одабраних варијабли погодне су за обраду мултиваријатном анализом која је употребљена у овом раду. Варијабле које су обрађене:

1. Да ли пратите извештаје о времену?
2. да, скоро свакодневно (ПРАЋЕЊЕ)
3. углавном да
4. углавном не
5. не, никада
6. Да ли пратите извештаје о времену путем телевнзије?
7. да, скоро свакодневно (IПРАЋЕНТВ)
8. углавном да
9. углавном не
10. не, никада
11. Да ли пратите извештаје о времепу путем радија?
12. да, скоро свакодневно (ПРАТЕНРА)
13. углавном да
14. углавном н
15. не, никада
16. Да ли пратите извештаје о времену путем новина?
17. да, скоро свакодневно(ПРАЋЕННО)
18. углавном да
19. углавном не
20. не, никада
21. Да ли се лично телефоном информишете о

времену?

1. да, скоро свакодневно (ПРАЋЕНТФ)
2. углавном да
3. не, никада
4. Сматрате ли да би метеоролози требали да имају своје посебие термипе за извештаје о времену на телевизији и радију?
5. да
(ТЕРМИН)
6. не знам
7. не
8. Сматрате ли да би у дневним новима трабало да буде више простора о времену (да поред текста прогнозе буду подаци о измереним метеоролошким м метеоролошке

карте)?

1. да
(НОВИНЕ)
2. не знам
3. Да ли верујете метеоролозима?
4. да 2. углавном да
5. углавном д
6. не знам
7. не знам
8. углавном не
9. не
3.3. Методи обраде података

За обраду података одабрана је дискримина циона анализа. Коришћен је програм SPSS fo Windows. Циљ метода је утврђивање разлика између груша испитаника по одређеним карактеристикама (Тодоровић, Паскота, 1995). У овом истраживању те групе су одређене према годинама старости (6 категорија), полу (2 категорије), образовању (6 камегора) п месу пребивалишта (3 катсгорије), а разлике су твруиване према 8 од постејения 12 вариабл које описују простор праћења извештаја времену

4. РЕЗУЛТАТИ ИСТРАЖИВАФА

4.1. Дискриминациона анализа начина праћења метеоролонких взвештаја према годинама старости испитаника

У табели 1 наведени су подапи о значајности Њена каноничка кореладија је средње висине дискриминационе функције. Од пет теоријски што значи да на начин праћења метемогућих само је једна (прва) статистички оролошких извештаја утичу и неки други факзначајна. тори који нису обухваћени испитаним скупом Она исцриљује односно објашњава три обележја испитаника. четвртине дискриминационог варијабилитета.

Табела 1. Прва дискриминациона функција
Дискрим. Дискр.вредн. Проценат објаш. Каноничка хи-квадрат Степени Статист.

Дискрим. функција	Дискр.вредн. Ламбда	варијабилитета	корелација	миввадрат	слободе	значајн.
,	7378	74.14	4442	101.274	40	. 0000

Дискриминациона функција има релативно Табела 3. Ценӣироиди $\overline{\text { рैруйа (F) }}$
ниске дискриминативне коефицијенте (табела
2).Корелације варијабли и функције Група F
(С=структура дискриминационе функције) по- 1. преко 60 год
казууу да је дискриминациона функција најбоље одређена следећим варијаблама: Да ли пратите извештаје о времену (.76), Да ли пратите извештаје о времену путем ТВ (.64), Да ли пратите извештаје о времену путем новина (.52), Да ли пратите извештаје о времену путем радија (45) и Да ли верујете метеоролозима (.34). Смер коефицијената упућује на испи танике који углавном или никада не прате метеоролошке извештаје нити уото нин
 када не верују метеоролозима.

Ако се погледа табела 3 уочава се да наведена обележја најбоље одговарају шестој групи спитаника (млађи од 20 година).
2. $51-60$ год.
$-.7381$
41-50 год.
4. $31-40$ год.
$\begin{array}{ll}\text { 4. } 31-40 \text { год. } & -.0377 \\ \text { 5. } 21-30 \text { год. } & .7419\end{array}$
5. $21-30$ год.
. 3149

Добијени статистички значајни фактор раздваја групу 6 (до 20 година) од група 1(преко 60 година) и 2 (51 - 60 година). Звачи, с једне стране се налазе испитаници млађи од 20 извештаје, не прате их путем телевизије и радија, нити верују метеоролозима, а с друге испитаници стари преко 60 и од 51 до 60 година са супротним односом према праћењу метеоролошких извештаја и веровању метероролозима.

4.2. Днскримннаднона анализа начина праћења метеоролошних взвештаја према полу п образоваву пепитанепа

Табела 2. Сиандардизовани дискриминациони оефиијении ($К$) и корелаиије (С) између варијабли и дискриминационе функције

	K	C
ПРАТЕЊЕ	. 59	.76*
ПРАЋЕНТВ	. 21	.64*
ПРАТЕНРА	17	.45*
ПРАТЕННО	. 12	29
ПРАТЕНТФ	-. 34	-. 15
ТЕРМИН	-. 07	. 22
НОВИНЕ	. 45	.52*
BEPOBAЊE	. 07	. 34

Дискриминацина анализа је показала де се у цростору начина праћења метеоролошких извештаја испитаници статистички значајно не разликују по полу ($\mathrm{P}=3288$), нити по образовању ($\mathrm{P}=.0557$).
 праћења метеоролошквх взвештаја према пребивалишту пспитаниа

У табели 4. дати су подаци о првој дискриминационој функцији. Од две теоријски могуће само је једна статистички значајна

Табела 4. Прва дискриминациона функиија

Tабела 4. Прва дискриминациона функиија
Дискрим. Дискр.вредн. функииа Ламбда
1

Дискриминациона функција објашњава скоро четири петине дискриминационог варијабилитета.Каноничка корелација је ниска што значи да на начин праћења добрим делом утичу и други фактори који карактеришу испитанике.

Табела 5. Сйандардизовани дискриминациони коефицијеншии (К) и корелације (Ц) измећу варијабли и дискриминационе функције

	K	C
ПРАЋЕЊЕ	-. 37	. 14
ПРАКЕНTB	. 69	.60*
ПРАЋЕНРА	. 19	. 19
ПРАТЕННО	-. 11	-. 04
ПРАЋЕНТФ	-. 42	-. 43
ТЕРМИН	-. 18	. 08
НОВИНЕ	. 31	.42*
ВЕРОВАЊЕ	. 48	. 63 *

Табела 6. Lенйироиди $\overline{\text { руйй (}}$ ($)$

Група	F
1. ужи део града	.2568
2. приградско насеље	.1701
3. село у околини града	-.5454

2. приградско насеље . 1701
3. село у околини града -. 5454

Дискриминациона фукција има релативно ниске дискриминационе коефицијенте. Ко релација измећу дискриминационих варијабл и функције показује да је дискриминациона функција најбоље одређена следећим вари абалама: Да ли верујете метеоролозима (.63) Да ли пратите извештаје о времену путем ТВ .60), Да ли се лично телефоном информишете времену (.43) и Да ли пратите извештаје времену путем новина (.42).

Смер коефицијената указује да је реч о испитаницима који не верууу метеоролозима, не прате извештаје о времену путем телевизије в новина, али се телефоном лично ишформишу о времену
Из табеле 6 види се да наведене карактерис тике имају категорије испитаника из ужег дела града и приградских насеља. Дискриминацион функција овим двема групама сушроставља атегорију испитаника који живе у селима колини Београда. Они, управо обратно, ерууу метеоролозима, прате извештаје о вре
 начајно ређе се лично телефоном информиш о времену

вајају се две групе испитаника. Једну чине испитаници из ужег дела града и приградских насеља (урбани део) који статистички значајно не верују метеоролозима, не прате извештаје о времену путем телеввзие и новна, али се лично телефоном ипформишу о времепу Једно од могунм обашњева за нав ки
 уде да је у урба ок е метеоролошких ин рорамива тутем различитих медија у којим рорамдаја пум раст (ссустено уочено у метеоролошој слиби) на исшттиити сум нају у поузнанот тих информапија и због тога оялиу да сешно телефоном

села у околини Београда који верују метеоролозима, прате извештаје о времену путем телевизије и новина, али се статистички значајно ређе лично телефоном ииформишу него испитници из претходно поменуте групе. Једно од могућих објашњења за наведене карактеристике ове групе је чињеница да су им информапије о времену веома значајне због информаце делатности (полопривреда) шрате их и оријентисани су на своје уобичајене мепијске изворе информација о времену (информативне емисија ујутро и увече), верују у њих и због тога се не одлучују да се лично телефоном информишу (томе треба додати вероватно и мањи број телефонских претплатника).

ЛИТЕРАТУРА:

Срупа аутора (Цветановић,С; Ђекић,М; Стожинић,С; Војновић-Кљајић, Р; Трамошљанин,М; Јоановић,О.) (1988): У тицај времена на здравље људи. Научна књига. Београд
мианои, (1996): Демограсска стика Бограда. Педагошка стварност, XLI 1-2, 7-26.

Тлазинић, С.(.ДГ). Таска, М.(1995): Примена дискриминационе анализе у метеорологији. Зборник одоровић, Н., Наскога, М.(19 967 -970
Тодоровин Н.(1997): Временске прилике и маратон. Физичка култура, 50, 3, 201-206.
Тодоровић, Н. (1998): Праћење метеоролошких извештаја у јавности. РХМЗ Србије.(у игтампи) Чобанов, 3.(1992): Ваздухопловна метеорологија. Научна књига. Београд
WMO No-160 (1964): A survey of human biometeorology. WMO. Geneva
WMO No-835.(1996): Weather and sport. WMO. Geneva.

5. ЗАKJVУTAK

Истраживање је показало да на подручју Београда постоје статистистички значајне разлике у начину праћења извештаја о времену с обзиром на године старости испитаника чиме је хипотеза Х1 одбачена. Издвајају се две групе испитаника, млађи, до 20 година старости и старијп, преко 51 године. Најмлађи испитаници углавном или никада не прате извештаје о вермену, не верују у њих, и не прате их путем телевизије и радија, што би могло да се објасни њиховом преокупацијом школовањем или другим активностима примереним младалачком узрасту које се временски поклапају са најзаступљенијим терминима саопштавања метеоролошких извештаја. Нередовно праћеве метеоролошких информација вероватно ствара погрешан утисак о њиховој тачности што би могао да буде и разлог неверовања у њих. Супротно томе, старији исшитаници скоро сва-

кдневно или углавном прате извештаје о вре мену, верују у њих и најчешие их прате путем телевизије и радија. Највероватнији разлог за о је што су старији испитаници са годинам живота стекли увид у значајност мете ролошке информације (посебно у оквиру професионалне делатности) и њену поузданост, а најстарији међу њима и због тог нго имају више слободног времена.

Начин щраћења извештаја о времену ста тистички се значајно не разликује нити по полу нити по образовању испитаника, чиме су хипо тезе X2 и X3 потврђене

Затим, истраживање је показало да на по дручју Београда постоје статистички значајне разлике у начину праћења извештаја о времену ј обзиром на пребивалиште испитаника чим је хипотеза X4 одбачена. И у овом случају изд

КОРИШЋЕЊЕ МЕТЕОРОЛОШКИХ ИНФОРМАЦИЈА У ЈАВНОСТИ

Неделко Тодоровић, дийл. мей.
Рейублички хидромеиеооролоики завод Србије,
Кнеза Вишеслава бб, 11030 Беойрад, Јуйославија

The aim of this paper is to examine if general public in Belgrade and wider surroundings uses meteorological reports and to examine if there are the differences in use of meteorological reports, considering some socio demographic characteristics of examinees. The research was carried out during 1996 and 1997 on the sample of 341 examinees who are older than 14. Variables elaborated in this paper are the part of a questionaire which is a base for a deeper research titled "Public Opinion and Meteorology". The results show that 78,9\% of examinees use meteorological reports. Meteorological reports are used by older examinees, with very low education, farmers and those who live in rural areas near Belgrade significantly more often than the others.

Абсииракїй

Цияь рада је да се уришвдди да ли јавносй на йодручју Беойрада и шире околине корисӣи мейе оролошке извеийаје ида ли йосйоје разлике у коришћену с обзиром на неке социо-демойрафске
 исйииианика свих сйаросних а̄руйа изнад 14 година. Варијабле обрађене у овом раду део су уйий ника који је основа ширей исйраживања йод насловом "Јавно мнење и мейеоролойија". Резул $\overline{\text { ииаиии су йоказали да 78,9\% исйийаника корисиии мешеоролоике информације. Сшаииисиички } и \text { ий }}$ значајно чешће од осииалих мейеоролошке информације корисӣе сйарији исйииианици, они са врло ниским образовањем, йољойреивредници и они са йребивалииииеня у селима околине а̄рада.

1. УВОД

Многе људске делатности у директној су зависности од временских прилика. Безбедност и ефикасност човекове делатности у оквиру разних привредних грана као што су индустрија, енергетика (Плазинић, 1985:1-6), пољопривреда, саобраћај (Чобанов, 1992:1-3), туриостали 1988.24-25) сорт (WMO, No-835; Toдоровић, 1996), за време ексцесних метеоролошких и еколошких ситуација (Тодоровић, 1990) и других не мање важних свакодневних делатности у непосредној су зависности од поуздане информације о временским приликама, прошлим, актуелним и будућим На основу итраживања јавног мнења на подручју Београда (Тодоровић, 1998, у штамши) познато је да се извештаји о времену у високом проценту прате (85%) и да се у њих верује $(83,5 \%)$. А да ли заинтересовани појединци, привредне и непривредне организације користе метеоролошке информације у својим актив ностима тешко је утврдити без посебног истраживања усмереног ка тој проблематици. У овом раду покушано је да се путем ис

раживања јавног мнења установи у ком ст нену испитаници са територије Београда, у за висности од неких социо-демографских карак теристика, користе метеоролошке информа ције, а само посредно преко занимања и запос лености да ли их користе у основној делат ности на радном масту (привреда, непривреда итд.). На подручју Београда и шире околин рађено је опширно истраживање под насло вом "Јавно мнење и метеорологија" које је за новано на Упитнику (JMM) који садржи 103 варијабле од којих је у овом раду одабрано 1 које се односе на коришћење метеоролошких информација.

ЦИЉЕВИ ИСТРАЖИВАЊА И ХИПОТЕЗЕ
Први циљ рада је да се утврди да ли се и у ком цроценту користе метеоролошке информације у јавности. Други циљ је да се уочи да ли се испитаници разликују у односу на коришћење метеоролошких извештаја с обзиром на неке социо-демографске карактеристике. У складу са циљем постављено је пет нултих хипотеза:

X1 - испитаници различитих старосних група не разликују се у коришћењу метеоролошки Х2
X2 - испитаници различитог образовања не разликууу се у коришћењу метеоролошких ин формација
X3 - испитаници различитог занимања не разликују се у коришћењу метеоролошких информација,
нонитаници са различитом основном де латношћу не разликууу се у коришћењу метеХ5 - исияанияација,

- исмианици различитог пребивалишта не разликују се у коришћењу метеоролошких ин-

3. МЕТОДИ РАДА

31. Узорак испитаника

Узорак целокушног истраживања, па тако овог дела, сачињава 341 испитаник са подручја града Београда (ужи део града, приградска насеља и села ван урбаног дела). Структура испитаника (старост, пол, образовање, радна активност, место становања) приближно одго вара демографској структури становноштва на територији града Београда према попису из 1991. године, уз напомену да су испитаници били старији од 14 година (Мијановић,1996). Подаци о структури испитаника налазе се у табелама од 12 до 16 (табеле контингенције) које су приказане у раду. Коришћен је квотни узорак по старости, полу и образовању ванијој структури а пошто је померање незнатно није урађена пондерација.

3.2. Избор променљивих

Променљиве из целокупног истраживања поеељене су у блокове: I Подаци о испитанику, I Праћење метеоролошких извештаја, III Коришћење метеоролошких извештаја, IV Климатологија, VII Утицај на време и заштита средине и VIII Знање из метеорологије. У овом раду обрађено је 11 цроменљивихбли које се односе на коришћење метеоролошких извештаја, а које су заједно са својим категоријама приказане у табелама од 1 до 11.

3.3. Методи обраде података

Подаци су обрађени на дескриптивном нивоу који најпре укључује израчунавање дистрибу ција (апсолутних и релативних фреквенција) испитаника по категоријама сваке од испити ваних променљивих. Затим су урађене табеле

контингенције с припадајућим параметрима, а лавна статистичка обрада извршена је хиквадрағ тестом за табеле кошчке зачајости узета ie вредност грешше мана on 5\% (Ивa новић, 1973:310-328)

4. РЕЗУЛТАТИ ИСТРАЖИВАЮА И ИНТЕРПРЕТАЦИЈА

4.1. Дескриптивни подац

У табелама од 1 до 11 приказапе су дистрибу. ције испитаника (апсолутне и релативве фреквенције) по категоријама 11 променљивих које ошисују коришћење извештаја о времену

у променљивој која нам даје увид у коришћење метеоролошких извештаја независно од ога за коју су акввност кориснику ститаниа користи ($26,4 \%$ скоро свакои
 ристи Пане, метеороите порормишје ко ристи нешто мане иситанй него што их нати и верује у них (78.9% на шрем 85% ті 83.5%) Затим су у табелама од 2 до 9 дате дсстибуције иситанига по категоријама дромендивих које се односе на коришнеше метеоролошии информапија у неким активностима исшитаника За пољошривренне радове информације користи $41,3 \%$ исеитаника ($24,3 \%$ често), за грађевинске радове $32,6 \%$ ($13,8 \%$ често), за пловидбу и риболов $21,7 \%$ ($11,4 \%$ често), за путовања $78,9 \% \quad(31,1 \%$ често), за спортске активности $53,6 \%(24,0 \%$ често), за одмор и рекреацију $75,7 \%$ ($31,4 \%$ често), за свакодневне изласке из куће као што су одлазак на посао, у школу, куповину и слично $73,6 \%$ (44,9 \% често) а за пеке друге активности (које у упитнику нису дефинисане) $23,2 \%$ испитаника. У табели 10 дата је дистрибуција испитаника у променљивој која се односи на коришћење метеоролошке информације на радном месту испитаника коју би он могао да добије непосредно од метеоролошке службе. У том случају информацију би користило $20,8 \%$ испитаника ($8,8 \%$ скоро свакодневно). А у случају када би знали телефон метеоролошке службе (табела 11) 29,7\% исиитаника би се лично информисало о времену ($9,7 \%$ скоро свакодневно).

4.2. Анализа табела контингенције

Од 11 променљьивих које описууу простор који се односи на коришнење метеоролошких инодноси на коришћење пезависно од активности

испитаника (" Да ли вам користе извештаји о времену"). У табелама од 12 до 16 дати су резултати истраживања да ли коришћење метеоролошких информација зависи од година старости, образовања, занимања, основне делатоности на радном месту и пребивалишта. У свим приказаним табелама веза између вари јабли је статистички значајна, а само у нојединим ћелијама (углавном у категоријама углавном не и не, никада) ааслолуа за тупъеност исианиа је мала тако да у ти зом.

Веза између променљивих "године старости" и "да ли користите извештаје о времену" приказана је у табели 12. Испитаници старији од 60 година скоро свакодневно душло чешће користе метеоролошке информације него птто су заступљени у узорку. Удео категорије испитаника од 51 до 60 година у категоријама " да, скоро свакодневно" и "углавном да" релативно је подједнак њиховој заступљености у укупном узорку. Испитаници од 41 до 50 година нешто ређе свакодневно, али зато нешто чешне углавном користе информације. Испитаници од 31 до 40 година већ показууу тенденцију некоришћења информација, релативно су најзас-
тупљенији у категорији "углавном не". Испитаници од 21 до 30 и млађи од 20 година нешто ређе користе метеоролошке информације него што су заступъени у узорку, а они најмлађи у категорији "не, никада" чак и душло ређе Посматрајући у целини везу ове две променљиве уочава се да старији релативно чешће, а млађи релативно ређе користе метеоролошке информације.

Веза променљивих "образовање" и "да ли користите извештаје о времену" приказана је табели 13. Запажа се да скоро све категорије испитаника релативно подједнако својој заступљености у узорку користе метеоролошке информације, а извесно одступање показују они са средњом школом који их углавном ређе и они са непотнуном основном пколом који их скоро свакодневно дупло чешће користе.

Веза променљивих "занимање" и "да ли користите извештаје о времену" приказана је у та-

бели 14. Удео исшитаници без квалификације релативно је подједнак њиховој заступљености у укупном узорку
Ученици и студенти изразито ређе, радници мало чешне свакодневно, земљорадници изразито чешһе свакодневно, службеници у

 мало чешће свакодневно користе метеоролошке информације него што су заступљени у укупном узорку. Веза ове две променљиве не даје нам праву слику да ли испитаници користе метеоролошке информације при делатностима везаним за њихово занимање или за неке друге непрофесионалне активности.

Поузданији резултат даје веза променљивих "делатност" и "да ли користите извештаје о времену" која је приказава у табели 15 . Незапослени испитаници користе информације свакодневно мало чешће, испитаници на школовању изразито ређе, испитаници у самосталним делатностима свакодневно мало чешће, пољопривредници изразито чешке свакодневно, запослени у непривреди углавном мало чешће, запослени у привреди релативно невно мало чешће користе метеоролошке информације него што су заступљени у укупном узорку.

Дакле, веза последње две променљиве донекле потврђује везу између претходне две, тј. испитаници одређеног занимања користе метеоролошке ипформације у складу са тим и у основној делатности на свом радном месту.

Веза између променљивих "пребивалиште" и "да ли користите извештаје о времену" приказана је табели 16 . Испитаници из ужег дела трада и приградких насља ужавном мало свагодевно користе ввформапије о времену него што су заступљени у укупном узорку.

пловидбу и риболов, а у веома високом проценту за путовања, одмор и рекреацију, спортске активности и за свакодневне изласке из куће као но су ино Истовремено, резултати кустаживана показуіу да би $20,8 \%$ иситаника користило метеоролошке информације на
 свом радном месу уколик си ик дия чак 29.7% исшитаниға би се знајући телефов 2, $\%$ но инормисало Постављене хипотезе
 шреташвии табела контингенпије узета је обзир чинения да је ансонутни број исситаника у појеиним ћеијама ррно мали Веза између поједмим мроменљиве "да ли користите извептаје о "године старости" ($\Pi=0,00228$), "образоваше" $(\Pi=0,01286) \quad$ "занимање" $(\Pi=0,00006)$, "делатност" ($\Pi=0,00029$) и "пребивалиште "($\Pi=0,00283$) статистички је значајна. Дакле, године старости, образовање, занимање, делатност на радном масту и пребивалиште су фактори који утичу на коришћење метеоролошких информација. Тиме свих пет хипотеза није прихваћено, тј. испитаници се разликују по годинама старости, образовању, занимању, делатности и пребивалишту у коришћењу метеоролошких информација. Коришћење метеоролошких информација има тенденцију пораста са повећањем година старости испитаника, старији их релативно

ешће, а млађи релативно ређе користе. Испитаници свих нивоа образовања користе метеоролошке информације релативно подједнако својој заступљености у узорку, а извесно одих углавном ређе користе, и они са непотпуном основном школом којй их скоро свакодневно дупло чешће користе. Кад је у питању занимане исшитаника и пихова основва денатност на радном месту уочљиво је да пољопривредници изразито чешће, а ученици и студенти изразито ређе користе метеоролошке информације, док остале категорије испитаника то чине незнатно чешће или релативно подједнако њиховој заступљености у укупном узорку. Затим, испктаници из ужег дела града и приградских насеља углавном мало ређе, а они из села у околини приметно чешће свакодневно користе информације о времену него што су заступљени у укупном узорку.

Резултати истраживања указују да јавност на подручју Београда користи метеоролошке информације и да при томе старији испитаници, затим они са непотнуном основном школом, пољопривредници и они из села у околини то чине релативно чешће у односу на друге категорије испитаника. Увид у степен ефикасности и непосредну корист од метеоролошких информација у појединим делатностима привреде и непривреде може се добити неким другим специфичним истраживањима.

Табела 1. Да ли вам користе извештаји о времену.
Табела 1. да ли вам користе извештаји о времену.

	да, скоро свакод- невно	углавном да	углавном не	не, никада	укупно
апс	90	179	51	21	341
$\%$	26,4	52,5	15,0	6,1	100

Табела 2. Да ли вам обавештенје о времену користи за полјопривредне радове

	да, често	да, понекад	не	укупно
апс	83	58	200	341
$\%$	24,3	17,0	58,7	100

Табела 3. Да ли вам обавештенје о времену користи заграђевинске радове

	да, често	да, понекад	не	укупно
апс	47	64	230	341
$\%$	13,8	18,8	67,4	100

абела 4. Да
Табела 4. Да ли вам обавештенје о времену користи за пловидбу и риболов

	да, често	да, понекад	не	укупно
апс	39	35	267	341
$\%$	11,4	10,3	78,3	100

Истраживање је показало да се на подручју праћење ($85,0 \%$) што потврђује њену важност Београда метеоролошке информације у веома исоком проценту ($78,9 \%$) користе у јавности и то у нешто мањем проценту у односу на

за испитанике. Такође, испитаници у високом проценту користе метеоролошке информациј за пољопривредне и грађевинске радове, за

	да, често	да, понекад	не	укупно
апс	82	101	158	341
$\%$	24,0	29,6	46,4	100

Табела 7. Да ли вам обавештенје о времену користи за одмор и рекреацију.

	да, често	да, понекад	не	укупно
апс	107	151	83	341
$\%$	31,4	44,3	24,3	100

Табела 8. Да ли вам обавештенје о времену користи за свакодшевне изласке из

Табела 10. Да ли би вам обавештенје о времену непосредно од метеоролошке службе користило за делатности на радном месту.

Хи-квадрат $=42,64 \quad \Pi=0.00228$

образовање		да, скоро свакодневно	углавном да	углавном не	не, никада	укупно
научни степен	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$		$\begin{aligned} & 7 \\ & 100,0 \\ & 3,9 \end{aligned}$			$\begin{aligned} & \hline 7 \\ & 2,1 \end{aligned}$
факултет	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 30,8 \\ & 22,2 \end{aligned}$	$\begin{array}{\|l\|} \hline 34 \\ 52,3 \\ 19,0 \\ \hline \end{array}$	$\begin{array}{l\|} \hline 10 \\ 15,4 \\ 19,6 \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 1,5 \\ 5,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 65 \\ 19,1 \end{array}$
виша школа	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ 25,7 \\ 10,0 \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ 65,7 \\ 12,8 \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ 8,6 \\ 5,9 \\ \hline \end{array}$		$\begin{aligned} & 35 \\ & 10,3 \end{aligned}$
средња школа	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 35 \\ 21,7 \\ 38,9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 83 \\ 51,6 \\ 46,4 \end{array}$	$\begin{array}{\|l\|} \hline 31 \\ 19,3 \\ 60,8 \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ 7,5 \\ 60,0 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 47,2 \end{aligned}$
основна школа	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ 27,3 \\ 13,3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 20 \\ 45,5 \\ 11,2 \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 11,4 \\ 9,8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 \\ 15,8 \\ 30,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 44 \\ 12,9 \end{array}$
непот.ос. школа	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 48,3 \\ & 15,6 \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ 41,4 \\ 6,7 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ 6,9 \\ 3,9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 3,4 \\ 5,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 29 \\ 8,5 \end{array}$
укупно	anc \%	$\begin{array}{\|l\|} \hline 90 \\ 26,4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 179 \\ 52,5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 51 \\ 15,0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 21 \\ 6,1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 341 \\ 100,0 \\ \hline \end{array}$

Хи-квадрат $=36,65 \quad \Pi=0.01286$

занимање		да, скоро свакодневно	углавном да	углавном не	не	укупно
без квалификације	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 41,7 \\ 5,6 \end{array}$	$\begin{aligned} & \hline 6 \\ & 50,0 \\ & 3,4 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 8,3 \\ & 2,0 \\ & \hline \end{aligned}$		$\begin{aligned} & 12 \\ & 3,5 \end{aligned}$
ученици, стиденти	$\begin{aligned} & \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \\ 17,6 \\ 16,7 \\ \hline \end{array}$	$\begin{aligned} & \hline 34 \\ & 40,0 \\ & 19,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26 \\ & 30,6 \\ & 51,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 11,8 \\ & 45,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 85 \\ & 24,9 \end{aligned}$
радници	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 34,0 \\ 17,8 \\ \hline \end{array}$	$\begin{aligned} & \hline 25 \\ & 53,2 \\ & 14,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 4,3 \\ & 3,9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 8,5 \\ & 20,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 47 \\ & 13,8 \end{aligned}$
зем- љорад- ници	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 58,3 \\ & 15,6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 29,2 \\ & 3,9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 4,2 \\ & 2,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 8,3 \\ & 10,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 7,0 \end{aligned}$
службени ци у непр..дел ат	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \hline 19 \\ & 19,0 \\ & 21,1 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 65,0 \\ & 36,3 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 14,0 \\ & 27,5 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2,0 \\ & 10,0 \end{aligned}$	$\begin{aligned} & 100 \\ & 29,3 \end{aligned}$
службени ци у привред. делат.	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ 20,9 \\ 10,0 \end{array}$	$\begin{aligned} & \hline 26 \\ & 60,5 \\ & 14,5 \end{aligned}$	$\begin{array}{\|l\|} \hline 6 \\ 14,0 \\ 11,8 \end{array}$	$\begin{aligned} & \hline 2 \\ & 4,7 \\ & 10,0 \end{aligned}$	$\begin{aligned} & 43 \\ & 12,6 \end{aligned}$
пензионери	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 40,0 \\ & 13,3 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 53,3 \\ 8,9 \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & 3,3 \\ & 2,0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 3,3 \\ & 5,0 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 8,8 \end{array}$
укупво	$\begin{aligned} & \hline \text { ainc. } \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 90 \\ 26,4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 179 \\ 52,5 \end{array}$	$\begin{aligned} & \hline 51 \\ & 15,0 \end{aligned}$	$\begin{aligned} & 21 \\ & 6,1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 341 \\ 100,0 \\ \hline \end{array}$

Хи-квадрат=60,29 $\quad \Pi=0.00006$

делатност		да, скоро свакодневно	углавном да	углавном не	не	укупно
незапосленост	$\begin{aligned} & \hline \text { aII } \\ & \text { c } \\ & \% \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 46,2 \\ & 6,7 \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 38,5 \\ 2,8 \\ \hline \end{array}$	$\begin{aligned} & \hline 2 \\ & 15,4 \\ & 3,9 \end{aligned}$		$\begin{aligned} & \hline 13 \\ & 3,8 \end{aligned}$
школо- вање	$\begin{aligned} & \text { aII } \\ & \text { c } \\ & \% \end{aligned}$	$\begin{aligned} & 15 \\ & 17,6 \\ & 16,7 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 40,0 \\ & 19,0 \end{aligned}$	$\begin{aligned} & \hline 26 \\ & 30,6 \\ & 51,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 11,8 \\ & 45,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 85 \\ & 24,9 \end{aligned}$
самостална делатност	$\begin{aligned} & \hline \mathrm{an} \\ & \mathrm{c} \\ & \% \end{aligned}$	$\begin{aligned} & 6 \\ & 42,9 \\ & 6,7 \end{aligned}$	$\begin{aligned} & 5 \\ & 35,7 \\ & 2,8 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 14,3 \\ & 3,9 \end{aligned}$	$\begin{aligned} & 1 \\ & 7,1 \\ & 5,0 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 4,1 \end{aligned}$
пољопривреда	$\begin{aligned} & \text { aII } \\ & \mathrm{c} \\ & \% \end{aligned}$	$\begin{aligned} & 14 \\ & 50,0 \\ & 15,6 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 35,7 \\ 5,6 \\ \hline \end{array}$	$\begin{aligned} & \hline 2 \\ & 7,1 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 7,1 \\ & 10,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28 \\ & 8,2 \end{aligned}$
непривредна делатност.	$\begin{aligned} & \hline \text { aII } \\ & \text { c } \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 19 \\ & 17,9 \\ & 21,1 \end{aligned}$	$\begin{array}{\|l\|} \hline 71 \\ 67,0 \\ 39,7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ 11,3 \\ 23,5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ 3,8 \\ 20,0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 106 \\ 31,1 \end{array}$
мривредна делатност.	$\begin{aligned} & \hline \mathrm{an} \\ & \mathrm{c} \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 27,7 \\ 20,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 38 \\ 58,5 \\ 21,2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6 \\ 9,2 \\ 11,8 \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \\ & 4,7 \\ & 15,0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 65 \\ 19,1 \end{array}$
пензија	$\begin{array}{\|l} \hline \text { aII } \\ \mathbf{c} \\ \% \\ \hline \end{array}$	$\begin{aligned} & \hline 12 \\ & 40,0 \\ & 13,3 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 53,3 \\ 8,9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{3 , 3} \\ 2,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 3,3 \\ 5,0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ 8,8 \end{array}$
укупно	$\begin{array}{\|l\|} \hline \text { aII } \\ \text { c } \\ \hline \end{array}$	$\begin{aligned} & 90 \\ & 26,4 \end{aligned}$	$\begin{array}{\|l\|} \hline 179 \\ 52,5 \end{array}$	$\begin{array}{\|l\|} \hline 51 \\ 15,0 \end{array}$	$\begin{aligned} & \hline 21 \\ & 6,1 \end{aligned}$	$\begin{array}{\|l\|} \hline 341 \\ 100,0 \end{array}$

Хи-квадрат=55,23 $\quad \Pi=0.00029$

иребивалиштте		да, скоро свакодневно	углавном да	углавном не	не	укупно
ужи део града	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \hline 37 \\ & 20,4 \\ & 41,1 \end{aligned}$	$\begin{aligned} & 100 \\ & 55,2 \\ & 55,9 \end{aligned}$	$\begin{aligned} & \hline 32 \\ & 17,7 \\ & 62,7 \end{aligned}$	$\begin{aligned} & 12 \\ & 6,7 \\ & 55,0 \end{aligned}$	$\begin{aligned} & \hline 181 \\ & 53,1 \end{aligned}$
приград. насеље	$\begin{aligned} & \hline \text { anc. } \\ & \% \\ & \% \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 11 \\ 19,3 \\ 12,2 \end{array}$	$\begin{aligned} & 33 \\ & 57,9 \\ & 18,4 \end{aligned}$	$\begin{aligned} & 12 \\ & 21,1 \\ & 23,5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1,8 \\ & 5,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 57 \\ & 16,7 \end{aligned}$
село у околини	$\begin{aligned} & \hline \text { aпс. } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & 42 \\ & 40,8 \\ & 46,7 \end{aligned}$	$\begin{aligned} & 46 \\ & 44,7 \\ & 25,7 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 6,8 \\ & 13,7 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 7,8 \\ & 40,0 \end{aligned}$	$\begin{aligned} & \hline 103 \\ & 30,2 \end{aligned}$
укупно	$\begin{aligned} & \hline \text { anc. } \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 90 \\ 26,4 \\ \hline \end{array}$	$\begin{aligned} & \hline 179 \\ & 52,5 \end{aligned}$	$\begin{aligned} & \hline 51 \\ & 15,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 6,1 \end{aligned}$	$\begin{aligned} & \hline 341 \\ & 100,0 \\ & \hline \end{aligned}$

ЛИTEPATYРА:

Ивановић, Б.(1973): Теоријска статистика. Научна књига. Београд
Мијановић, Љ.(1996): Демографска слика Београда. Педагошка стварност, XLI, 1-2, 7-26.
Плазинић, С.(1985): Техничка метеорологија. Научна књига. Београд
Тодоровић, Н.(1990): Најава атмосферских падавина радаром и нуклеарне несреће. Зборник раова са саветовања "Еколошки проблеми Београда ", II, 335-342
Тодоровић, Н.(1997): Временске прилике и маратон. Физичка култура, 50, 3, 201-206.
Тодоровић,Н.(1998): Праћење метеоролошких извештаја у јавности. РХМЗ Србије.(у штампи)
Цветановић,С; М.Ђекић; С.Стожинић; Р.Војновић-Кљајић; М.Трамошљанин; О.Јовановић (1988):
Утицај времена на здравље људи. Научна књига. Београд
Чобанов, 3.(1992): Ваздухопловна метеорологија. Научна къига. Београд
WMO, No-160.(1964): A survey of human biometeorology. WMO. Geneva.
WMO, No-835.(1996): Weather and sport. WMO. Geneva

ИНФОРМАЦИЈЕ О КЛИМИ НА ИНТЕРНЕТУ

Раденко Павловић, дийл. мей., Милена Симјановски, дийл. мей Немања Крйић, дийл. мейи., Драг̄аи Михић, дийл. мей.
Савезни хидромейеоролоики завод, Бирчанинова 6
Беойрад, Југ̈ославија

Abstract

This paper analyzes curent presentations witch contain climatological informations on the Internet. It is shown that reliable information could be found on many locations (adresses), wherethere they belong to the international organizations or to the national services. Also, many things about the history of data, scientific research projects, future climat changes, etc. All those informations can be used for education, broadening of international scientific cooperation, or just for informing the population. A short review of the climatological data for both hemispheres and specific countries, including FR Yugoslavia, is given.

$А б с \bar{u} р а к \bar{u}$

У овом раду је анализирано ииекуће йрейисииаввање климайолоиких информација на Инииернейи. Показано је да се на више адреса мойу наћи йоуддане информације и йио из Орйанизација
 сајі̄овима може сазнайии више о исйорији йодаиаиака, научним исйираживанина, будућим климайским йроменама и сл. Све ове информације се могу корисииии у едукайивном и информа-
 крайикк йрейлед климайопоиких йодамиака везаних за целу хелисферу и одрећене земъе мећу којима је и СР Југ̄ославија.

1. Увод

Интернет је највећа постојећа мрежа више милиона рачунара повезаних различити врстама телекомуникационих веза. (Поред међусобне телекомуникационе везе сваки од индивидуалних рачунара мора да има инсталиран софтерски програм који обезбеђује комуникацију са другим рачунарима у мрежи).

Сваки индивидуалан рачунар на Интернет-у иоже да комуницира са свим осталим бе обзира на начин повезивања. Зато је Интернет иостао једно од најмасовније коришћених средстава комуникације и размене информа ција. Корисници Интернета из СР Југославиј су тек у новембру 1996. године добили могућност за приступ Интернету. Одмах нако тога дошло је до убрзаног развоја примена Интернета, тако да се процењује да је у СРЈ крајем априла 1998. године било око 50.000 корисника Интернета.

2. Метеоролошки сајтови у свету

Почећемо од анализе података представљених на сајту СМО (Светске Метеоролошке Организације). Са овог сајта могуне је упознати
 CMO. Све о

светских климатолошких података и нрограма мониторинга
светског климатолошког програма услуга и шитања

светског климатолошког програма одговорности и опорезивања

- светског програма климатолошких ис траживања.

Сваки од ових програма је координаран са ра дом земаља чланица СМО

За добијање прецизних климатских анализа

потребно је имати што већи број података који датирају од првих инструметалних мерења д данас. Реконструкција климе и давање било аквих климатских прогноза је обиман посао који захтева коришћење разноврсних података који могу помоћи у овом задатку. Данас, СМО води рачуна о изворима података са целе зем ьине хемисфере. Ови подаци стално пролазе високе контроле тако да је готово у потпуности искључена грешка у податку. WEB сите СМО-а омогућава упознавање са свим изворима података тако да се у зависности од интересовања можемо упознати са подацима о емператури површине мора, ефекту стаклене баште, снега и леда, итд.

Све оно што је актуелно и чиме се баве клима толози и други научници из области климатологије може се видети на WEB-у CMO-а на срраници резервисаној за презентацију радова На овој страни Хев можемо се упознаии с
 тављају глоба (и репо нализе и тешые-нщије

Слика1. Температурне тенденције према НОАА-и у односу на температурне аномалије за период 1951-1980.година (слика а); Глобална содишња сума падавина у mm/дану за период 1988-1996. година (слика б)

Неке од њих приказане су у овом раду.
Овај WEB нам омогучује да се упознамо и са презантациіом климатолопких WEB-ова земаља чланица СМО. Тако су нам доступне све релевантније информације на националном нивоу без претходног познавања адресе WEBа. При овоме вака земља има своје особености у презентацији климе.

Ми смо се у овом раду одлучили за анализу климатолошког WEB-а Канаде. Иначе, овај WEB је донекле сличан свим WEB-овима великих земаља. Тако Канада даје преглед свих климатских података по поједеним (тери-торијално-политичким) областима.

Слика 2. Тренд йромене йовриинске иееми̃ерайуре за йроиееклих 100. г̈одина)

a)

б)

Слика 3. Клинайске аномалије на земљиној иоовриин йрена иодачиа СМО током 1997 године (слика а) и тыоком 1996. Године (слика 6)

Слика 4. Изг̄елед сајйа ШМО одакле се йружа мог̄ућносй корисницина да се уйознају са изворима климаӣолошких йодайиака

Он нам омогуђује и упознавање са основном терминологијом која се користи у клима

тологији. Тако да сваки посетилац може да научи већ на првој страни о ефекту стаклен баште, климатским променама, сателитским снимцима итд. При томе они које инересуј
 прогнозе и Слика 5. Средња дневнс ексремн
 клиаских по момена нај тологије итд.

Слика 5. Средња дневне ексйремне йемй

Важно је истай да је национални центар Канаде омогућио детањно упознавање са климом која тамо влада током целе године. Тако да се ова презентација може користити и у туристичке сврхе јер је могуће за сваку област и за сваки већи град наћи податке везане за температуру, влажност, ветар итд. При томе су представљени како средњи тако и екстрамени климатолошки подаци

Неки од примера су приказани и у овом раду

3. Представљање података климатолошких података СР Југославије

Климатолошке податке о Југославији можемо сазнати са нашег надионалног WEB-a . До њега можемо доћи и незнајуфи адресу преко СМО-а који омогућава упознавање са свим земљама чланицама СМО, мећу којима је и Јутославија. Одређене климатолошке податке о нашој земэи (преко 30 градова) могуће је наћи преко НОАА-е и то на адресама:
nedc.noaa.gov/egibin/ghen/precip.ghengi и ncde.noaa.gov/cgibin/fhen/temva.ghengi.

Савезни хидрометеоролошки завод претставља нашу националну хидрометеоролошку службу на адреси www meteo yu. На овој адреси савезни завод ће презентовати и национални климатолошки сајт. Према садашњем пројекту овај сајт ће садржати следеће податке
-датотеку климатолошких нодатака за 23 станице на територији СРЈ и то за клнма толошки период 1961-1990. година ратуре п падавина) за период
-тренд температуре и падавннау СР

Слика 6. Средње г̄одииње суме йадавина за Слика б. Средне годишње суме иад
Беог̆рад за йериод 1961-1990. Године

4. Закључак

Представљање климатолошких података на тивном тако и у научном смислу. На својевр-WEB-у је важно за све бројније кориснике ин- стан начин они омогуђавају упознавање и котернета. Ове презентације треба да омогуће муникацију између Светских и Националних сваком појединцу који и није довољно упознат климатолошких ценара и појединаца који са метеролошком терминологијом да сазна о посећууу WEB сајтове. Наша земља се такође основним појмовима из ове области. При томе укључууу у презентације климатологије на инвости које су интересантне како у информа- завода.

5. Литература

Пантић С. - 1997 : Интернет издаваштво, "Светлост", Чачак, Југославија
Сретеновић Д., Пековић П., Ристановић Д. - 1996 : Интернет-Специјално издање часописа "РС", PC Press, Београд, Југославија
Друштво за информатику Србије - 1998 : Информатика 98, научно-стручни скуп, Београд, Југославија

УЛОГА МЕТЕОРОЛОГИЈЕ У СИСТЕМУ ПРЕВЕНЦИЈА И ЗАШТИТЕ ОД ЕЛЕМЕНТАРНИХ НЕПОГОДА

ПОЈАВА ГРАДА У ВОЈВОДИНИ

Ђорђе Кардум, дийл. меій, Мира Сииейановић-Николић, дийл. меі̄и. и Милован Радмановац, диил.мей.
 Рейублички хидромейеоролоики завод Србије, Кнезе Вииеслава 6б, 11030 Београд, Југославија

Vojvodina is a part of Serbia where the hail suppression activity will be introduced very soon. On the basis of the data concerning the hail occurrence recorded in the network of metorological stations and the municipal damage reports on agricultural crops, the paper will present spatial and time distribution of hail occurrence and dameg areas in Vojvodina for the period 1978-1997 dealing to the vegetation period April - October

Абсииракй

Војводина је обласий у Србији у којјј ииеке йредсийоји увобенье одбране од гррада На основу йодаииака о йојави гррада забележенит у мрежи меииеоролоикик сиианица и оиииииннких извешийја о ийиеийана на йољойривреднин усевина, овде ће се за вег̄еииачиони йериод од аирила до окииобра йриказаииии временска и йросииорна расйодела йојаве гэрада и йрадом ийчених иоовииина у во јводини у йериоду 1978-1997.г̄одине.

1. УВОД

Војводина је изразито аграрно подручје, површине 2.154 .000 xa , од чега је $4 / 5$ пољопривредна површина. Град веома честа пада на подручју Војводине и сваке године

Податке о падању града на независним и различитим основама региструје метеоролошка и ошштинске службе. У мрежи метеоролошких станица, којих у Војводини има око 250 региструје се појава града на станици, интензитет, време почетка и краја појаве. Општинске комисије за процену штета на поњопривредним усевима, које је изазвао град бележе датум падања града, место (атар насељеног места), захваћену (тучену) површину, врсту пољопривредне културе и њен степен оштећености.

Из општинских извештаја по општинама даће просечан годишњи проценат тучених овршина градом и израчунаће се колики ј месечни удео тих површшиа у Војводини.

2. ПОЈАВА ГРАДА

Ранија истраживања су показала да је број дана са градом у Војводини висок и кретао се од 30 о 60 дана (Катић и сар., 1980; Кардум, 1991) одишње.

на основу прикупљених података за последњих двадесет година установљено је да у војводини ста.

На Сл. 1 на карти Војводине приказана ј росечна годишња учесталост појаве града о априла до октобра у периоду од 1978. до 1997.

Прикупљени подаци о граду из ова два извора могу се поредити по питању времена (дана) и места падања. Из тих разлога овде не се на карти Војводине, приказати за вегетациони период (април - октобар), просечни годишњи по месецима у последње две деценије.

низа са подацима од 1991 до 199.
није објављене карте (Кардум, 1991)

Уочава се да су скоро сва жариштте са 2 или више дана на подручју Бачке и то у општинама Сомбор - Кула (од Сомбора преко Сивца до

Куле), затим Бечеј (у самом Бечеју), Суботица Једино жариште са више од 2 дана је још у (Xоргош), а у Бачкој паланци недостајао је за Срему у општини Рума (Мали Радинщи). 20 година само један дан па да и ту просек буде 2 дана.

Слика 1. Просечна і̄одишња учес $\overline{\text { йалосй } \bar{и}} \overline{\text { й }}$ јаве г̄рада 1978.-1997. године у Војводини.

У односу на слична ранија истраживања за период 1969-1974 (Катић и сар., 1980) и за низ 1978-1990 (Кардум, 1991) уочава се за цело подручје мањи просечан број дана са градом. Ово је последица мање градобитности у периоду је последица мање градобитности у периоду 1997.године, појава града била је ређа.

У периоду од 1978 до 1997. године, од априла до октобра на територији Воводине регистровано су 874 дана са градом или у просеку скоро 44 дана годишње. Град је најчешће падао у јуну 30% или скоро 13 дана, затим следи мај са 22% (9,4 дана) и јул са 18% (7,8 дана). У ова три месеца регистровано 70% појава града. У априлу и августу град у просеку пада у 5 дана (по 12\%). У септембру појава града је 1-2 дана
(4\%), а у октобру скоро 1 дан (2\%). На Сл. 2. приказана је честина појаве града по месецима у Војводини у периоду 1978-1997. г.

Слика 2. Учесталост дана са градом по месецима у периоду 1978.-1997. годинау Војводини

3. ШITETE ОД ГРАДА

Величину градом тучених површина и степен оштећења пољопривредних култура прате надлежне општинске службе на основу утврђене методологије.
Процена степена оштећења на биљкама прилично је компликована и за сваку биљку треба да се врши независно у зависности од од њене фено фазе и по методологији процена морала бити двостепена (предмроцена ретко ради.

Приликом одређивања величине тучене површине градом, на основу величине пољо привредних имања, утврђено је (Радиновић 1988) да грешка у одређивању површин тученеградом на територији Србији без Во јводине није већа од $1,5 \%$. За очекивати је да је ова грешка нешто већа у Војводини, јер је и случају најмања грепка је у величинама тучених површина градом па ће само то бити приказано овде.

У Табели 1. приказане су по годинама величине тучених површина градом и то у хектарима процентима укупне пољопривредне површине у Војводини.

у току последьих двадесет година у Војводин
је годишње просечно захваћена (тучена)
Табела 1. Величина ̄̄радом йучених йовриина у йериоду 1978-1997. годдине у Војводини

површина градом 95.431 ха или $5,35 \%$ укупне пољопривредне површине у Војводини. Највећа површина тучена градом била је 1987. године, и она је 3,5 већа од двадесетогодишшег просека, а у 1994. години поврпина је 4 пута ањ одрене новрине у осмој децениіи су
 талим годинама овај проценат је нижи

Слика З. Удео а̀радом йчених йовриина йо месейиа у иериоду 1978.-1997. година у Во јводини

У периоду од 1978 до 1997. године, са Сл. 3. уочава се да су у јулу (42.5%) и јуну (38.3%) највеће површине захванене градом, чак 80.8\% од свих површина. Од маја до јуна је чак 98.2% укушшо тучених површина са градом.

4. ЗАКЉУЧАК

Појава града у Војводини је честа, у веге- углавном у Бачкој (у општинама Сомбор, тационом периоду од априла до октобра у последњих двадесет година (1978-1997) просе-чно годишње било је више од 40 дана са градом, од чега се од маја до јула остварило 60%, а од априла до августа 94% појава

У већем делу Војводише град пада 1 дан или чешће. Најчешћа појава града је у Бачкој, најређа у Банату.

Жаришта са два или више дана с градом су

5. ЛИTEPATУРА

Катић, П. и сар., 1980: "Градобитна карта Војводине" Пољопривредни факултет, Институт за ратарство и повртарство, Нови Сад.
Кардум, Ђ., 1991: "Појаве и штете од града у Војводини у периоду 1969-1990. године" II Југословенска конференција за модификацију времена, Књига І стр. 231-250., Маврово.
Радиновић, Ђ., 1988:"Одбрана од града у СР Србији", РХМЗ Србије, Институт за метеорологију, Београд.

ТРЕНД ГРАДОМ ТУЧЕНИХ ПОВРШИНА У СРБИЈИ

Торђе Кардум, дийл. мей.
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66,
11030 Беог̄рад, Југ̈ославија

Abstract
As for the hail suppression activity in Serbia, it is possible to identify two areas : the protected one (the Republic As for the hail suppression activity in Serbia, it is possible to identify two areas : the protected one (the Republic
of Serbia without its northern part of Vojvodina) and non-protected are (the territory of Vojvodina). Besides the of Serbia without its northern part of Vojvodina) and non-protected are (the territory of Vojvodina). Besides the fact that the percentage of hail damaged area is higher over the non-protected area, a decreasing trend in Ser-
bia mgiht be expected, while such a trenddoes not exist in Vojvodina refering to the annuel percentage of hail bia mgiht be explan
damaged area.

По ииииньу сйровобеьа одбране од з̄рада у Србији иосииоји бранено иодручје (Србија без ВоПоодине) и небравено иоодручје (Војводина). Поред ииогаиаииио су йроценийи йовриина ииччения

 ииччених йовриина

1. УВОД

Територија Србије по питању спровођења одбране од града у основи се може поделити на две области:

- Србија без Војводине - брањено подручје

и

- Војводина - небрањено подручје.

На територији Србије без Војводине у задњих тридесет година спроводи се одбрана од града, у почетку на мањем делу територије, која се ноно повенава и почетком 90 -их гонин
 достигла је целу пољопривредну површину од око 4 милиона хектара. Истовремено на по дручју Војводине, осим пар година на веома малој површини у Срему и Јужном Банату нема активне одбране од града на пољо привредној површини од око 1,8 милиона хек тара.

у периоду ширењу и модернизације систем одбране од града у Србији без Војводине за пе риод 1971 - 1987. године, установљен ппадајући тренд (Радиновић, 1988) годишњих процената градом тучених површина. Да ли је

по заокруживању система у целој области, у последњих десет година такав тренр настављен? С друге стране на подручју Војводине (небрањено подручје) је за очекивати непостојање опадајућег тренда.

2. ГРАДОМ ТУЕНЕ ПОВРШИНЕ

На територији Србије без Војводине (брањено подручје) величине градом тучених површина сакупљене су из оштинских извештаја у пери 1997 године. За по Војводине за период 1971-1997. године корипћени су подаци које је сакупио Pe који су за период 1971-1990. године обрађени (Радиновић, 1988 и 1990)

Небрањено подручје (Војводина) је северни део Србије који се са јужне стране наслања на брањено подручје, односно највећим делом од брањеног подручја деле га реке Сава и Дунав а у мањем делу их раздваја Тамиш и админис тративне општинске границе. Утицај спровођења одбране од града у граничној области Војводине овде није разматран, тј. посматрано је као да су физички јасно разграничене

области што може само да пооштри прихватање унапред постављене тезе.
За подручје Војводине кориппћни су објављени подаци у периоду 1969-1990. године (Кардум, 1991) који су продужена до 1997. године на основу извештаја општинских служби.
Поштујући територијални (просторни) принцип формирања временске серије цела пољопривредна површина у Србији без Војводине уега је као брањено подручје без разлике што се почедид на мање од 30% пољопривредне сровидна на би крајем 70 -их ностигла $2 / 3$, 1984 г 96% и 90 -их година и 100% пољошривредне површине. Смањење величине поғопривредне површине у Србије без Воіводине од 1971 до 1997. године, била је занемарљиво од свега 3%, док се у Војводини у периоду од 1969 до 1997. године, пољопривредна површина мењала око 2%. Овако мале промене нису могле имати значајног утицаја на територијални принщап да би се морала вршити реконструкција временске серије.

Све до 80 -их година проценат територије са које нису стигли општински извештаји о градом тученим површинама, на небрањеном подручја, како у Војводини тако и у оном делу Србије без Војводине где није било активне одбране био је изузетно висок и износио је 40 50%. Разлог је био мала заинтересованост општина и пољопривредних произвођача са небрањеног подручја који нису финансирали Слика 1.

На Сл. 1 приказани су хистограми годишњих дручју Србије без Војводине и у Војводини. Од
На Сл. 1 приказани су хистограми годишњих дручју Србије без Војводине и у војводини. Од
процената градом тучених површина на по- краја 70 -их година када се у Србији без Во-

одбрану од града, да прикажу штете, па су зато поједине општине само у годинама са великим
штетама вршиле процену штета и слале штетама вршиле процену штета и слале извештаје. На упорныа мштина у Војводини је од 80 -тих година знатно повећан, али су се често извштаји ошштина сводили само на преписивање и прослеђивање извештаја о штетама осигуравајућих завода са њиховог подручіа односно са око $1 / 3$ пољопривредне површине, колико се у просеку осигурава у појрводини.

Прихватањем претпоставке (Радиновић, 1988) да на пољопривредним површинама са којих нема извештаја није ни било штета од града, само годишњи проценат штета на небрање на пррањчју, као и однос подручју, може бити мањи од ствар ног. Посредно ово може само да пооштри прихватање унапред постављене тезе.

Формиране су две временске серије годишњих процената градом тучених површина и то једна за подручје Србије без Војводине (брањено подручје) и друга за Војводину (небрањено по дручје). Избором годишњих процената обезбеђени су једнаки и сукцесивни временски периоди. Слика 1. Дужина временских серија одређена је дужином расположивих података о тученим површинама градом на брањеном и небрањеном подручју и то за брањено подручје 1971-1997 и за небрањено подручје 1969-1997 година. Оба узорка спадају у кат 30 риу мали узорака, којима је обим мањи од 30 , односно 50 .

јводине одбрана од града спроводила на $2 / 3$ пољопривредне површине само у две године (1988 и 1989) годишњи проценти градом тучених површина су приближни, а у осталим годинама су већи у Војводини. Податак из 1987. године, за Војводину је знатно већи од осталих (outlier), али овде није вршена корекција средине за обим узорка.

3. ТРЕНД

На основу метода поступних и покретних средњака у Србији без Војводине за период новљено је постојање опадајућег тренда како на целој пољопривредној тако и на њеном брањеном и небрањеном делу. На продужени низ до 1997. године за исту област као и за Војводину за период 1969 - 1997. год., овде су примењени исти методи.

Метод покретних средњака је најчешће коришћени метод усклађивања временских серија, којим се истиче тренд у одређеној временској серији, а елиминишу краткорочн промене. Суштина овога метода је да се уместо оригиналних података узима средина тог податка, колико претходних толико и наредних података, па се на тај начин добија просечно кретање појаве којим се истиче основна тен денција (тренд) развоја појаве. На тај начин се линије сукцесивног низа средина приближав линији тренда појаве.
Покретне средине се формирају на основу 3,4 5 и више чланова временске серије, што пред ставља и ред покретних средина. Слаба страна

Слика 2.

вога метода је што истраживач произвољно бира ред покретних средина.

покретна средина III реда формира се од појава код три члана временске серије и то тако што се појава код другог члана временске ерије замењује средином појаве првог, друго и трећег члана. И тако редом се замењује пом ерајући се за једно место. При овоме први последњи члан временске серије немају пок ретну средину. Покретна средина V реда фор мира се од појава код пет чланова временск серије и то тако што се појава код трећег члана временске серије замењује са средином појав првог, другог, трекег, четвртог и петог члана И тако редом. При овоме прва два и последњ два члана временске серије немају покретну средину

На Сл. 2. и Сл. 3. приказани су трогодишњи и петогодишњи покретни средњаци градом тучених површина.
На оба графика (сл. 2 и 3.) на небрањеном подручју (Војводина) не уочава се ни опадајућа ни растућа тенденција. Веће равнање, пго је и очекивано је код петогодрура (Србија без средвака. да бруге половине 80 -их година је Војводане) до дру полом у време када је опопадау ом града заокружена чрактично на целој брана од града за површини (1984.г. 96\%), долази до манег раста односно стагначије до краја посматраног периода. Ово је послефина величих рощената тучених површина у 1988, 1989, 1993, 1995 и 1997. години.

Петогодишњи покретни средњаци градом тучених површ ина

Метод поступних средњака врши највеће добија се ошшти тренд развоја појаве у усклађивање (уравнавање) временских серија и одређеном периоду. За сваку годину се вред-

ност израчунава као средња вредност од почетка периода па закључно са гом годином вредности поступних средњака годишњих про цената градом тучених површина за об области приказане су на Сл. 4. Графици потврђују на брањеној територији опадајућу тенденцију вредности, а на небрањеној непостојање такве тенденције. у полледњих десет година уочава се стагнација, односно мањи пад на брањеном подручју (Србија без Војводине) него у претходном периоду.

Слика 4.

4. ЗАКЉУЧАК

На небрањеном подручју (Војводина), поред дом тучених поврпина, односно долази до ога што су површине тучене градом веће него аа брањеном подручју (Србија без Војводине) не постоји опадајући тренд годишњих проце ната градом тучених површина.

у Србији без Војводине у последњих десет година нарушава се дотадашњи изразити опадајући тренд годишњих цроцента грастагнашије па и до раста С обзиром да је то период кад се систем шроширио на шету пољо привредну површину погрешно је извући закључак да је систем достигао свој максимум, већ је то пре последица озбиљних поремећаја у спровођењу одбране од града у виду недостатка противградних ракета и великих забрана за дејство.

Стагнација, мањи пад, односно раст у последњих десет година на брањеном подручју, када се одбрана од града спроводила практично на целој територији може навести на закъучак да је систем достигао свој техничко-технолошки максимум. Пре доношења закључка мора се знати да је било озбиъних поремећаја у функционисању система и то пре свега кроз велике ракета.
5. лИТЕРАТУРА

Радиновић, Ђ., 1988: "Одбрана од града у СР Србији", РХМЗ Србије, Институт за метеорологију, Београд.
Радиновић, Ђ., 1990: "Истраживање у противградној заштити", свеска бр.6. 138-148 стр., Инсти ут за метеорологију, Београд.
Кардум, Б., 1991: "Појаве и штете од града у Војводини у периоду 1969-1990 године", І Југословенска конференција за модификацију времена, Књига И стр. 231-250., Маврово

ПРОТИВГРАДНА РАКЕТА. ДИНАМИКА УТРОШКК ТОКОМ СЕЗОНЕ

Милован Јефйиһ, дийл.инж
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66,
11030 Беойрад Југославија

Abstract
At the beginning of organised hail suppression activity, the supply of the haul suppression rockets to the launching sites was performed in accordance to the available financial means and veer often new quantities of rockets had to be delivered during the hail suppression season. This influenced to the delivered rocket quality and therefore the efficiency of the system. During the long term hail suppression activity in Serbia, a precious experience on rocket consumption was gained. By an analysing the consumption of the hail suppression rockets during the operational activity, it is possible to get the necessary data for estimating the acquirement sufficient quantities of rockets in due time, to be delivered to the launching stations. In this way, a highest rocket quality can be achieved making the hail suppression system more efficient.

Абсииракиии

 ракеииама, вриено је на основу расйоложивих майеријалних средсииава и чесйо се дешавало да се
 на квалийиетй исйоручених йроииивїрадних ракейиа а аииие и на ефикасносии сисииема одбране од

 вриийии йланирање набаввке и благоовремено ойремање сисйема иойребном количином
 $\overline{\bar{ш}}$ мм одбране од пирада иоссйаје ефикаснији.

1. УВОД

У оквиру организованог система одбране од града који спроводи стручна служба Реуубличког хидрометеоролошког завода радоносних облака реагенсом на бази сребро јодида.

Организација система заснована је на око 1400 ротивградних станица са којих се врми ис даљивање противградних ракета на основу команди са радарских центара. Радарски центри купно 12 активних центара у Србији, су кон ципирани као командни пунктови са којих с врши радарско осматрање и идентификациј кумулонимбусних облака који испуњавају услове за формирање града, и издају се ко манде за дејство односно, испаљивањ противградних ракета, са противградни таница

У току једног дејства, систем одбране од града је организован тако да увек може испалити колико год је потребно противградних ракета.

До сада је забележен рекорд у броју испаљених ракета у једном дану од укупно 3600 противградних ракета, а најчешке количине утрошених проивградних ракета у периоду интензивних дејства на градоносне облаке (од 15. маја до 15 . јула) се крећу у распону од 500 до 1500 комада.

Када располаже са довољном количином квалитетних противградних ракета, ефикас ност система се креће у границама и до 80% те је основни задатак оперативног систем садржан у захтеву да се противградне станице морају на време опремити потребном количином квалитетних противградних ракета

Лимитирајућа финансијска средства намењена за набавку противградних ракета и, у последње време, недостатак квалитетних ракета, отежавају непосредној оперативи квалитетно извршавање основног задатка, до угрожавања
 Стога, један од императива оперативне службе рамоноживим сране од града је да, сходно распожа изрие што рачионалнхіу раподепу ракомиво, иврх ракета по станццма, а да при ом не утрози ефияасност и очеративност сис тема.

Један од основних параметара који недвосмислено указује на потребе за ракетама током сезоне, садржан је у анализи података о утрошку противградних ракета током претходних сезона са тежиштем на динамику утрошка противградних ракета током сезоне.

2. УТРОШАК ПРОТИВГРАДНИХ РАКЕТА

 ТОКОМ ПРЕТХОДНИХ СЕЗОНАТоком 30 година постојања система одбране од града, вођена је комплетна документација и о утрошку противградних ракета за сваки дан дејства на градоносне облаке. Најгрубљом анализом сакупљених података могу се лако сагледати 3 карактеристична периода, када је утрошак противградних ракета у питању и то:

Период од 1967. до 1980. їодине, односно иериод саиыьа искусива и сазнања о бро јним нейознаничама мейодолоико ойерайивног каракииера, када се йрейежно корисииио само један ииий одн. класа ииойияйрадних ракейи скромног домейа до 3500 м. На уйроиак йройивйрадних ракеииа уииицало је виие различиииих йарамейара, од броја йройиєйрадних сйанича некоміилейног сисииема одбране од ірада до каракйерисииика йроииивйрадних ракейа којим се одбрана вриила. Сйог̄а, йодачи о уйироику и
Табела 1 - Просечан уйроиак ПГР (1981-1990) у инйервалу од 5 дана

Месеи	AmIV	AпV	AпVI	Maj I	Maj II	Majill	MaIV	Maj V	Mavi	Јун I	Jym II	Jyн III
Инииеря	15-20.	21-25.	26-30.	01-05.	06-10.	11-15.	15-20.	21-25.	26-31.	01-05.	06-10.	11-15.
	35	79	329	335	509	560	1060	690	1333	867	809	1374

Месеи	JyHVV	Jyh V	JymVI	Jy/ I	Jул II	ЈулIII	JysIV	Јул V	JyrVI	Abr I	Abr II	AbriII
Инйерре	15-20.	21-25.	26-30.	01-05.	06-10.	11-15.	15-20.	21-25.	26-31.	01-05.	06-10.	11-15.
Ракейие	851	685	1089	1022	611	536	336	829	213	626	586	478
Месеи	ABIV	Авг V	ABVI	CenI	Cen II	CenIII	Celv	Cen V	Ce VI	Окт 1	OктII	Ок III
Инйеррв	15-20.	21-25.	26-31.	01-05.	06-10.	11-15.	15-20.	21-25.	26-30.	01-05.	06-10.	11-15.
Ракейе	175	160	202	57	33	49	16	26	11	10	6	0

Месеи	JyHiV	Jyн V	Jyivi	Jyл I	Jyл II	JyIIII	JysIV	Јул V	JyrVI	Аbr I	Авг II	Abr
инйеря	15-20.	21-25.	26-30.	01-05.	06-10.	11-15.	15-20.	21-25.	26-31.	01-05.	06-10.	11-15.
Ракейūe	851	685	1089	1022	611	536	336	829	213	626	586	478
Месец	AbIV	Abr V	AbVI	CenI	Cen II	CenIII	Celv	Cen V	Ce VI	Окт I	Окт	Ox III
Иніиерер	15-20.	21-25.	26-31.	01-05.	06-10.	11-15.	15-20.	21-25.	26-30.	01-05.	06-10.	-15.
Ракейе	175	160	202	57	33	49	16	26	11	10	6	0

динакшци уйрошка йроииивйрадних ракеі̄а овде нису анализирани нийии йрезенйирани.

Период од 1981. до 1990. године, као период интензивног функционисања развијеног система одбране од града са више класа и типова квалитетних противградних ракета у довољним количинама, и

- Период од 1991. до 1997. године, као период карактеристичан по недовољним количинама нротивградних ракета, што је посредно утицало и на динамику и количину утрошених противградних ракета.

3. УТРОНІК ПРОТИВГРАДНИХ РАКЕТА

 У ПЕЕРИОДУ 1981-1990. г.Интензивни развој система одбране од града пратио је и развој више класа противградних ракета. У овом периоду користиле су се 3 класе противградних ракета и то:

- Противградне ракете малог домета (до 3500 м.) тина Сако-3,
Противградне ракете средњег домета (5 6500 м.) типа Сако-6, ТГ-5, ПП-6 и МТТ-8, - Противградне ракете високог домета (до 8500 м.) типа ТГ-10 и ПП-8.

Обезбеђене довољне количине противградних ракета за сезону одбране од града које су се кретале у границама од 35000 до 40000 комада, нису утицале на динамику утрошка тако да се подаци из овог периода узимају и данас као најрепрезентатаивнији.
у Табелама и на хистограмима који следе презептирани су подаци о динамици утрошка противградних ракета у периоду 1981-1990.г током сезоне одбране од града у Србији

Слика 1. Просечан уӣроиак (1981-1990. $\bar{\imath}$) у инйервалу од 5 дана
Табела 2. Просечан утрошак ІІГ (1981-1990) у интервалу од 15 дана

Инйеря	$15-30$.	$01-15$.	$16-31$.	$01-15$.	$16-30$.	$01-15$.	$16-31$.	$01-15$.	$16-31$.	$01-15$.	$16-30$.
Ракемие	443	1404	3083	3050	2625	2139	1379	1690	537	139	53

Слика 2. Просечан уӣрошак (1981-1990.г) у инпиервалу од 15 дана
Табела 3 - Кумулайивни уйрошак ПГР (1981-1990.й.) у инйервалу од 5 дана

Месец	AпIV	AII V	ArVI	Maj I	Maj II	MajIII	MaIV	Maj V	MaVI	Jyн I	Jyн II	Jyн III
Инйере	$15-20$.	$21-25$.	$26-30$.	$01-05$.	$06-10$.	$11-15$.	$15-20$.	$21-25$.	$26-31$.	$01-05$.	$06-10$.	$11-15$.

Meceй	JyHiV	Jyн V	Jyhvi	Јул I	Јул II	Jyл III	ЈулIV	Јул V	JyrVI	ar I	Abril	III												
Ини"ере	15-20.	21-25.	26-30.	01-05.	-10.	11-15.	15-20.	21-25.	26-31.	01-05.	06-10.	11-15.		Инйерв	$15-20$.	$21-25$.	$26-30$.	$01-05$.	$06-10$.	$11-15$.	$15-20$.	$21-25$.	$26-31$.	$01-05$.
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---														
Ракейе	8832	9517	10606	11627	12239	12775	13111	13940	14153	14779														

Месеи	ABIV	Abr V	ABVI	CenI	Cen II	Cenili	CeIV	Cen V	CeVI	Oкт I	OктII	Ox III
Иниерерв	15-20.	25.	26-31.	01-05.	06-10.	11-15.	15-20.	21-25	26-30.	01-05.	06-10.	11-15.
Ракеиее	16018	16178	16380	16437	16471	16520	16536	16562	16573	16583	16589	16589

Саика 3. Купуаайивни уйроиак ПІРР (1981-1990. ̄.) у инииеервалу од 5 дана

Me	A	Maj I	Maj II	Јун.	Јун. II	Јул. I	Jyл. II	Abr.I	Аbr.II	Cen. I	Cen.II	Окт. 1
Инииеррв	15-30.	01-15.	16-31.	01-15.	16-30.	01-15.	31.	01-15.	6-31.	15.	30.	15.
Ракейе	443	48	4930	7981	10606	12775	14153	1843	638	16520	16573	

Слика 4. Кумулайивни уйрошак ПІР (1981-1990.г.) у иншервалу од 15 дан

Из презентираних података лако се могу са гледати карактеристике динамике утрошка противградних ракета у периоду 1981-1990.г од којих се издвајају следеће
Најинтензивнија дејства на градоносне облаке се одвијају у периоду од 15. маја до 15 јла када се утроши око 70% укупно трошених противградних ракета

У овом периоду, издвајају се периоди од по 5 дана са следећим редоследом интензитета ејства: Средина јуна, крај маја, крај јуна, и средина маја

Укупан утрошак противградних ракета у једној сезони може се сагледати већ крајем августа када се утроши 99% ук ушно утрошених противградних ракета по сезони.

До средине јуна месеца утроши се око 50% укупно утрошених ракета по сезони. Из овога следи да је календарска средина сезоне померена за месец дана унапред када је у померена за месец дана унащед ктрошак противградних ракета питању утрошак противградних ракета. еративној служби одбране од града,

ириликом формирања система противградиим ракетама. Наиме, на почетку сезоне, противградне станице су формиране са намање 70% расположивих противградних ракета.

4. ТРОШАК ПРОТИВГРАДНИХ РАКЕТА У ПЕРИОДУ 1991-1997.г.

Карактеристика овог периода је, како је раније речено, недостатак довољне количине противградних ракета условљеног пореме ееним тржиштем у пиротехници као једној од последица распада претходне Југославије. У овом периоду расположиве количине ракета кретале су се у границама од 24000 до 10000 противградних ракета по сезони штт је био један од разлога мањег просечног утрошка за око 5000-6 000

Табела 5 - Просечан утрошак ПГР (1991-1997.г) у интервалу од 5 дана

Meceu	AпIV	Aп V	AnVI	MajI	Maj II	MajIII	MalV	Maj	MaVI	JyH I	Jyн II	Jyн III

 | Месеи | ЈунiV | Јуп |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Инйерв	$15-20$.	$21-25$.	$26-31$.	$01-05$.	$06-10$	$11-15$.	$15-20$.	$21-25$.	$26-30$.	$01-05$.	$06-10$.	$11-15$.

Слика 5. Просечан уймошак (1991-1997.र̄) у инйиервалу од 5 дана

противградних ракета. Проблеми у опера тивном раду су били изражени и динамиком Ракеруке купљених противградних раке о бране од града у малим количинама што је рахтепало додатне оперативне нашоре сталне шрерасподеде ракета ва терену у циљу рбезбеђена што правилније покривености ротивградних станица ракетама. Користиле су се шротивградне еег домета ($о о ~ 6500$ м.) типа Сако-6, ПП-б МТТ-8, ТМТ-6 и високог домета (до 8500 м) тиша ТГ-10 и ПП-8.

Табелама и на хистограмима који следе резентирани су подаци о динамици утрошк ротивградних ракета у периоду 1991-1997. током сезоне одбране од града у Србији

Слика 6．Іросечан уӣрошак（1991－1997．⿱亠乂．）у инииервалу од 15 дана
Табела 7 －Кумулаииивни уӣрошак ПГР（1991－1997．⿱亠乂．）у инииервалу од 5 дана

Инйеря	$15-20$.	$21-25$.	$26-30$.	$01-05$.	$06-10$.	$11-15$.	$15-20$.	$21-25$.	$26-31$.	$01-05$.	$06-10$.	$11-15$.
Ракеиее	13	82	187	253	446	715	1026	1349	1525	2159	2772	3392

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Инйерв \& $15-20$. \& $21-25$. \& $26-30$. \& $01-05$. \& $06-10$. \& $11-15$. \& $15-20$. \& $21-25$. \& $26-31$. \& $01-05$. \& $06-10$. \& $11-15$.

\hline Ракейее \& 4692 \& 5337 \& 5554 \& 6104 \& 6904 \& 7418 \& 7713 \& 8052 \& 8493 \& 8718 \& 8909 \& 9231

\hline

\hline Месеи \& ABIV \& Abr V \& ABVI \& Cen I \& Cen II \& CenIII \& CeIV \& Cen V \& Ce VI \& Oкт I \& ОктII \& Oк III

\hline Инйеря \& $15-20$. \& $21-25$. \& $26-31$. \& $01-05$. \& $06-10$. \& $11-15$. \& $15-20$. \& $21-25$. \& $26-30$. \& $01-05$. \& $06-10$ \& $11-15$.

\hline

\hline Pakē̄̄e \& 9365 \& 9527 \& 9788 \& 9851 \& 9851 \& 9971 \& 9980 \& 10021 \& 10050 \& 10059 \& 10059 \& 10059

\hline
\end{tabular}

Слика 7．Кумулайивни уйрошак ПГР（1991－1997．⿱亠乂．）у инйервалу од 5 дана Табела 8 －Кумулайивни уӣрошак ПГР（1991－1997．⿱亠乂．）у инйиервалу од 15 дана

Слика 8．Кумулайивни уйрошак ПГР（1991－1997．е．）у иншиервалу од 15 дана
из презентираних података лако се могу са－јства：Средина јуна，почетак јула，крај маја и гледати карактеристике динамике утрошка крај јуша． противградних ракета у периоду 1991－1997．г．од којих се издвајају следеће：

Најинтензивнија дејства на градоноспе облаке се одвијају у периоду од 15 ．маја до 15 јула када се утроши око 70% укупно утрошени цротивградних ракета．

у овом периоду，издвајају се периоди од по 5 ана са следеним редоследом интензитета де

Укупан утрошак противградних ракета у јед－ ној сезони може се сагледати већ крајем августа када се утроши 97\％укупно утрошених нротивградних ракета по сезони．До краја јуна утроши се око 55% укупно утрошених ракета по сезони
Из овога следи да је интезитет утрошка противградних ракета померен за 15 дана уназад у односу на период 1981－1990．г．али је и даље средина сезоне по утрошку ракета 15－20 дана унапред у односу на календарску средину．

5．ЗАКЉУЧАК

За ефикасну и оперативну одбрану од града Према презентираним подацима о утро－шку дефинисана је количина потребних ротивградних ракета и она се креће у распону од 6 до 30 противградних ракета по једној противградној станици．Следи，да је за систем од 14000 противградних станица потребно до 42000 противградних ракета．Оптимална количина је око 24 ракета по једној станици， штто за систем од 1400 противградних станица захтева око 34000 ракета．Минимална количина противгра－дних ракета за ефикасл одбрану од града је 18 ракета но једно станида захтева око 25000 ракета．
 грађа Завода из области утрошка противградних ракета

ЧЕРНОБИЉ - ЕЛЕМЕНТАРНА НЕПОГОДА CBETCKИX PAЗMEPA

Ана Сйанковић, мр физичке хемије,

Слободаика Сійанковиһ, др физичке хемије
Инсйийиуй за йримену пуклеарие енерйјј-ИНЕПТ, Банайска 31б,
1080 земун Југославија

Abstract

The course of the accident at the Lenin nuclear power plant in Chernobyl and the contamination of European countries in the direction of the radioactive clouds, is described in this work. The activity levels of radiocae sium-137, a long lived and abundant radionuclide in the fission mixture released from the damaged reactor, are shown for samples of soil and grass from Belgrade and Serbia. Thus, the samples of grass, were found to contain high activity levels of radiocaesium (from 0.6 to $5.3 \mathrm{kBq} / \mathrm{kg}$), which confirmed the high environmental contam nation of our country after the Chernobyl accident.

Абсиирракиии

У раду је ойисан иоок акциденита на нуклеарној елекйрани Лењин у Чернобиљу, као и начин кон иаминације евройских земаља йраћењем крейања радиоакииивних облака. Приказани су нивои
 Србије У свим анализираним узориима иираве, на йр. измерени су високи садржаји радиоцезијми
 чернобиьским акииденйом.

1. УВОД

Радиоактивност није нова појава. Постојала је и пре постанка планета и живота на Земљи Ново је што су људи научили да је користе за нове намене. Тако су 1945. године бачене бомбе на Хирошиму и Нагасаки, чиме је започета ера проба нуклеарног оружја. У периоду од 1954. до 1958 . године и од 1961. до 1962. године Сједињене Америчке Државе, Совјетски Савез и Велика Британија су вршиле интензивне пробе нуклеарног оружја и тиме допринеле ослобађању велике количине разли читих радионуклида у животну средину. Приликом таквих експлозија стотине хиљада тона земље бива истргнуто, спржено, усисано у ватрену лопту коа се брзо шири у печурку и облаке, а затим тај материјал доспева у више слојеве атмосфере. Један део радиоактивног отпада пада недалеко од места експлозије, други део се задржава у тропосфери (најнижем слоуу атмосфере) и ветрови га разносе широм света углавном у појасу исте географске ширине. У тропосфери се отпад задр-жава у

мосеку око месец дана и затим постепено нада на земљу. Трећи, највећи део радиоактивног тада одлази у стратосферу, виши слој аг морере (од 10 до 50 километара навише), ностепено спушта на све делове планете Пример за то је и понашање радиоцезијума-13 ${ }^{137} \mathrm{Cs}$). У случају нуклеарне експлозије ${ }^{137} \mathrm{Cs}$ у почетку је застушљен у занемарљивим количинама, после 2 месеца заступљен је са $0,1 \%$, после 9 месеци са 1%, после 2 године са 4%, а после 20 година са 22%. С обзиром на дуг период полураспада (30,2 године) дуго се задржава у стратосфери, а затим постепено доспева у тропосферу (1). Јон радиоцезијума је хемијски и биохемијски хомолог јона калијума и прати његов метаболизам. Потпуно је растворљив у телесним йечносйима и равномерно
 цезијума је веєи од радио-стронцијума (коштаном тки-ву, има време по дураспада 28

одина, а радиоцезијум у гонадама, па отуда постоји опасност и од спољашњег и од унурапњњег озрачивања радио зиымине брже дд радиостронијума Биокичетичии модел од радиу у сысм организму показује да 10% цезијума у буд (30) Сматра се да се 80% цезиіума из тела елиминише урином

При нуклеарним експлозијама укушне падавине су распоређене на већа пространства и значајне количине радиоактивног отпада падају у светска мора. Године 1963. године САД, СССР и Велика Британија су потписале у Москви договор о делимичној забрани нуклеарних проба у атмосфери, у оке-анима и у васионском простору. И поред тога, у периоду од 1972. - 1982 године извршено је 20 надземних проба (6 на северној хемисфери и 14 на јужној) (5). Пих ексилозиа су екерие асности разноврсне и у многим случајевима непредвидиве.

Због задовољавања енергетских потреба изграђене су нуклеарне електране, које би при нормалном раду врло мало доприносиле изложености становништва радијацији. Тако је 1956. године у Великој Британији пуштена у рад прва нуклеарна електана Колдер ХОл, снаге 50 мега ван. до тада су иод сна била имале своје реакторе, али је њихова снана ил занемарљива (сала 2,4 јемье у ногону 442 вати). До сада је, у 34 земље, у но оурия рака јр зсталисана снага бина 350825 мега
 вата. Пр 27678 мега вати (6) Међутим због фак
 тора звани чову, нугариих реактора у периоду од 1945. до 1987. године, десило се 27 акцидената уојиа је пошло до 272 излагања пре комерним дозама зрачења и 35 смртних стучајева. Од 27 акцидената, пре акцидента у чернобиљу, само је у три случаја дошло до значајних испуштања радио-активности у око лину: Киштим (29.9.1957.), Виндскејл (8.10.1957.) и Острво Три Миље (28.3.1979.) Акцидентом у Киштиму (јужни Урал) отпуштено је $49 \mathrm{E}+15$ бекерела (Bq$)^{144} \mathrm{Ce}$ $19 \mathrm{E}+15 \mathrm{~Bq}{ }^{95} \mathrm{Zr}{ }^{95} \mathrm{Nb} ; 4,0 \mathrm{E}+15 \mathrm{~Bq}{ }^{90} \mathrm{Sr}$ и $2,7 \mathrm{E}+1$, $\mathrm{Bq}{ }^{106} \mathrm{Ru}$. Радиоцезијума -137 је испуштено свега $0,027 \mathrm{E}+15 \mathrm{~Bq}$. Приликом акцидента у Винд скејлу (Велика Британија) загађена је тери торија Велике Британије и Европе. Том приликом је испуштено $0,74 \mathrm{E}+15 \mathrm{~Bq}{ }^{131}$ $0,022 \mathrm{E}+15 \mathrm{~Bq}{ }^{137} \mathrm{Cs}, 0,003 \mathrm{E}+15 \mathrm{~Bq}{ }^{106} \mathrm{Ru} ; 1,2 \mathrm{E}+1$ $\mathrm{Bq}{ }^{133} \mathrm{Xe}$ и $0,0088 \mathrm{E}+15 \mathrm{~Bq}{ }^{210} \mathrm{Po}$. Акцидентом у нуклеарној електрани на Острву Три Миъ (САД) највише су испуштени племенити

асови око $370 \mathrm{E}+15 \mathrm{~Bq}$ (углавном ${ }^{53} \mathrm{Xe}$) и $0,55 \mathrm{E}+15 \mathrm{~Bq}^{131 \mathrm{I}}$ (7)

Ипак, акцидент који је обележио 20 . век је ак цидент у нуклеарној електрани Ленин Чернобиљу, тадашњем Совјет-ском Савезу, данас у Украјини, на тромеђи са Белорусијом Русијом. Несрећа која се догодила 26. априла 1986. године у 01.23 ч је још једном указала на вудски фактор као увек могуһи извор грешак са катастро-фалним последицама. Својим несрећним манипулацијама оператори електране су довели до недовољног одвођењ гоплоте из језгра реактора. Прегревање гори вних елемената, нагла производња паре хемијска експлозија произвели су ударни тала чија је снага била равна неколико стотина иилограма експлозива ТНТ. Као резултат акцидента високо-енергетски кључауући реакор, снаге 1 милион вати и производње $7,4 \mathrm{t} 19$ В различитих радионуклида, је био уништен, последице овог акцидена су се оогоие ми окупној северној хемисфери и погодии маи ионе људи. Најзначајнији и најопаснији рад ${ }^{131}$
 Cs $и$ С. У окй

 лида са временом полураспада мањим од месец ${ }^{135}$, ${ }^{140}{ }^{140}{ }^{239} \mathrm{~Np}$), 13% радионуклида са времелом подураспада оц неколико месеци ${ }^{(}{ }^{95} \mathrm{Zr},{ }^{95} \mathrm{Nb}$, ${ }_{103}{ }^{\text {ном }} \mathrm{R}$ полурассада, 1% око 30 година (${ }^{137} \mathrm{Cs}{ }^{90} \mathrm{Str}$) и око $0,001 \%$ са временом година ($\left.{ }^{33} \mathrm{Cs},{ }^{\circ} \mathrm{Sr}\right)$ и око $0,01 \%$ са ${ }^{\text {Bp }}$ веменаспада већим од 50 година (${ }^{338} \mathrm{Pu},{ }^{239} \mathrm{Pu}$, ${ }^{240} \mathrm{Pu}{ }^{241} \mathrm{Am}{ }^{242} \mathrm{Cm}$) (8). На територији Европе и 1996. години, пощењује се да је присутно $80 \mathrm{E}+15$ бекерела пугоживећих радионуклида углавном ${ }^{137} \mathrm{Cs}$ и ${ }^{90} \mathrm{Sr}$, који су и најважнији због њихових мета-боличких особина

Из оитећеног реактора испуштање радионуклида у животну средину је било неуједначено и извршена је подела на четири карактеристична периода (9)
© у првом периоду догодила се експлозија реактора и дошло је до механичког избацивања материјала. Утврђено је да је раиоизотопски састав одговарао саставу го ива, али и да је био обогаћен испарљивим их гасова
(大) у периоду од 26.4. до 2.5.1986. примећено је опадање испуштања радиоактивности, јер су реактор прекрили са око 5000 тона бора, олова, доломита и песка, који су избацивани из хеликоптера да би се ватра угасила спречило успо-стављааве критичне масе у разо-реном реактору. Из реактора је у том периоду још увек излазило фино диспрего

вано гориво са врућим ваздухом који се дизао високо у атмосферу. И у овом периоду нађено је да је изотопски састав одговарао саставу горива;
(2) од 2.5. до 5.5.1986. дошло је до акумулације топлоте у реактору, што се манифестовало повећањем еми-сије испарљивих производа фисије, пре свега јода, а касније и мање испарљивих, који су били везани за графитни аеросол;
(2) због предузетих мера после 6. маја 1986. године примећено је опадање емисије радионуклида, које је постепено касније и престало.
у акдиденту је високо озрачено 237 особа, а 32 је подлегло током првих недеља по несрећи од последица озрачивања. Сви високо озрачени били су чланови интер сланыу хаварисаног реахтора и гашену пожара у почетној фази
 погонско и ватрогасно особље.

Разношење избаченог радиоактивног материРазно било је у највећој мери одређено мете јала било је у највећој мери одређено метесплозије, при којој је стуб избаченог материјала достигао највећу висину, над Чернобиљем су дували локални ветрови променљивог смера. Ветрови су затим покренули радиоактивни материјал. Тако је материјал прво доспео до Скандинавије и Финске: "У 14 сати, у недељу, 27. априла радио-активни облак који су југозападни ветрови носили на висини од от прилике 1700 метара, тихо је и ненајављено прелетео преко најуужнијих обала Шведске. На северу и истоку кише и благи щролетни снег падали су на делове Финске и шведске. Мете оролози су на картама покушали следити кре тање ваздуха унатраг и пронашли су линију која је ишла преко Балтика, према Црном мору". Научници ових земаља су први и упо зорили на повишену радиоактивност, пре званичног обаве-штења о акцдденту, које је дато тек у понедељак, 28. априла у 9.02 часа увече, када је спикер московске телевизије у емисији "Времја" прочитао кратку изјаву од четири реченице "у чернобибској нуклеарио старско вене. у чернобилској нуклеарноя електрани догодила се незгода и један од реактора је оштећен. Предузимају се мере да се ук поготеши незгодом шружа се помоћ Основана је в анина комисија"(10). Тог истог дана
 погођени делови Пољске, а дан касније и де лови Немачке и Франчуске Ветрови су затим радиоахтивни материіал похренуди на север и исток ротирајући у смеру јжжно од Чернобиљ

и 30. априла 1986. године развили јужни пра вац: преко Мађарске, Аустрије и Југославије, према Грчкој, чак и западној Турској, где ј повишена активност примећена од 1 . до 5. мај 1986. На крају је овај материјал поново доспео до Пољске и Скандинавије (11). "Јавност је била јако узнемирена: за многе је ово била прва прилика да осете штта значи живот у за једничком нукле-арном дворишту. Узнемире ности је допринела општа конфузија у масме ијима и одсуство правовремених и тачних информација. Пример за оо су становм нваццарск. бавнтавани да је мнеко зграво

 роба истовремено француска телеви рја није ничта говорила о радиоактивности (10). Наше станонииттво, такође није било гравовремено обавештено о чернобилско несрећи о кретању радиоактивних облака, ка ни о нивоима контаминациіе животне средине. Акцидентом су земље ван Совјетског Савеза дримиле више радиоцезијума него сам Совјет ски Савез. Од $1,5 \mathrm{E}+17 \mathrm{~Bq}$ укупно емитованог ${ }^{134} \mathrm{Cs}$ и ${ }^{137} \mathrm{Cs}$ у Совјетском Савезу је депоновано $45 \mathrm{E}+15 \mathrm{~Bq}$ (12), док је већи део активности ${ }^{90} \mathrm{~S}$ и трансуранских елемената задржан у грани цама СССР-а. Већина активности депонован је углавном у централним, северним и југо источним деловима Европе и то на растојању 2000 км од Чернобиља. Упоређујући падавипе од тестирања нуклеарног оружја укупни ослобођен чернобиљским акци-дентом био је за ред величине мањи (13), док је његов редиоеколошки утицај био 30% од Cs који је настао као резултат нуклеарних проба. То се објашњава тиме што је чернобиљска активност депонована у густо насе-љеним подручјима са релативно високом пољопривредном проиэ водњом
Према подацима УНСЦЕАР-а радио-активни облак је захватио територију СФРЈ у два таласа и то 29.4.1986. године њен северозападни део, а 1. маја 1986. средишви и исочн. Процењено је да је у току 1986. године на терито-
 исаушта одиосно $5 \%{ }^{131}$ J и о
 остаих ахадва С СРР забедежено је совећане нивоа акти-вности радиоцезијума-137 у приземном споју атмосфере Тако је на подручју града Београда у мају 1986 године измерен срешни ниво активности ${ }^{137} \mathrm{Cs}$ у ваздуху оп $0,4 \mathrm{Bg} / \mathrm{m}^{3}(14)$, пок је срепви ниво активности радиощезијума у води за пиће на територији Србије био $0,054 \mathrm{~Bq} / 1$ (15). Активност радионуклида у падави-нама на нашим просторима у

зони минималног загађивања била је $880 \mathrm{~Bq} / \mathrm{m}^{2}$, а у зони максималног загађивања $102000 \mathrm{~Bq} / \mathrm{m}^{2}$, док је активност радио-нуклида у земљьишту у зони мим мало зага
 (11). Иако се сматра даје прелазак Сз из у билке путем корен у храну млечне стоке он је у основи условљен ваздушним загађењем, је у основи условљсна вајан резервоар мебутим, ло, представља трајан резервоар ра нарница (житарица, шоврна, воћа) доспевају или директно до луди, или прего сточне хране до доманих и дивлих животиња, а затим и до дури (16). Степен контаминације радиоактивним падавинама зависи од више фактора: типа емитованог зрачења и његове енергије, времена полураспада изотопа који чине смешу и од радиоактивних потомака који настају процесом распада. Највероватнији хемијски облик у коме се радионуклиди јављају је оксид метала. Због хемијских реакција које се догађају неки од њих прелазе у хидроксиде, а неки у карбонате. Велики део радио-активних материја се таложи на површинским слојевим тла и биљака као и коренима биљака Прелазак ${ }^{137} \mathrm{Cs}$ из тла у биљке зависи од типа земљишта. Тако је познато да из бусенасто подзоластих и тресетно-пешчаних терена ${ }^{137} \mathrm{C}$ доспева знатно интен-зивније у траву и млеко од ${ }^{90}$ Sr. Радиоцезијум-137 је гама емитер, за разлику од стронциума-90 који је бета емитер Под укупном гама активношћу се подразу-

Локација	Укушна гама активност у трави	Укупна гама активост у земљишту	$\begin{gathered} \text { Цезијум-137 } \\ \text { у трави } \\ \hline \end{gathered}$	Цезцјум-137 у землишту
Пионирски град	17,4	5,2	1,5	0,4
Звездани гај	9,3	6,8	1,1	0,6
Ада Циганлија	27,3	1,5	3,1	0,2
Кошутњак	20,9	5,9	1,9	0,8
Калемегдан	20,5	2,6	2,0	0,2
Ташммајдан	16,8	4,8	3,2	1,6
Мањеж	19,2	3,3	1,5	0,4
Шупља стена	24,6	3,1	2,5	0,4
Церак	30,6	---	5,3	----
Батајница	9,3	-----	0,6	----

 земљншту на подручју Београда пзмерена у мају 1986. године

иевају нивои активности свих гама емитера, ојима припада и ${ }^{137} \mathrm{Cs}$.

Како су земљиште и трава веома важне карике еколопког лащца исхране у овом раду прика зујемо укупну гама активност и нивое актив ности радиоцезијума-137 у наведеним узор цима.

2. МАТЕРИЈАЛ И МЕТОДА РАДА

Сви анализирани узорци траве и земље потичу са подручја Београда и Србије. Узорци су сакупљани непосредно после акцидента Чернобиљу, у мају 1986. године. Хомогенизо вани су и нативни мерени у маринели посудам апремине 1 литра, на 8192 канала, помоћу сцинтилационог детектора са $\mathrm{NaJ}(\mathrm{Tl})$ криста лом (3×3 инча). Резолуција гама-спектрометра за цезијум-137 је $6,8 \%$, а ефикасност $8,7 \%$. Ставдардна грешка мерења је до 10% (17).

3. РЕЗУЛТАТИ И ДИСКУСИЈА

Акцидентом у Чернобиљу, различити делови Веограда и Југославије су били различито контаминирани, што је била последица микроклиме датог подручја. Радионуклиди, који су били донети кишом и ваздухом фиксирали су се највише на површини биљака и тла

У табели 1. приказана је укупна гама актив ност (kBq/kg), у трави и земљишту, узорцима акцидента у Чернобилу, маја 1986. године и који потичу са подручја Београда. Тако је максимално измерен ниво укупне гама активности у трави, измерен на подручју Церака ($30,6 \mathrm{kBq} / \mathrm{kg}$), а у земљишту са подручја Звезданог гаја ($6,8 \mathrm{kBq} / \mathrm{kg}$). Нивои ук упне гама активности у трави нала-зили су се у опсегу од 9,3 до $30,6 \mathrm{kBq} / \mathrm{kg}$, а у земљипту од 1,5 до $6,8 \mathrm{kBq} / \mathrm{kg}$. Из табеле следи да су нивои укупне гама активности у свим узорцима траве виши него у узорцима земљишта са истог подручја. Трава задржава радио-активност и представљьа неку врсту баријере која спречава миграцију радионук лида ка тлу. У табели 1. такође, су при казани и нивои акти-вности радиоцезијума

Локацघја	Укушша гама активност у травн	$\begin{gathered} \text { Цезајум-137 } \\ y \\ \text { трави } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { Цездуум-137 } \\ y \\ \text { земқпнту } \end{gathered}$
Неготин	-----	---	11,5	1,4
Кражево	5,8; 2,9	0,7;0,3	\cdots	-
Рача Крагујевачка		\cdots	1,4	0,2
Параћин	\cdots	----	2,4	0,4
Арапыеловац	10,7	1,3		
трстеник	----	----	1,4;0,9	0,4;0,2
Почековина	\cdots	----	1,7	0,4
Богдање	\square	----	1,5	0,3
Важево	\cdots	4,7	-	----
Врначка бања	6,3	0,7	----	---
Борско језеро	\cdots	----	5,5	0,9
Богатй	\cdots	---	1,4	0,3
Горьи Милановац	19,6	3,3	2,0	0,3
Пожаревац	9,3	1,8	2,7	0.5
Жагубщца	16,5	2,7	\cdots	
Смедерево	26,7	3,3	4,8	0,6

Табела 2. Нивои укуине гама актнвностн " радиоцезщума-137 (kBq/kg) y

Локацпја	Укупша гама активност у трави	$\begin{gathered} \text { Цезвуум-137 } \\ \mathbf{y} \\ \text { трави } \end{gathered}$		$\begin{gathered} \hline \text { Цезиумм }-137 \\ \mathbf{y} \\ \text { земьиту } \end{gathered}$
Неготин	--	\cdots	11,5	1,4
Краљево	5,8;2,9	0,7;0,3	----	
Рача Крагујевачка	-----	----	1,4	0,2
Параћин	----	1	2,4	0,4
Араныеловац	10,7	1,3		
Трстеник	\cdots	----	1,4; 0,9	0,4;0,2
Почевовина	--	\cdots	1,7	0,4
Вогдане	\cdots	\cdots	1,5	0,3
Вақево	\cdots	4,7	----	----
Врњачка бања	6,3	0,7	\cdots	---
Борско језеро	$-$	----	5,5	0,9
Богатй	\cdots	\cdots	1,4	0,3
Горњи Милановац	19,6	3,3	2,0	0,3
Пожаревац	9,3	1,8	2,7	0,5
Жагубщща	16,5	2,7	\cdots	\cdots
Смедерево	26,7	3,3	4,8	0,6
Алексинац	7,7	3,7	6,7	0,7

Табела 2. Нивон укуине гама активности и радноцезиуума-137 (kBq/kg) у

У табели 2. приказани су подаци за укупну гама активност и ${ }^{137}$ Сs у трави и земљишту узоркованих у већим градо-вима Србије. Из табеле 2. следи да су максммане вредио из Суне гама активности измерене у трави из Смеде-рева $(26,7 \mathrm{kBq} / \mathrm{kg})$ и у земљи са подручја Немлши (1,5о ахтивисти рариоуезијма-137 из урен у траии из Вана (47 kBq kg) а у земљишту из Неготина ($1,4 \mathrm{kBg} / \mathrm{kg}$) И овде се

рава показала добрим заштитником тла о радиоконтаминације. Нивои укупне гама ак ивности у трави су били од 2,9 до $26,7 \mathrm{kBq} / \mathrm{kg}$, у емлишшту од 0,9 до $11,5 \mathrm{kBq} / \mathrm{kg}$, док су ниво $\mathrm{kB} / \mathrm{kg}$ и у земљишту од 0,2 до $1,4 \mathrm{kBq} / \mathrm{kg}$ Очиглепно да је максимални ниво активности ${ }^{137}$ Сs у земљишту измерен у Неготину, што с саже са подачима о нивоима радис падавина у Источној Србији (11).

4. ЗАКЉУЧАК

У свим испитиваним узорцима земљишта и траве, сакупљених маја 1986. године измерних су високи нивои укупне гама активости и ${ }^{137} \mathrm{Cs}$.
2. Узории траве на свим испитиваним локацијама Београда и Југославије, имали су

5. ЛИTEPATУPA

Simon S.,1971: Atlas Medical des radio-nucleides utilise en medicine, biologie, industrie et agriculture, Euroatom, Bruxeles
Russel S. and Bruce R.S., 1969: Environmental contamination with-fallout from nuclear weapons. In Environ mental Contamination by Radioactive Materials, IAEA, Vienna,
ICRP Publication 30, Part 1, 1979, 91
ICRP Publication 54, 1988, 155.
Јовановић М.: Јонизууућа зрачења и животна средина, Војноиздавачки завод, Београд, 1983, 107 190.

IAEA Bulletin, Vol.39, No.1, 1997
Bennett B.G.: Exposures from woldwide releases of radionuclides, Environmental Impact of Radioactive Re leases, IAEA, Proceedings of a symposium, Vienna, 1995, 3-12.
Хавкес Н. и сарадници: Најгора несрећа на свијету, Чернобил: крај нуклеарног сна, Глобус Загреб, 1987.
Chernobyl-Ten Years On-Radiological and Health Impact, NEA, OECD, 1996
Ap Simon H.M., Wilson J.J.N., Simms K.L.: Analysis of the dispersal and deposition of radiovalides from Cheno-bylacross Europe, Proc. R. Soc. L.
Савезни комитет за рад, здравство и соц. заштиту: Ниво радиоактивне контаминације човекове средине и озраченост становништва Југославије 1986. године услед хаварије нуклеарне електране у Чернобиљу, Београд, 1987.
Aakrog A.. . . Tal impact of Radioactive Releases", Vienna, 1995, 13-32

The radiological impact of Chernobyl debris compared with from nuclear weapons fallout, J. Envi, 151-162.
титуту Вичч шре к поић М., Шипка В.: Варијације Сs-137 у приземном слоју атмосфере у Ив ституту Винча пре и после акцидента у Чернобилу, Зборник радова: Саветовање Чернобиљ, 10 годиша после, Југословенско друштво за заштиту од зрачења, Будва, 1996, 91-93.
Пантелић Г., Брновић Р., Петровић И., Мијатовић Љ.: Радиоактивност у Србији после акцидента у заштиту од зрачења, Будва, 1996, 57-61.
Станковић С., Краинчанић М.: Monitoring of Radiocaesium 134 and 137 in Food Chain, Radiation protec tion: Advances inYugoslavia and Italy, Proceeding of the Italian-Yugoslav symposium, Udine, Italy, 1988, 369373.

Недић О., Станковић А., Станковић С., Краинчанић М.: Chemical Localization of ${ }^{137} \mathrm{Cs}$ in the Lichen Cetraria islandica, Archives of Environmental Contamination and Toxicology, Vol. 29, No 3, 1995, 380-383.

СПЕКТАР ДИМЕНЗИЈА ЗРНА ГРАДА (И СУГРАДИЦЕ) У ПЕТНАЕСТОДНЕВНИМ ПЕРИОДИМА СЕЗОНЕ ОДБРАНЕ ОД ГРАДА У НИЗУ 1984. - 1997. ГОДИНЕ

Ружица Радовановић Булић,
Иван Булић,
Десанка Хркаловић,
Рейублички хидромейеоролошки завод Србије, Кнеза Вииеслава 66, 11030 Беойрад

It is well known that occurrence frequency and hailstone dimensions vary during the hail suppression season. per.Ovde

 сезоне одбране од м̄рада. У овом раду је, на основу чеййрнаесйогодиињег̆ низа, извриена анализа сииекйрра димензија зрна а̄рада за йоједине делове сезоне.

1. УВОД

За израду овог рада коришћени су подаци из архиве Сектора одбране од града Републичког хидрометеоролошког завода Србије.

Обрађени су сви расположиви подаци, о атмосферским појавама на противградним станицама свих 12 Радарских центара Републике Србије. Обрађеп је временски низ од 1984. до 1997. године. Као почетна година за обраду узета је 1984. година јер је тада, заокружен сисгем одбране од града на 96% пољопривредне површине Републике Србије (без Војводине где се још увек не спроводи одбрана од града).

У овом временском периоду од 14 година регистровано је 17643 појаве падања града или суградице. Над прикупљеним подацима програмски је извршена обрада у мовог класирања и на основу тога су урађене табеле 1. и 2. (дате на крају рада).

Табела 2. представља преглед апсолутних и релативних честина (у \%) броја противградних станиы на којима је осмотрен грая одређене величине за обрађивани низ, за петнаестодневне периоде сезоне одбране од града за читаву област Републике Србије.

Табела 3. представъа преглед апсолутних и релативних (у \%) честина броја противградних станица са осмотреним градом одређене станица са осмотреним градом одређе
2. АНАЛИЗА И ПРИКАЗ ДОБИЈЕНИХ РЕЗУЛTATA
Да би се добио спектар димензија зрна града и његове промене у току сезоне одбраие од града, сезона је подељена на 12 периода, који су добијени дељењем месеца на два дела од 1 . до 15. у месецу и од 16. до краја месеца.

Димензије зрна града (пречник зрна), су подељене у 8 класа које одговарају начину шифровања величине зрна града у Сектору одбране од града.
Табела 1. Пречник зрна града према шифраріику.

| Димен. | Величина према шифрарнику |
| :--- | :--- | [mm]

0.1-3.0 Зе
0.1-3.

4-8

$4-8$	$3 p$
$9-12$	3 p
$13-20$	It

Зрно кукуру
Зрно пасуььа

21-30	Лешни

31-35 \quad Голубије јај
36-50 Кокошије ја
>50 Непредвиђене величине

Укупан број појава града и суградице класиран је према величини зрна и према периоду сезоне. На основу тих података добијена је табела 2. У првој колони табеле, наведени су периоди, а затим следи осам колона за димензије зрна. За сваки период и сваку класу величине зрна града или суградице, дате су апсолутне и релативне честн. Релативне честине су израчунате у појава
у последњој колони дате су честине појаве града и суградице, збирно за све величине а по појединим деловима сезоне. У последњем реду табеле 2 , дате су честине појединих класа величине зрна града, за свих 14 година.

3. СІЕКТАР ДИМЕНЗИЈА ЗРНА ГРАДА

ЗА ЦЕЈУ СЕЗОНУ

Прво је анализиран спектар свих података из низа од 1984.-1997.године

На слици 1, приказане су релативне честине броја противградних станица које су осмотриле појаву града или суградице за читав временски низ, и на основу ше се могу извести следећи закључци:
Највећу честину ($48,56 \%$) имају зрна величине $0,1-3$ мм (суградица),
Друга по реду честина ($21,63 \%$), је за град величине 13-20 мм (лешник),
Трепа по реду честина ($18,66 \%$), је за град величине 4-8 мм (зрно кукуруза),
Ове ги вула) чине укуно 8885% зрно кукуруза) чине укупно $88,85 \%$ појављивања свих осмотрених величина
98,7\% случајева димензије зрна града су до
30 mm,
$\mathrm{y} 93,2$
20 мм

На основу табеле 2 . виде се пет периода са великом честином појављивања града или суградице (без обзира на величину зрна). Ових пет периода чине један континуи-рани низ који почиње 1. маја и траје до 15 . јула. Из овог низа

може да се издвоји максимум у току јун месеца.

4. СПЕКТАР ДИМЕНЗИЈА ЗРНА ГРАДА

 НОЈЕДИНИМ ПЕРИОДИМА СЕЗОНЕ ЗА НИЗ 1984.-1997.ГОДИНАУ даљој анализи урађено је 12 хистограма где је на сваком дат спектар димензија зрна града а по један период у сезони. На X-оси истограма су класе димензија зрна града Y-оси вредности релативних честина број чротивградних станица са осмотреним појавама града или суградице.

У овом периоду (слика 2), ретко долази до нојаве града и суградице.

Град је забележен 255 пута, односно $1,44 \%$ од укупног броја појава. Суградица је забележена укупног броја појава. Суградица је забележена Појава зрна града већих од 20 mm има само у $0,09 \%$ случајева.

У овом временском периоду (слика 3), стварају се повољнији услови за развој непогода, што се види и са хистограма. Ово је један од пет еугиода у којима се најчеће јављају град и суградице је за 2,6 пута већи него у претходном периоду. Појава зрна града већих од 30 mm има само у $0,04 \%$ случајева
Период од 16.05.-31.05.:

у овом периоду (слика 4) појава града и уградище и даље расте. Најчешћа величина зрна града је од $0,1-3 \mathrm{~mm}$ (у $8,28 \%$ случајева),

што представља суградицу. Затим следе две димензије зрна са сличном честином јављања: димензија зрна од $4-8 \mathrm{~mm}$ (зрно кукуруза) са честином јављања од $2,92 \%$ и димензија зрна од $13-20 \mathrm{~mm}$ (лешник) са честином јављања од $2,73 \%$.

Појава зрна града већих од 30 mm има само у $0,15 \%$ случајева.

Период од 01.06.-15.06.

Ово је период у коме су појаве града и суградице највеће (слика 5). Суградица се јавља у $9,18 \%$ случајева, а град величине од: $13-20 \mathrm{mм}$ у $4,73 \%$ случајева, а од $4-8$ мм у $4,05 \%$ случајева. Повећана је честина јављања зрна од $9-12$ мм и од $21-30$ мм и она износи $0,91 \%$ укупног броја случаје-ва. Појава зрна већих од 30 мм задржала је вредност из прошлог периода.

Период од 16.06.-30.06.:

у овом периоду (слика 6) долази до пада честине суградице, а смањује се и број зрна

величине од $4-8 \mathrm{~mm}$ и од $9-12 \mathrm{~mm}$. Број зрна величине од $13-20 \mathrm{~mm}$ је сличан као претходном периоду. Број зрна величине од 21 30 mm је за 60% повећан у односу на претходни период, а честина јављања зрна већих од 30 mm је у $0,45 \%$ случајева. Изразито је повећана честина јављања зрна од $36-50 \mathrm{~mm}$.

У овом периоду (слика 7) долази до пада честина појављивања свих величина зрна града. зрна града већих од 30 mm има опет само у 0,15\% случајева

Период од 16.07.-31.07.:

Укупан број појављивања града и суградице се смањује у односу на претходни период, једино је честина јављања зрна од $36-50 \mathrm{~mm}$ повећана

У овом периоду је дошло до слабијег пораста честина појављивања зрна величине $0,1-3 \mathrm{~mm}$ и $4-8 \mathrm{~mm}$. Честина појавливања свих осталих величина је смањена.

Период 16.08.-31.08.:

У овом периоду (слика 10) долази до пада првих четири величине зрна града. Чести-на првих четири величине зрна града. 20 mm је остала на нивоу претходног месеца.

Периоди од 01.09.-15.09

Септембар (слике 11 и 12) карактерише општт пад честина појављивања свих величина зрна града. Величине преко 50 mm нема

Период 01.10.-15.10.

У овом периоду је за низ од 14 година град и суградица забележена само 25 пута ($0,14 \%$). Зрна града величине преко 20 mm нису забележена (слика 13).

5. СПЕКТАР ДИМЕНЗИЈА ЗРНА ГРАДА ПО ГОДИНАМА

У циљу одређивања карактеристика појединих година урађени су спектри димензија зрна родине. За те потребе урађена је табела 3 , у којој су сортирани подаци по класама величине рна града и по годинама. Подаци су дати у апсолутним и релативним честинама (у \%) Урађени су и хистограми за сваку годину, који због ограниченог простора неће бити приказани.

На основу табеле 3 могу да се изведу следећи закључци:

- За све године датог низа карактеристи-чна у два изражена максимума честина осмотре ног града датих димензија.
- За све године низа израженији је први главни) максимум. Он се односи на интервал иимензија од $0,1-3 \mathrm{~mm}$, односно то је суградица
- Главни максимум је најизраженији 1986 одине када износи 5.64%, а најмање је изражен 1990.године када је износио $1,98 \%$ свих случајева.
- Други максимум (секундарни) је слабије изражен и налази се у интервалу од 13 до 20 mm , то је зрно града величине лешника.
- Секундарни максимум је био најизраженији 1988.године када је износио 2.67% (а сличне вредности су имале и следеће године: 1997. $-2,33 \%$, и 1993. $-2,23 \%$) од свих случајева. - Највећа честина појављивања зрна града већих од 30 mm била је 1997. године ($0,4 \%$) и 1993.године ($0,22 \%$)

6. РЕJАТИВНЕ ЧЕСТИНЕ ПOJ

ПО ГОДИНАМА

У последњој колони табеле 3 , дато је збирно за сваку годину колико је било ових појава. На основу те табеле урађен је хистограм релативне честине појаве града по годинама.

у току четрнаестогодишњег периода забележено је 17643 појава града и суградице, 7,14\%

На основу оваквих показатеља, године се могу поделити на надпросечне и оне које су испод просека по честини јављања испитиваних појава.
Из овог хистограма могу да се изведу следећи закључци:
било је пет надпросечних година: 1986., 1988. 1989., 1993. и 1997.година

испод просека је било шест година: 1984., 1985. 1987., 1990., 1996. и 1996. година

у нивоу просека су биле три године: 1991., 1992 у 1995 .година.
Година са највећим бројем појављивања града и суградице била је 1988. са $10,96 \%$ од укупног броја, а најмање појава је било 1990. само $3,67 \%$.

7. ЗАКЛУУАК

На основу свега изнетог могу да се изведу следећи закључци:

Највећу честину појављивања ($48,56 \%$) имају зрна величине 0,1-3 мм (сугра-дица),

Друга по реду честина ($21,63 \%$), је за град величине 13-20 мм (лешник),

Трећа по реду честина ($\mathbf{1 8 , 6 6 \%}$), је за град величине $4-8$ мм (зрно кукуруза),
у $98,71 \%$ случајева димензије зрна града су до 30 mm

У периоду од 16. септембра до 15 . октобра до појаве града и суградице долази у свега $0,98 \%$ случајева.
Постоје пет периода са великом честином појаве града или суградице. Ових пет периода чине један континуирани низ који почиње 1. маја и траје до 15. јула

Табела 2. Преглед апсолутних и релативних честина, броја противградних станица на којима је осмотрена појава града или суградице, по петнаестодневним перидима

Периодсезоне	Апсолутне и релативве (у \%) честине броја ІІС са осмотреним граром датих величвва за виз 1984.-								$\underset{\substack{\text { одума } \\ \text { одпо пери- }}}{\text { у. }}$
	0.113 mm	4.8 mm	9-12mm	13-20mm	21-30mm	31.35 mm	$36-50 \mathrm{~mm}$	>50mm	
15.04.-	526	131	25	83	11	0	0	5	781
	2.98\%	0.74\%	0.14\%	0.47\%	0.06\%	0\%	0\%	0.03\%	4.43\%
$01.05 .$	1183	439	83	280	63	4	2		2055
	6.71\%	2.49\%	0.47\%	1.59\%	0.36\%	0.02\%	0.01\%	0.01\%	1.65\%
$\begin{aligned} & 16.05 . \\ & 31.05 . \end{aligned}$	1461	516	91	482	66	11	8		2642
	8.28\%	2.92\%	. 52%	2.73\%	${ }^{0.37 \%}$	0.06\%	0.05\%	0.04\%	
$\begin{aligned} & 0.10 .0 .6 \\ & \hline 1.56 . \\ & \hline 0 . \end{aligned}$	1620	715	161	834	161	10	8	8	3517
	9.18\%	4.05\%	0.91\%	4.73\%	0.91\%	0.06\%	0.05\%	0.05\%	
$\begin{aligned} & 16.06 . \\ & 30.06 . \end{aligned}$	1251	553	140	803	269	24	38	16	3094
	7.09\%	3.13\%	0.79\%	4.55\%	1.52\%	0.14\%	0.22\%	0.09\%	7.54\%
$\begin{aligned} & \text { 0.0.07-- } \\ & 15.07 . \end{aligned}$	840	327	83	436	120	21	1	3	1831
	4.76\%	1.85\%	47\%	2.47\%	0.68\%	0.12\%	0.01\%	0.02\%	138\%
$\begin{aligned} & \text { li.07-- } \\ & 31.07 . \end{aligned}$	546	163	54	292	102	4	16	10	1187
	3.09\%	0.92\%	0.31\%	1.66\%	0.58\%	0.02\%	0.09\%	0.06	6.73\%
$\begin{aligned} & \text { 01.08.- } \\ & 15.08 . \end{aligned}$	580	226	63	279	64	3	3	2	1220
	3.29\%	1.28\%	0.36\%	1.58\%	0.36\%	0.02\%	0.02\%	0.01%	6.91\%
$\frac{15.0 .0}{16.0}$	376	146	38	228	67	2	${ }^{5}$	\%	865
	2.13\%	0.83\%	0.22\%	1.29\%	0.38\%	0.01\%	0.03\%	0.02\%	
$\frac{31.0 .9 .9}{1.50 .9}$	94	55	18	70	31	${ }^{2}$	${ }^{8}$	0	2788
	0.53\%	0.31\%	0.10\%	0.40\%	0.18\%	0.01\%	0.05\%	0\%	
$\begin{aligned} & 16.09 . \\ & 30.09 . \end{aligned}$	74	19	13	26	12	$\stackrel{2}{2}$	\%	\%	${ }_{0}^{148}$
	0.42\%	0.11\%	${ }^{0.07 \%}$	0.15\%	0.07%	0.01\%	0.01\%	0\%	
$\frac{01.10 .}{1510}$	$\underline{16}$		0.02%		0\%	\%	0\%	0\%	$\frac{25}{0.14 \%}$
$\frac{15.10 .}{\text { Leлa }}$	${ }_{\text {0.09\% }}{ }^{1567}$	${ }^{0.02 \%}$		${ }^{0.02 \%}$	966	83	91	55	17643
Цела				.63\%	.48\%	7\%	0.52\%	1\%	100\%

Табела 3. Преглед апсолутних и релативних честина, броја противградних станица на којима је осмотрена појава града или суградице, за сваку годину из низа 1984.-1997

година	Апсолутне п релатнвне (у \%) уестиие броја ІІС са осмотрепим грядом датих велич								Укупно осмотренопо годинама
	$0.1-3 \mathrm{~mm}$	4.8 mm	9-12mm	13-20mm	${ }^{21-30 \mathrm{~mm}}$	${ }^{31-35 m m}$	36-50mm	> 50 mm	
1984.	562	220	40	158	30		0		
	3.19\%	${ }^{1.25 \%}$	0.23\%	${ }_{0}^{0.90 \%}$	${ }^{0.17 \%}$	0.01\%	0\%	0\%	${ }_{827}$
1985.	2.51\%	$\frac{.153}{}$	0.16\%	0.98\%	0.11\%	0\%	0\%	0.02\%	4.65\%
1986.	95	250	58	330	53	3	1	6	1696
	5.64\%	1.42\%	0.33\%	1.87\%	0.30\%	0.02\%	0.01\%	0.03\%	9.61\%
1987.	534	150	35	227	49		3	3	1002
	3.03\%	0.85\%	0.20\%	1.29\%	0.28\%	0.01\%	0.02\%	0.02	${ }^{5.68 \%}$
1988.	857	440	60	471	94		2	7	1934
	4.86\%	2.49\%	0.34\%	2.67\%	0.53\%	0.02%	0.01\%	0.04%	
1989.	697	335	72	309	71	1	3	12	1500
	3.95\%	1.90\%	0.41\%	1.75\%	0.40\%	0.01\%	0.02\%	0.07\%	8.50\%
1990.	350	117	21	135	17	3	0	5	648
	1.98\%	0.66\%	0.12\%	0.77\%	0.10\%	0.02\%	0\%	0.03\%	${ }^{3} .67 \%$
1991.	646	273	57	227	58	4	11	${ }^{4}$	
	3.66\%	1.55\%	0.32\%	1.29\%	${ }_{0}^{0.33 \%}$	${ }_{0}^{0.02 \%}$	0.06\%	0.02%	${ }^{12270}$
1992.	673	219	65\%	242	0.31\%	0.04\%	0.04\%	0.01\%	7.20\%
1993.	${ }^{3.81 \%}$	1.24\%	${ }_{0}^{0.37 \%}$	${ }^{1.394}$	150	20	14	5	1514
	3.57\%	135\%	0.36\%	2.23\%	0.85\%	.11\%	0.08\%	0.03\%	${ }^{8.58 \%}$
1994.	565	192	55	221	58	2	0	2	1095
	3.20\%	1.09\%	${ }^{0.31 \%}$	1.25\%	0.33\%	0.0.1\%	$\stackrel{4}{4}$	0.01%	1280
1995.	${ }_{2.98 \%}$	1.43\%	0.39\%	1.86\%	0.50\%	0.06\%	0.02\%	0.01\%	7.26\%
1996.	599	194	52	190	33	5	1	0	1074
	3.40\%	1.10\%	0.29\%	1.08\%	0.19\%	${ }^{0.03 \%}$	0.01\%	\%	6.09\%
1997.	491	258	96	411	191	22	45	4	1518
	2.78\%	1.46\%	0.54\%	2.33\%	1.08\%	${ }^{0.12 \%}$	0.26\%		${ }^{8.07643}$
збир	48.56\%	18.66\%	${ }_{4.88 \%}$	21.63\%	5.48\%	0.47\%	0.52\%	0.31\%	100\%

ДНЕВНИ ХОД ПОЈАВЕ ГРАДА И СУГРАДИЦЕ У ПЕТНАЕСТОДНЕВНИМ ПЕРИОДИМА СЕЗОНЕ ОДБРАНЕ ОД ГРАДА У НИЗУ 1984.-1997. ГОДИНЕ

Ружича Радовановић Булић,
Иван Булић,
Десанка Хркаловић,
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66, 11030 Беойрад

The experience showed that hail does not fall uniformly during all parts of the day. This paper invlolves the analysis of hail occurrences in some time intervals (daily distribution) for some parts of the season on the basis of 14 years time interval.

Абсииракий

Нз искусиива је йознайо да град не йада равномерно у свин добима дана. У овом раду је, на основу чейирнаесйог̄одиињвег̆ низв, извриена анализа йојаввивана а̄рада у одређенон временском инйервалу (дневна расйодела) за йоједине делове сезоне одбране од горада.

1. УВОД

За израду рада коришћени су подаци из архиве Сектора одбране од града Републичког хидрометеоролошког завода.

у обраду су узети сви расположиви подаци о атмосферским појавама на против-градним станицама свих 12 Радарских центара Републике Србије. Обрађен је временски низ од
1984. до 1997.године. Као почетна година за 1984. до 1997.године. Као почетна година за обраду узета је 1984.година јер је тада, пољотривредне површине Републике Србије (без Војводине где се још увек не спроводи оп (без воу гра брана од града).

У овом временском периоду од 14 година регистровано је 17643 појаве падања града или суградице (с обзиром да за овај рад није битна коришнен само израз градд. Над прикупљеним подашмм програмски је извршена обрада у щиљу њиховог класирања и на основу тога су урађене табеле 1. и 2.(дате на крају рада).

Обрада података није вршена статисти-чким методама, а тако ће подаци да буду обрађени у неком од наредних радова

Табела 1. представља преглед апсолутних и релативних честина (у \%) појављивања града у ддређеном временском интервалу (дневн невне периоде посатрани низ за петнаестод читаву област Ренблике Србије - рада

Табела 2. представља преглед апсолутних и релативних (у \%) честина појављивања града у одређеном сатном интервалу за сваку годину из датог низа осматрања, за област Републике Србије.

2. АНАЛИЗА И ІІРИКАЗ ДОБИЈЕНИХ

PEЗУЛTATA

Да би се добила дневна расподела појављивања града и њена промена у току сезоне одбране од града, сезона је подељена на 12 периода, који

су добијени дељењем месеца на два дела од 1. до 15. у месецу и од 16. до краја месеца.
Да би се добила дневна расподела, појављивања града, қан је подељен на 24 сатна интервала.
Укупан број појава града (17643 случаја) класиран је према сату у коме је појава забележена и према периоду сезоне. На основу ти података добијена је табела 1.

У првој колони табеле, наведена су 12 периода сезоне одбране од града, а затим следи двадесет четири колоне за број забележених појава града у одређеном сату. За сваки период и сваки сат у коме је забележена појава града дате су апсолутне и релативне честине. Релативне честине су израчунате у односу на укупан број појава (17643).

У последњој колони дате су честине појаве града за поједине делове сезоне.
у последњем реду табеле 1 ., дате су честине појављивања града у сваком сату, за свих 14 година

3. ДНЕВНИ ХОД ПОЈАВЉИВАНА ГРАДА

 ЗА ЦЕЛУ СЕЗОНУПрво је анализирана дневна расподела јављивања града за низ од 1984.-1997.године.

На добијеном хистограму (слика 1) приказане су релативне честине броја противградних станица које су осмотриле појаву града, у сат ним интервалима, за читав временски низ.

На основу хистограма могу да се изведу следећи закључци:

Од забележених 17643 случаја појаве града, у 8256 случајева (или $46,8 \%$) град је падао између 15 и 18 часова.

У $71,81 \%$ случајева град се јавља између 14 и 19 часова,

У $87,62 \%$ случајева град се јавља између 13 и 20 часова,

У времену између 0 и 10 часа до појаве града долази само у 1,23 \%случајева, а у периоду од 22 до 24 часа град је забележен у $1,14 \%$ случајева.

4. ДНЕВНИ ХОД ПОЈАВЉИВАЊА

ГРАДА ПО ПОЈЕДИНИМ ПЕРИОДИМА СЕЗОНЕ

У даљој анализи урађено је 12 хистограма где се на сваком од њих на X-оси налазе сатни интервали у којима долази до појаве града, а на Yоси вредности релативне честине броја противградних станица на којима је за бележена појава града.

У овом периоду (слика 2) до појаве града долази у $4,43 \%$ случајева. До појаве града долази у $4,43 \%$ случајева. До појаве најчене између 14 и 18 часова и то у 69% случајева од укупног броја појављи-вања у овом периоду. У периоду између 01 и 11 часова ва овај четрнаестогодишњи период забележена је само 1 појава града

Период од 01.05.-15.05.:

у првој половини маја (слика 3) град се најчешће јавља између 14 и 18 часова и то у $71,5 \%$ свих случајева појављивања града у овом 17 часова (у $41,1 \%$ свих случајева у овом тору) У је забешен само јонит

Период од 16.05.-31.05.:

У другој половини маја (слика 4) град се јавља између 12 и 20 часова у $91,5 \%$ случајева појављивања града у овом периоду. Максимум се јавља између 14 и 17 часова (у $43,8 \%$ случајева). У периоду до 12 часова град се јавља у свега $3,2 \%$, а после 20 часова у $5,3 \%$ случајева.

Период од 01.06.-15.06.

у овом периоду (слика 5) град се јавља између 13 и 20 часова у 87% случајева појављивања града у овом нериоду. Максимум може да се издвоји у истом временском интервалу као и у претходном периоду, између 14 и 17 часова у 44,4\% случајева.

Период од 16.06.-30.06.
У другој половини јуна (слика 6) град се јавља између 13 и 21 час у $90,2 \%$ случајева појављивања града у овом периоду. Најчешће се јавља између 14 и 19 сати и то у $48,4 \%$ случајева

За обрађивани низ година у периоду између 4 и 10 сати није забележена ни једна појава града.

У овом периоду (слика 7) град се најчешће авља између 13 и 20 часова и то у $82,9 \%$ свих случајева у овом периоду. Најчешће се јављ између 15 и 18 часова (у 54% случајева)

Период 16.07.-31.07.:

У овом периоду (слика 8) од 13 до 20 часо-в град се јавља у $86,8 \%$ свих забележених појава у овом периоду. Град се најчешће јавља између 17 и 19 часова (у 34% случа-јева).

Периоди 01.08.-15.08. и 16.08.-31.08:

У ова два периода (у августу, слике 9 и 10) град се најчешће јавља између 13 и 19 сати у преко

80 \% стучајева (у односу на све забележене појаве у овим периодима).

Град се најчешће јавља између 15 и 16 часова У првом периоду од поноћи до 9 сати било j три појаве грала а у другом периоду до 11 сати шје биио појаве грана, за читав обрађивани низ година.

Период од 01.09.-15.09. и 6.09.-30.09:

У току септембра месеца (слике 11 и 12) град се јавља у свега 2,42 \% случајева у односу на читаву сезону (у првој половини у $1,58 \%$ и у другој у $0,84 \%$ случајева), и то у временском интервалу од 12 до 19 часова. Од поноћи до 12 и после 19 часова град се може сматрати ретком појавом

Период 01.10.-15.10.:
3
2
1
0

У овом периоду (слика 13), у односу на читаву сезону град се јавља у само $0,14 \%$ случајева.

За читаву сезону одбране од града може, уопштено, да се каже да од 15.04. до 15.05. и од 01.09. до 30.09. град најчешће пада између 14 и 18 часова, а од 16.05. до 31.08. између 13 и 20 часова.

Осим тога може да се изведе и закључак да у периоду од 0 до 10 сати има појаве града у мају, јуну и јулу месецу, а у осталим месецима може да се сматра ретком појавом.

Г ДНЕВНИ ХОД ПОЈАВЉИВАЊА ГРАДА ПО ПОЈЕДИНИМ ГОДИНАМА

У циљу одређивања карактеристика појединих година урађена је дневна расподела града по годинама за низ од 1984. до 1997. године. За те потребе урађена је табела 2 , у којима су сортирани подаци по сатним интервалима и по годинама. Подаци су дати у апсолутним релативним честинама (у \%). У рађени су аниченог про-стора неће бити приказани.

Најзначајнији закључак који може да се изведе из табеле 2. и хистограма је да у току дана имамо два веома различита периода у односу часа и измеу 00 и 10 часов. Разатрани посебно:

За све године датог низа карактери-стично је да се град у преко 85% случајева (сваке године) јавља између 13 и 20 часова, а у 95% случајева измену 12 п 21 сата, или просечно 191,3 пута годишње

Године изнад просека су биле: 1988. (1855 пута), 1986. (1637 пута), 1993. (1480 нута), 1989 (1444 пута) и 1997. (1392 пуат)
Исы) (трсека су биле године: 1990 (622 пута) 1985. (778 пута), 1996. (857 пута), 1984 (930 пута), 1987 (957 пута) и 1994. (968 пута).

Период између 00 и 10 часа:

У периоду између 0 и 10 часова град се јављао у само $1,23 \%$ случајева, (215 од укупног броја случајева) посматрајући све године збирно, или просечно 15,4 пута годишње.

Изнад овог просека су биле године: 1994. (51 пут), 1995. (43 пута), 1991. (31 пут), 1984. (25 пута) и 1993. (20 пута)

Године у којима се град, у овом периоду, могао сматрати ретком појавом су 1988. (1 пут), 1990. (2 пута), 1987. (3 пута), 1986., 1988., 1997. (по 4 пута) и 1985. (5 пута).
6. РЕЛАТИВНЕ ЧЕСТИНЕ ПОЈАВЕ ГРАДА TOKУ CEЗOHE

Погледаћемо хистограм (слика 14) који нам показује честину појаве града у току сезоне

на осиву овог хисторама може да с

Іостоје пет периода са великом честином по јаве града. Ових пет периода чине један конти-
 јула. из овог коза у току јуна месеца

Од 1. септтембра долази до пада честина појав рада и суградице, тако да у периоду од 1. сепсмора до краја сезоне долази до појаве града суградице у свега $2,56 \%$ случајева

периоду од 16. септембра до 15 . октобра до појаве града и суградице долази у свега $0,98 \%$ ллучајева.

7. ЗАКЉУЧАК

На основу свега изнетог могу да се изведу У периоду између 0 и 10 часова град се јавља следећи закључци:
За све године датог низа карактеристи-чно је да се град у преко 85% случајева (сваке године) јавља између 13 и 20 часова, а у 95% случајева између 12 и 21 сата

За читаву сезону одбране од града може, уопштено, да се каже да од 15.04. до 15.05. и од 18 часова, а од 1605. до 31.08 између 13 и 20 часова.

У периоду од 0 до 10 сати има појаве града мају, јуну и јулу месецу, а у осталим месецим ноже да се сматра ретком појавом

Постоје пет полумесечних периода који чине континуирани низ са великом честином појаве рада: од 01.05. до 15.07.

У периоду од 16. септембра до 15. октобра до појаве града и суградице долази у свега $0,98 \%$

случајева.

ОПТИМАЛНО ТЕМПИРА

Иван Булић
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66, 11030 Беойрад

Abstract

Hail suppression rockets are used for the hail cloud seeding within the hail suppression activity in the republic of Serbia. Rocket timing, i.e. the time of the beginning of dispersing the seeding material is very important in the seeding process. Recent experimental testing of the ballistic features of the hail supression rockets have indicated the need of determining new curves and checking the existing timing.

Абсийракйй
У сисииему одбране од іррада у Рейчблици Србији, за засејаване градоносних облака ко рисиие се иороииивградне ракеиие. Темйиране ракеииа, односно време иочеиика исејавања реаегенса веома је бийно у йроцесу засејаваньа. Најновија ексииерименииална исиииииивань сйољнобалисиииччких каракииерисйика ракейиа, указала су на йойребу одређивања нввих балисииичких кривих и йроверу досадашних ииемйирањв.

1. УВОД

Од оснивања службе заштите од града коришћено је неколико типова ракета. Временом су стари типови повлачени и увођени нови, технолошки напреднији.

у опретивном раду, у систему заштите од града, за засејавање конвективних облака сада се користи пет типова ракета:

Тип	Произвођач
ТГ-10	19. Децембар, Подгорица
Сако-6	Сава Ковачевић, Тиват
ПП-6	Полиестер, Прибој
ПП-8	Плиестер, Прибој
ТМТ-9	Трајал, Крушевац

Свака ракета, носи са собом користан терет, који је у облику реагенса на бази сребројодида и ракета га исејава на једном делу свог пута у околну атмосферу. Почетак исејавања реагенса (ииемиирање рикейе), задаје се пре ландео реагенса буде убачен у циљану запремину. Циљана запремина је са доње и горње стране ограничена површима, чије су висине диктиране температурним условима у атмосфери. За доњу и горњу границу активности реагенса

иожемо узети ШШ12Ћ висине изотерми -4° Ц и 12° Ц. Средња дебљина тог слоја према раду III1Ћ у данима са дејством износи око 1200 метара. Приликом избора елевације и емпирања за ракете, треба тежити да што веће количина реагенса остане у том слоју.

Тренутно се, у оперативном раду користи фиксно темпирање. Свакој ракети је одре-ђено једно темпирање за све елевадије.
Променљиво темпирање значи да свака елевација има своје темпирање, које је одређено тако да је исејавање равномерно распоређено око темена путање. У том случају
 чекивати да ће сав реагенс остати на висини између изотерми $-4^{\circ} \mathrm{C}$ и $-12^{\circ} \mathrm{C}$.

Циљ овог рада је да утврди, да ли се време тем ирања може фиксирати на неку ко-нстантн вредност, или се мора радити са променљивим темпирањем. У оба случаја потребно ј тврдити метопу одређивања темпирања, за св могуће ситуације.

За доношење било каквих закључака неопходно је знати (што тачније) балисти-чке криве.

2. हАЛИСТИЧКE KPUBE PAKETA

Балистичке криве, које је некада давао произвођач ракета, нису увек биле применљиве у пракси. Један од разлога су знатна одступања од експерименталних података
$[13,14,15,16,17,18]$. Други разлог се не види голим оком али је веома битан. Криве произвођача су биле дате графички, али само у равни X-Z са мало тачака у којима је назначено време. Обично после темена ракете, нису више означаване тачке које би представљале временску координату, па иако су позната вре мена темпирања и исејавања реагенса, није било могуће одредити хоризонталну пројекцију трага исејавања, нити дебљину засејаног слоја.

За потребе система одбране од града неопходно је знати положај ракете у свако тренутку, што се може решити ако су познат аналитичке једначине путање ракете

Једно од решења је, да се у недостатку тачних одреде приближне аналитичке једначине пу тање ракете. Коришћењем експериме-нталних резултата испитивања, где имамо низ тачака (Xi,Zi,Ti), могу се ме-тодом најмањих квадрата [6,7,8,9], добити једначине путање у облику полинома:
$X(t)=\sum_{i=0}^{N} a_{i} \bullet t^{i}$
$Z(t)=\sum_{i=0}^{N} b_{i} \cdot t$
$Z(X)=\sum_{i=0}^{N} c_{i} \bullet X^{i}$

Од ових једначина, практичну примену у овом раду, имају само прве две, док је трећа, дата само због комплетнијег приказа. Наиме, трећа једначина, даје криву која је уобичајени облик балистичке криве, али на којој не постоје по даци о времену, па је њена употребљивост ограничена. Величине $a_{i} b_{i,} c_{i}$ су коефици-енти полинома.

Уошштено говорећи, што је већи степен полинома којим апроксимирамо једначину то је он ближа стварној, пошто је тада средње квадратно одступанје најмање. Постоје два ограничавајућа фактора у овом рачуну

Први је да из N тачака, можемо добити поли ном до степена $\mathrm{N}-1$. Други проблем се јавља у случају да су експерименталне тачке неравно мерно распоређене, па у подручјима без тачака, може да се појави неприродно тала сање криве, због чега се степен полинома мора усагласити са природним обликом криве.

За потребе тих израчунавања, урађен је посебан програм, у којем се упоредо са рачунањем исцртавају тражене криве, а по полинома, док се не добије прихватљив облик балистичке криве

у наредним одељцима, ће бити приказани резултати до којих се дошло, за све ракете које се налазе у оперативном раду.

3. PAKETA TI-10

За добијање једначина коришћени су подаци добијени у експериментаном испитивању [1]. Тада су снимљене путање 14 ракета:

$$
\begin{array}{ll}
\text { Елевација } & \text { Број ракета } \\
\hline 45^{\circ} & 3 \\
55^{\circ} & 8 \\
85^{\circ} & 3
\end{array}
$$

На основу тих података, за горе поменуте елевације, одређени су коефициенти поли-нома за једначине 1 и 2

За остале елевације, криве су добијене интерполацијом, пошто експеримент није и њих обухватио (слика 1).

У табели 1, су дате хоризонталне проје-кције (дужине) трага засејавања (dX) и његова дебљина (dZ), за случај фиксног темпирања и за променљиво темпирање. у реалним условима не треба очекивати употребу ове ракете са елевацијама већим од 65°, па су зато у доњем делу табеле стављене цртице
\qquad

Табела 1. дужина и дебљина аррага засејава-ња ракейе ТГ-10

ел.	Темпирање 12 секунди		Променљиво тање		темпи-
	$\mathrm{dX}[\mathrm{~m}$	$\overline{\mathrm{dZ}[\mathrm{~m}}$	темп. [s]	$\mathrm{dX}[\mathrm{~m}$	$\begin{aligned} & \mathrm{DZ[m} \\ & 1 \end{aligned}$
45°	5224	1491	8	5943	1002
50°	5146	1059	11	5282	941
55°	4926	1160	13	4829	993
60°	4564	1556	15	4367	1017
65°	4060	1935	17	3865	988
70°	3413	2273	19	3283	984
75°	2625	2559	-	-	-
80°	1694	2785	-	-	-
85°	621	2947	-	-	-

у случају фиксног темпирања, дебљина слоја засејавања је мања од 1200 метара само са елевапије 50° и 55°, док је код свих осталих већа.

Када свакој елевацији одредимо посебно темпирање, добијемо резултате који су приказани у десном делу табеле. За све дебљина засејаног слоја је мања од 1200 m , па се препоручује употреба променљивог темпирања.

4. PAKETA III-8

За добијање једначина корићени су подаци добијени у експериментаном испитивању [2] Тада су снимљене путање 15 ракета:

Елевацшја	Број ракета
45°	4

Елеващца
45°
55°
85°

На основу тих података, за горе поменуте елевације, одређени су коефициенти полинома за једначине 1 и 2.

За остале елевације, криве су добијене интерполацијом, пошто експеримент није и њих обухватио (слика 2).
Табела 2. Дужина и дебљина йраг̄а засејава-ња ракейе ПП-д

Ел.	Темпирање 12 секунди		Променљивотање темпи-		
	$\mathrm{dX}[\mathrm{~m}$	$\mathrm{dZ}[\mathrm{~m}$	темाँ. [s]	dX[s]	dZ[s]
45°	5417	1538	,	5895	1130
50°	5037	1267	11	5165	1210
55°	4627	1389	13	4525	1256
60°	4187	1702	14	4025	1320
65°	3715	1973	15	3529	1414
70°	3212	2194	15	3079	1549
75°	2679	2361			
80°	2115	2468			
85°	1520	2517			

У табели 2, су дате хоризонталне проје-кције дужине) трага засејавања (dX) и његова дебљина (dZ), за случај фиксног темпирања и за променљиво темпирање. у реалним условима не треба очекивати употребу ове ракете са елевацијама већим од 65°, па су зато у доњем делу табеле стављене цртице.

Код ове ракете и у случају фиксног и променљивог темпирања, дебљина засејано ллоја је већа од 1200 метара, са изузетко елевације 45° код променљивог темпирања.

Препоручује се употреба променљиво темпирања, пошто оно засејава тањи слој.

5. PAKETA TMT-9

За добијање једначина корићени су подаци добијени у експериментаном испитивању [3]. Испитивање је врпено за елевације $45^{\circ}, 55^{\circ}$, $65^{\circ}, 75^{\circ}$ и 85°. У истом раду је дата табела са интерполисаним врешностима за све елевациј тако да је она коришшена за одређиваюе коефициената полинома за јенначине 1 и 2

У табели 3 , су дате хоризонталне проје-кције (дужине) трага засејавања (dX) и његова дебљина (dZ), за случај фиксног темпирања (слика 3).

За случај променљивог темпирања нису а сли прорачуш пошто ова ракета нема уређај за темпирање.

Са фиксним темпирањем, како је констру ктивно решено на овој ракети, само елевациј 45° и 50° имају дебљину засеја-ног слоја мањ од 1200 метара. У реалним условима се могу користити све елевације, па је препорука да се у договору са произвођачем уведе променљиво темпирање.

Табела 3. Дужина и дебљина ирага засејавања ракейе ТМТ-9

рлкеше\|	Темпирање 8 секунди	
	$\mathrm{dX}[\mathrm{m}]$	$\mathrm{dZ}[\mathrm{m}]$
45°	4195	1111
50°	4086	930
55°	3969	1605
60°	3655	2647
65°	3342	3705
70°	2698	3142
75°	2090	3047
80°	1332	3682
85°	574	4121

6. PAKETA III-6

За добијање једначина коришћени су подаци добијени у експериментаном испитивању [4]. Тада су снимљене путање 9 ракета:

Елевација	Број ракета
45°	2
65°	5
85°	2

За елевацију 65°, дати су табеларно подаци са координатама ($\mathrm{Xi}, \mathrm{Zi}, \mathrm{Ti}$), за следећа времена 8 , $10,12,15,20,25,30$ и 35 секунди. За елевације 45° и 85° су дате само кординате ($\mathrm{Xi}, \mathrm{Zi}, \mathrm{Ti}$), за

времена достизапа темена и за времена само ликвидације.
Проблем за елевацију 45° је решен тако да је крива фитована, прво са полиномом другог крива фитована, прво ес координате за горе поменута времена.

Проблем код елевације 85° је био још тежи Очигледно је да су обе ракете имале нешравилну путању. Због тога су коришћени подаци за ову елевацију из предходних испитивања [10]

На основу експерименталних података за елевацију 65° и података добијених на горе поменути начин, одређени су коефициенти полинома за једначине 1 и 2.

За остале елевације, криве су добијене интерполацијом, пошто експеримент није и њих обухватио (слика 4).

У табели 4, су дате хоризонталне проје-кције (дужине) трага засејавања (dX) и његова дебљина (dZ), за случај фиксног темпирања.

абела 4. Дужина и дебљина тирага засејавањь ракейе ППІ-б

Ел.	Темпирање 14 секунии	
	$\mathrm{dXX}[\mathrm{m}]$	$\mathrm{dZ}[\mathrm{m}]$
45°	2609	1076
50°	2469	828
55°	2291	626
60°	2077	472
65°	1825	528
70°	1536	647
75°	1210	767
80°	846	882
85°	446	991

темпирање, код свих елевација је мања од 1200 ђени су коефициенти полинома за једначине 1 метара, па је за ову ракету његова употреба оправдана.

7. PAKETA CAKO-6

За добијање једначина корићени су подаци добијени у експериментаном испитивању [5]. Тада су снимљене путање 17 ракета:

Елевација	Број ракета
45°	3
65°	11
85°	3

Коришћени су подаци за 15 ракета док су подаци о две ракете изистављени (по једна за елевације 45° и 85°), пошто су имале веома неправилне путање лета. На основу тих

и 2.

За остале елевације, криве су добијене интерполацијом, пошто експеримент није и њих обухватио (слика 5).
у табели 5, су дате хоризонталне пројекције (дужине) трага засејавања (dX) и његов дебљина (dZ), за случај фиксног темпирања
Табела 5. Дужина и дебљина $\overline{\text { йрайа засејава-ња }}$ ракейе САКО-6

Ел.	Темпирање 16 секунии	
	$\mathrm{dX}[\mathrm{m}]$	$\mathrm{dZ}[\mathrm{m}]$
45°	1372	454
50°	1200	381
55°	1046	317
60°	908	263
65°	786	218
70°	681	228
75°	593	275
80°	521	325
85°	466	376

Дебљина засејаног слоја, за фиксно темпирање, код свих елевација је мања од 1200 метара, па је за ову ракету његова употреба оправдана.

7. ЗАКЉУЧАК

 рименталне провере балистичких путања, због није добра, али конструктивна решења код ње $\begin{array}{ll}\text { провере квалитета и због техничких измена } & \text { (нема темпирник), не омогућавају употребу } \\ \text { које произвођач уради. } & \text { променъивог темпирања. Тражити од прои- }\end{array}$ које произвођач уради.Провера балистичких путања се мора вршити са већим бројем ракета него до сада, као би добијене једначине биле поузданије. Проверу бавити на минимално четири елевације, како би обио биле иснтиване етевачиј 45° би обавезно биле испитиване елевације 45° и 85°, а за међуелевације би могле бити узете 55° и 70°.
Препоручује се употреба променљивог темпирања код ракете TT-10, због боље искоришћености реагенса

Препоручује се употреба променљивог темпирања код ракете ПП-8, због боље искоришћености реагенса

променљивог темпирања. Тражити од произвођача да омогућити променљиво те
због боље искоришћености реагенса.

Употреба фиксног темпирања код ракете ПП6 је оправдана.

Употреба фиксног темпирања код ракете САКО-6 је оправдана. Потребно је продужити време исејавања реагенса, како би се добио у смислу методологоје дејства а не на физички домет ракете).

На основу добијених једначина балистичких кривих, написан је програма Елевачије, као помоћно средство за одређивање елевација у оперативном раду.

8. ЛИTEPAPYPA

ТОЦ КоВ, Извештај о балистичком испитивању противградних ракета ТТ-10 произвођача 19. дещембар, Подгорица
ТОЦ КоВ, Извештај о балистичком испитивању противградних ракета ПП-8 произвођача Полиесйер, Прибој
ТОЦ КоВ, Извештај о балистичком испитивању противградних ракета МТТ9СР произвођача Trayal, Крушевац
ТОЦ КоВ, Извештај о балистичком испитивању противградних ракета ПП-6 произвођача Полиесешер, Прибој
ТОЦ КоВ, Извештај о балистичком испитивању противградних ракета САКО-6М. 84 произвођача Сава Ковачевић, Тиват
Вукадиновић др С.В., Елементи теорије вероватноће и математичке статистике (6. издање), Привредни преглед, Београд, 1990.
Стојановић др С.М. Математичка статистика, Научна књига, Београд, 1980
Герасимович А.И., Матвеева А.И. Матеметическаја статистика, Висшеишаја школа, Минск, 1978. Мак-Кракен Д., Дорн. У. Численније методи и программирование на фортране, Мир, Москва, 1977.

Булић Иван, Избор оптималног темпирања за све типове противградних ракета, РХМЗ Србије, Београд, 1993.
Јовановић Милош, Метеоролошки услови у данима са дејством на градоносне облаке у СР рбији, РМЗ Србије, 1975.
Нађ Јулијана, Инструкција 5/96, Метода радарске идентификације и засејавања једноћелијских, вишећелијских и суперћелијских градоносних процеса, РХМЗ Србије, Београд.
 Јефтић М.; Приказ основних техничкооперативних карактеристика противградих ракета, РХМЗ Србије, Београд, 1986.
Јефтић М.; Анализа балистичких карактеристика ракете ПП-8, РХМЗ Србије, Београд, 1990.
Јефтић М.; Апализа балистичких карактеристика ракета средњег домета (ТГ-5, САКО-6М84 и ПП-6Т), РХМЗ Србије, Београд, 1986.
Војнотехнички институт, Прорачун спољнобалистичких параметара противградне ракете ТГ-10, Београд, 1989.
Ћурић др Млађен, ПРОЈЕКАТ Техничкобалистички и методолошки параметри противградне ракете ТГ-10, ПМФ, Београд, 1989.

ПРОЦЕНА ТЕРМИНА ПОЈАВЕ ГРАДА У ПРИЗЕМЉУ НА ОСНОВУ РАДАРСКИХ ПАРАМЕТАРА

Зоран М. Марковић, дийл. мей.,

Рейублички Хидролейереолоики завод, Кнеза Вииеслава бр. 66 11030 Беойрад, Jуг̄ославија

Abstract
The purpose of this paper is to present the way of calculation of the predicted time when the hail fall on the ground using the maximum radar reflectivity of the cloud cells and to point out the posibilities of their applica tion for the hail suppression activity.

Абс $\bar{u} p а к \bar{u}$

Циъ овойа рада је йриказ начина рачунања йрог̄нозираног̄ времена йојаве г̄рада йри милу на осноу максималне радарске рефлексивносиии облачних ћелија и укаже на мойућносй йримене у сврхе йройивг̄радне заийийе.

Увод

Одбрана од града спроводи се на територији уже Србије око 30 година. У том периоду до лазило је до измена и допуне методологи сходно развоју физике облака, радарске мете орологије, информатике.

Методологија оперативног спровођења одбране од града сацржи елементе поређења ра ране од града садржи елементе поређења ра иих нивоа атмосфере. Градоонасност облачне Һелије се третира у односу на испуњеност критеријума за дејство. Са тог аспекта облаци код којих су радарски параметри испунили крите-ријуме јесу и градоносни. Постоје четир критеријума за дејство: $\mathrm{Z}(\mathrm{dbz})>45$, Hnmax $>\mathrm{H} 0$ $\mathrm{Hvz}>\mathrm{H}-14, \mathrm{Hv}>\mathrm{H}-28$. Поред тога постоји и критеријум за први радарски одраз. Опера тивна пракса је установила постојање јасне правилности између појаве града и испу њености критеријума за дејство за највећи бро облака из којих се град излучио, тако да се може рећи да су критеријуми били испуњени увек када је било града. С друге стране не пос тоји једнозначност када се гледа супрота смер, јер је у пракси регистрован ансамбл облачних ћелија код којих су критеријуми за дејство били испуњени, али који нису дали гра ни као појаву. Овај рад представља покуша належења једно-значности између критеријума за дејство и нојаве града. Она је могућа ако се нагласи утицај прва два критеријума за дејство и уведе време као незаобилазни фактор.

Радарска рефлексивност се лако израчу-нава у условима познате водности и ледности облака не може бити раздвојен на онај који је рефлек-
 каши кише Микрофизика облага у свету је развшје до нивоа где су познати сви пропеси рови се одвјају у облаку Највећа непознаница је утицај сваког појединачног процеса на формиране града Због тога је од велике важности третман сваког појединачног процеса као и његов утицај на промену лепности и водности облака.

У овом раду је задато стање града при тлу и траже се услови, да сходно примењеној микрофизици и познатој радарској рефлексији, до њега дође. Сви параметри који се добијају имају еквивалентан карактер.

Основа овом раду је 1-D временски зави-сан модел градоносног облака чији су аутори Њис нер ет ал., (1972). Радарски податак се третира кроз модел и као продукт се добија еквива зра града сособна да дођу до подлоге Пос тоје оиређене претиоставке woje су уведене тоје одређене претпоставке које су уведене рай

Сматра се да је област максималне радарске рефлексије измерена у свом ночетном стади

уму, односно у моменту када је почела да с уочава у хладном делу облака.
У почетном стадијуму постоји пре свега водени садржај, а прелазак воденог садржаја у ледену фракциіу почиње у моменту регистрације области максималне радарске рефлексије.

у области максималне радарске рефлексије, облачна фракција воде се сматра константном току еквивалентног времена, без обзира коико утиче на промену фракпије леда. Кишна фракција воде се мења и прелази у фракцију леда.

Топьење ледене фракције у области испод нулте изотерме је искоришћено ради задавања еквивалентне радарске рефлексивности града

2. Параметризација микрофизичких процеса

Вода у течном и чврстом стању је класификована у три категорије облачна вода, киша и њима појављују приказане су на слици 1.

Слика 1. Шема йарамеӣризације ми-крофизичких йроцеса
За пречнике кишних капи и зрна града је предпостављено да су расподељени по МаршалПалмеровој расподели

- киша
$n_{R}\left(D_{R}\right)=n_{0 R} \exp \left(-\lambda_{R} D_{R}\right)$
- град
$n_{I}\left(D_{I}\right)=n_{0 I} \exp \left(-\lambda_{I} D_{I}\right)$

где су D_{R} и D_{I} пречници, $n_{0 R}$ и $n_{0 I}$ параметри пресецања и износе $8 џ 10^{-6} \mathrm{~m}^{-4}, 3 щ 10^{-3} \mathrm{~m}^{-4}$, док су λ Р и λ И параметри нагиба и рачунају се на основу познатих односа смеше R и I за кишу и град респективно

$$
\lambda_{R}=\left(\frac{\pi \rho_{w} n_{0 R}}{\rho R}\right)^{0.25} \quad \lambda_{I}=\left(\frac{\pi \rho_{I} n_{o I}}{\rho l}\right)^{0.25}
$$

где су $\rho, \rho_{w} \rho_{I}$ гистине ваздуха воде и града Коначне брзине пада кише и града су дефинисане:
$V_{t}=\frac{a \Gamma(4+b)}{6 \lambda_{R}^{b}}$

$$
U_{t}=\frac{\Gamma(4.5)}{6 \lambda_{I}^{.5}}\left(\frac{4 g \rho_{I}}{3 C_{D} \rho}\right)^{0.5}
$$

где је C_{D} коефицдјент отпора.
Брзина падања појединачног зрна града дата је:
$W_{t}=3.62 \sqrt{D}$
где је D пречник изражен у милиметрима.
2.1. Једначине континуитета

Једначине континуитета за кишу и град су као у оригиналном раду Њиснер ет ал., (1972).

- за кишу
$\rho \frac{\partial R}{\partial t}+\mu_{t} \rho R-\frac{\partial(\rho u R)}{\partial z}=P_{R}$
- за град
$\rho \frac{\partial I}{\partial t}+\mu_{t} \rho I-\frac{\partial(\rho u I)}{\partial z}=P_{I}$
У условима који су дефинисане облашћу максималне радарске рефлексивности друга два сималне радарске рефлексивности друга два интеграције.

2.2. Продукција града

Продукција града у области максималног радиоеха одвија се у режиму сувог раста.

2.2.1. Смрзавање кишних капи

Зрна града могу настати замрзавањем кишних капи. Лабораторијски експерименти показују да се овај процес може симулирати као стохастички. Продукција града механизмом замрзавања кипнни капи дата је као:
$P_{I F}=20 \pi^{2} B^{\prime} n_{0 R} \rho_{w}\left\{\exp \left[A^{\prime}\left(T_{0}-T\right)\right]-1\right\} \lambda_{r}^{-7}$
где је B^{\prime} константа, ρ_{w} густина воде, T_{0} температура топљења леда, T-темпе-ратура ваздуха.

2.2.2. Прирастање

Град се увећава сакупљањем кишше воде и облачне воде и укупан прираштај је дефинисан као сума индивидуалних при-раста за ове две

фракције $P_{I A}=P_{I A R}+P_{\text {IAW }}$ где је прираст града $\quad Z_{i}=\frac{K_{i} n_{o i} \Gamma(7,0)}{\lambda_{i}^{7}} \times 10^{18}\left(\mathrm{~mm}^{6} \mathrm{~m}^{-3}\right)$
од кишне воде дат као:
$P_{L A R}=E_{R F} \pi^{2} \rho_{w} n_{0 R} n_{0 I}\left|U_{t}-V_{i}\right| \times\left(\frac{5}{\lambda_{R}^{6} \lambda_{I}}+\frac{2}{\lambda_{R}^{5} \lambda_{I}^{2}}+\frac{0,5}{\lambda_{R}^{4} \lambda_{I}^{3}}\right)$
а прираст града од облачне воде дат као:
$P_{\text {IAW }}=\frac{\pi n_{0 I} \Gamma(3.5) E_{W F} l_{C W}}{4\left(\lambda_{I}\right)^{3.5}}\left(\frac{4 g \rho_{I}}{3 C_{D} \rho}\right)^{\frac{1}{2}}$
у горњим формулама $E_{R F}, E_{W F}$ су коефицијенти судара и предпоставља се да оба имају вредност један.

Укупна продукција града је:
$P_{I}=P_{I F}+P_{I A R}+P_{I A W}$

2.2.3.Тонљење града

Топљење града је третирано преко топлотног баланса на начин као у раду Њиснер ет ал., (1972).
$P_{I M}=-\frac{2 \pi}{\rho L_{f}}\left(K_{a} T_{c}-L D_{f} \rho \Delta r_{s}\right) h_{0 I} \times$
$\times\left[1.6 \lambda_{I}^{-2}+0.3 \Gamma(2.75) \lambda_{I}^{-2.75} v^{-0.5}\left(\frac{4 g \rho_{I}}{3 C_{D} \rho}\right)^{0.25}\right]-$

$$
-\frac{C_{w}}{L_{f}} T_{c}\left(P_{I A W}+P_{I A R}\right)
$$

У овом раду није укључен задњи члан са десне стране.

2.3. Радарска рефлексивност

Фактор (коефицијент) радарске рефлек сивности је дефинисан као шести степе пречника хидрометеора сумираних по свим хидрометеорима у јединичној запремини.
$Z \equiv \frac{1}{\Delta V} \sum_{i} D_{i}^{6}=\int_{0}^{\infty} N(D, r) D^{6} d D$
у функцији расподеле фактор радарске рефлексивности за кишу и град је дат следећим формулама:

- за кишу
$Z_{R}=\frac{n_{0 R} \Gamma(7,0)}{\lambda_{R}^{7}} \times 10^{18}\left(\mathrm{~mm}^{6} \mathrm{~m}^{-3}\right)$
за град

где је $K_{I}=0.19$ Веза између фактора радарске рефлексије и децибелских вредности регистрованих на десето-сантиметарском радару Мит субисхи РЦ-34А је дата преко следећ једначине
$\log Z=0.1 n+2.5$
где је n децибелска вредност ($d B$) која се добија на основу карактеристика радара а по формули

$$
n=10 \log \frac{P_{r}}{P_{s}}
$$

где је P_{r} осетљивост пријемног дела $[W]$, а P_{s} импулсна снага предајника $[W]$ радара

2.4. Дијагноза поља температура

Поље температуре је дефинисано према параметрима изотермних нивоа у облаку, односно према прогнозираној криви стања. у области испод нулте изотерме, вертикални градијент температуре је
$\gamma=-7^{0} C K m^{-1}$

3. Улазни подаци и продукти

Као улазни подаци користе се параметри изотермних нивоа у облаку и радарски податак који садржи децибелску вредност и висину на којој је регистрован. Као почетна вредност задат је однос смеше града у приземљу. На основу једначине топљења, одреди се еквиваленат фактор радарске рефлексије, односно однос смеше за град на нивоу нулте изотерме, еквивалентан пречник зрна града и еквивалентно време падања града. После тога, на основу радарског податка одређује се однос смеше за кишу, а затим почиње интеграција која траје све док однос смеше за град не буде једнак односу смеше за еквивалентан фактор радарске рефлексије. Период од почетка интеграције до формирања задатог односа смеше града представља еквивалентно време стварања града.
Сабрано са еквивалептним временом падања града дефинише еквивалентно време појаве града у приземљу. У овом раду оно је изражено у минутима

4. Резултати

У табелама бр. 1 и бр. 2 приказано је понашање еквивалентног времена стварања и падања града у два екстремна случаја. У првој табели је вискна нуле изо атмссфре а у табели бр. 2 је вулта взотерма па висини од 5.1 км, што одговара јулским условима. У овим табелама τ_{1} представља еквивалентно време падања града.

Из табела се може видети да је при истим децибелским вредностима и негативним температурама време стварања града који може да дође до подлоге веће ако је нулта изотерма мша. Тако на пример за максималац $2 о$ дв при ззотерме време је краће скоро 9 минута. Исто изоко и еквивалентно време падања града је за непуних 5 мин. краће за нижу нулту изотерму. Из оперативног искуства је позната честа појава суградице у току ащрила и почетком маја из облака који краткотрајно испуњавају критеријуме. Ово исто важи и за области већих надморских висина.

Табела бр. 1 Еквиваленто време стварања града за висину нулте изотерме 2.1 km

$H_{0}=2.1 \mathrm{~km}$ $\tau_{1}=4.75$	20 dB	30 dB	40 dB	50 dB
$2.5 \mathrm{~km}\left(-2.8^{\circ} \mathrm{C}\right)$	31.2	12.3	3.0	<1
$3.5 \mathrm{~km}\left(-9.8^{\circ} \mathrm{C}\right)$	6.2	4.29	<1	<1
$4.5 \mathrm{~km}\left(-16.8^{\circ} \mathrm{C}\right)$	<1	<1	<1	<1

Табела бр. 2 Еквиваленто време стварања града за висину улте изотерме $5.1 \mathrm{kм}$

$H_{0}=5.1 \mathrm{~km}$ $\tau_{1}=9.6$	20 dB	30 dB	40 dB	50 dB
$5.5 \mathrm{~km}\left(-2.8^{\circ} \mathrm{C}\right)$	40.7	14.6	5.9	3.1
$6.5 \mathrm{~km}\left(-9.8^{\circ} \mathrm{C}\right)$	20.6	6.4	1.6	<1
$7.5 \mathrm{~km}\left(-16.8^{\circ} \mathrm{C}\right)$	2.8	<1	<1	<1

у табели бр. 3 је приказано еквивалентно време формирања, падања и појаве града на основу нодатака РЦ "Ваљево" из 1998. године. У првој колони ове табеле су датуми; друга колопа представља бројеве облака из ког је

ошло до појаве града, односно који су испу њавали критеријуме за дејство; трећа колона ермин у ком је облак испунио критеријум (од.), при чему је интеграција вршена на ос нову радарског податка из тог термина; четвртој и петој колони су еквивалентна вре мена падања ($\tau 1$) и стварања града ($\tau 2$); у ко пони 4 је време (Δ т) током кога је разматран облак испуњавао критеријуме за дејство; редшоследњој колони је процењени терм кодони термин када је први пут регистрова рад (или суградица) из овога облака (т рег.)

Облаци на којима су тестирапи резултати с одабрани тако да су у термину испуњења критеријума били на брањеној територији РЦ"Ваљево" као и прва појава града из них Сматра се да је мрежа противградних станица Ц "Ваљево" довољно густа за добијање ввалитетне информације о појави града.

Разматрано је седам облака. Сви су имали спу њене критериуме за дејство. Из 5 облака егистровап град(или суградица) из два није. рад је регистрован код свих облака код који је период испуњених критеријума већи од еквивалентног времена стварања града. Из облака бр. 4 од 4. маја и из облака бр. 1 из 2. јула није регистрован град. Период испуњењ критеријума био је краћи од еквивалентно времена стварања града. Ако се анализирају две задње колоне, види се да је очекивани териин падања града у једном случају био идентичан термину реписсрованог трада, у јед м арй ермина регистрованог града

Статистички узорак од седам облака свакако иије довољан за давање коначног мишљења о квалитету процене градобитности облака, ал мо нана са крмы нализиране случајеве

Гледајући ову табелу са аспекта једнознач ности измеуу испуњеног критеријума и појаве
 ности нои устовом да су критершјуми за дејство сиушени нововно дуго Увобенем вреиена у ритеријуме за дејство, шрактично се брише нссбл обдача код којих су критеријмми испи њени а из којих се не региструје грая ими су гадица. Овај закључак није нов у оперативној пракси, али се на овај начин уводе квантита тивне врепности што даје шову димензију овом закључку.

Табела бр. 3 Еквивалентно време падања, формирања града и процена термина појаве града у приземљу из облака који су мерени на РЦ "Ваљево" у току 1998. Године

Датум	Облак	т под.	$\tau 1$	$\tau 2$	Δ (мин)	т очек.	трег.
25.04 .1998.	7	1433	4,75	2,5	9	1440	1440
04.05 .1998.	4	1105	7,40	10,6	7	1123	1
13.05 .1998.	15	1810	6,60	0,0	1	1817	1820
31.05 .1998.	15	1943	7,10	8,7	12	1959	1958
28.06 .1998.	11	2246	9,00	5.9	27	2301	2259
02.07 .1998.	1	1815	9.9	36.0	2	1901	$/$
28.07 .1998.	22	1253	9,90	5,1	8	1308	1307

5. ЗАКЉУЧЦИ

Третирање радарских параметара из угла успостављена и обратно, ако се уведе време микрофизике облака је скопчно са низом ограничења и неошходних предпоставки као би уошште имало смисла.

Прелиминарни резултати у процени градоопасности облачних Һелија преко еквивалентних параметара делују охрабруууће, али је ипак неопходно да се потврде на довољном броју узорака.

Једнозначност која је уочена на смеру: појава града - иснуњеност критеријума за дејством је

6. ЛИTEPATYPA

Wisner, C.E., H.D. Orville and C. G. Myers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 1160-1181,
Алексиц, Н., 1987. "Анализа Халлет-Моссопове мултипликације у облацима вертикалног развоја",
Радиновиц, Ді.,Костиц А,1997. "Студија радарско меренје у Србији",
Orville, H ., and Kopp,F., Numericau simulation of the life history of a haelstorm
Orville, H., and Kopp,F., Numericau simulation of the life history of a haelstorm,
Curic, M., Janc, D., 1990: Numerical study of the cloud seeding efects, Meteorol. Atmos.Phys. 42, 145-164 Vucinic, Z, 1992, "Glasnik zastite od grada".

Квантитативност у процени градобитности облачних ћелија отвара нове могућности у решавању неких проблема оперативног спровођена одбране од града.

Метод рачуна еквивалентних врености је отворен, па су могуће поправке како микрофизике процеса, тако и проширивање третираних радарских параметара.

ИСПИТИВАЊЕ РЕАГЕНСА У ИЗОТЕРМАЛНОЈ КОМОРИ РЕПУБЛИЧКОГ ХИДРОМЕТЕОРОЛОШКОГ ЗАВОДА СРБИЈЕ

Слободан Голубовић, дийл. меї. Ана Вучина, сииец, физзхем
Рейублички хидромейеоролоики завод Србије, Кнеза Вишеслава 6б, 11030 Беойрад, Јуйославија

Cloud seeding with a reagent to provoke the crystallization is performed at certain heights (isothermal levels) in accordance to the hail suppression methodology. These levels should be seeded by a certain quantity of reagent depending of its activity in a very short time interval. In case the reagent activity is higher, the seeding material quantity is smaller and vice versa. Hydrometeorological Service of Serbia started the reagent testing in isothermal chamber in 1979. At the beginning the tests were performed in Nuclear Institute Boris Kidric in Vinca, Belgrade and in 1983 the Service moved the chamber to its premises to continue the tests.

Абсӣиракй

Засејавање облака реаг̄енсом у циљу изазивања кристиализације у њему врии се на одређеним висинама (изойермалним нивоима), како налаже
 временском инйервалу, убацийи одређену количину реагенса, која зависи од саме
 овог̄ исејавајућег̄ майеријала и обрнуӣо. Исйийивање у комори Рейубличког хидромейиеоролоиког завода йочело је 1979. г̄одине, у ииочейку у Нуклеарном
 комору и исйийивање у њој.

1. ИСТОРИЈСКИ РАЗВОЈ РЕAГEHACA У СРБИЈИ

У историјском развоју квалитета реагенаса везаног за проценат тежинског састава AgJ y термитној смеши, постоји податак да се у некадашњем Совјетском савезу 1970 године користио реагенс са $50 \% \mathrm{AgJ}$. Анализама ј утврђено, да је од овако високог процента Ag

у пиротехничкој смеши било искоришћено само 30 до $50 \% \mathrm{AgJ}$, а остатак био је чист губитак (није произвео активна језгра кристализације у облаку). По рецептури Војно техничког института 1971. године израђена је код нас пиротехничка смеша са $50 \% \mathrm{AgJ}$ за

ракету САКО-3 (Прелесник et al. 1984.). Нако тесет година, 1982. године појавио се реагенс ознаком P-32, који је садржао $25 \% \mathrm{AgJ}$. Ист године почела је производња реагенса са ознаком РТГ-10, чија је пиротехничка смеша садржала 20% AgJ (Прелесник et al. 1984.). Полазећи од захтева да одбрана од града штити пољьопривреду од елементарне штити погоде, а при томе мора водити рачуна и о заштити животне средине, заузет је став да проценат AgJ у пиротехничкој смеши не треба да буде већи од 10%. На основу овога од 1984. године проценат AgJ у новијим реагенсима се непрекидно смањује, и износи око 4%, а упоредо са тим води се рачуна да активност новијих пиротехничких смеша буде што је могуће већа. Ово је велики помак у погледу економске исплативости реагенаса који се данас щроизводе, а такође и помак у погледу заштите животне средине и очувања човекове околине.

2. МЕРЕЊЕ У КОМОРИ

Републички хидрометеоролшки завод Србије, као носилац посла одбране од града, у својој изотермалној комори врши испитивање реагенса разних произвођача већ више од двадесет година. Методологија испитивања није иста за нове реагенсе и оне који су већ дуже година у употреби. Зато се врше две врсте испитивања: атестно и контролно. Атесно исва нове новх рецену аурагеса

 реагес) па до $18^{\circ} \mathrm{C}$ ног се контролно мерене реагенса) па до $-18{ }^{\circ} \mathrm{C}$, док се контролно мерење активности врши у мноо уем температурном интервалу од -8 до 12 С. Како за контролно
 ахтивнасти то се најчеиће контролно мерене ррши на темшератури од $-10^{\circ} \mathrm{C}$ Наведена мерена овииају се но утврђеном ностну у мрева од уауусим уахтвом хирометеоролошке службе Србије

Комора је спремна за детекцију када је постигнута задата температура и када се спонтано појави кристал у меласи. Чим се појавио кристал врши се спаљивање и у што краћем времену убацивање узорка аеросола у комору. Пре убацивања узорка врши се влажење, а затим фотографисање, односно излучили на дну коморе. На крају се на основу пребројаних кристала израчунава активност пиротехничке смеше по формули

$$
E=\frac{N_{k} \cdot V_{1} \cdot V_{2} \cdot X}{m \cdot v_{1} \cdot v_{2}}
$$

\qquad
N_{k} - запремине кеса за спаљивање и разблаживањ узорака пиротехничке смеше, X-однос површине дна коморе и посуде са меласом, m маса спаљеног узорка, \mathbf{v}_{1} и \mathbf{v}_{2} - запремине шприцева за узимање узорака (Хутер, Ћурић 1981.).

У изотермалној комори Републичко хидрометеоролошког завода Србије углавном се врше мерења активности хетерогени нуклеаната на бази сребро-јодида (AgJ), као активне компоненте у зони засејавања конвективне облачности. Подаци добијени мерењем у изотермалној комори служе за боље познавање активности појединих реагенаса. И најбоље израђене коморе у свету не представљају идеално симулиране облачне услове. Оне су приближни показатељ физичко хемијских процеса који се реално одвијају у облаку, при уношењу реагенса и као такве мрамо $\mathbf{~ L x}$ трихватити

3. ОБРАДА ПОДАТАКА

Поступак одређивања активности подразумева квалитетно мерење на изотермалној комори, обраду и анализу података. У процесу мерења важно је обратити пажњу на: континуирано сагоревање пиротехничке смеше, хомогенос аеросола, правовремено убацивање узорака аеросола у прехлађени облак коморе уоректно детектовање оформљених кристала нем поцесу обраде резултата добијених мере апарат. На тај начин добија се најбољ фупкција расподеле која описује распоред случајних узорака добијених мерењем на изотермалној комори.

Атестно испитивање реагенса САКОМ-8 (произвођач Сава Ковачевић- Тиват) показало је да рсагенс има праг ниво акпиности на $\mathrm{I}=$ $3.5^{\circ} \mathrm{C}$ док активност на $\mathrm{T}=-10^{\circ} \mathrm{C}$ износи $6.5^{*} 10^{12}$ честица по граму термитне смеше. На Слиџи 1 приказана је крива ефикасности реагенс САКОМ-89, са функцијом расподеле активно сти датом у облику полинома.

Слика 1. Крива

Контролна мерења врше се само на изатермалној комори покажу задовољавајууу температури $T=-10^{\circ} \mathrm{C}$. За фабричке узорке 1 , II и III (произвођач 19. Децембар- Титоград) испитивање. Контролна мерења се врше и за одређена је средња активност $5^{*} 10^{2}, 6.4^{*} 10^{2}$ и $6.8^{*} 10^{12}$ актив. чест/gоеете, респективно. у реагенсе који су већ у употреби, како би с проверио њихов квалитет

случајевима када резултати испитивања на
4. ЗАКЈУЧАК

Испитивања реагенаса у изотермалној комори реагенси који се користе у противградни Републиэкког хидрометеоролошког завода Србије врше се са циљем оцене активности реагенса. На основу ових испитивања одлучује се о употреби реагенса као пиротехничке смеше у проти-вградним ракетама. Тренутни захтев Службе заштите од града је да 1^{*} акивност реагенса мора бити века од $1^{*} 10^{1}$ актив.чест/ gсееш. Захтева се и што кране време активације реагенса, до $1 \min$ након убацивања аеросола у симулирани облак.

ракетама имају праг активности око $\mathrm{T}=-4^{\circ} \mathrm{C}$
Лабораторијски узорци реагенаса новијег датума, мерени у овој комори, за температуру $10^{\circ} \mathrm{C}$ показууу активност која је близу реда величине 10^{13} честица/ $g_{\text {скеше }}$ Очекује се да ће убрзо овакви реагенси уии у поизводњу чиме не се посин внна ефикасан, нане цага противградних ракета и свакако мање зага ђење животне средине

Хутер М.,Ћурић М.,"Карактеристике хладне коморе Винча",. J. Appl. Meteor. 20, 997. 1981
Прелесник Б.,Ћурић М., Хутер М., Херак Р., Прво Југословенско саветовање о противградној Прелесник Б., Һурић М., Хутер М., Херак Р., Прво Југосл.

РАЗВОЈ ДОМАТИХ ПРОТИВГРАДНИХ РЕАГЕНАСА У СВЕТЛУ ЗАХТЕВА ХИДРОМЕТЕОРОЛОПКОГ ЗАВОДА CPbиJе

С.Бајй, дийл.физичар и *йроф. др. С.Менийус, дийл.физикохемичар

Рейублички хидромейеоролоики завод Србије, Киеза Вишеслава 66, 11030 Беод̄рад и

11000 Београд

Abstract

The first requirements relating to the quality of hail suppressing formulations in the sense of nucleating efficiency, durability, hygroscopicity, buin regime etc., have been formulated by Hydrometeorological efficiency, durabilit, hygroscopicity, burn department of Serbia before 20 years, and they have not been modified up-to-date. In accordance to department of Serbia before 20 years, and they have not been modilied up-to-date. In accordance these requirements the domestic hail suppressing pyrotechnics were developed during the last two decades. The main steps of this development were outlined in this contribution. The correction of require-

 ments relating to hail suppressing formulations was also proposed.
Айсӣракйи

Први захйеви у йойледу квалиииеииа йротиивйрадних реаг̄енаса у смислу нуклеационе ефикасносииии, иирајносиии, хийроскойносйии, режима горена ийо. били су формулисани од сииране Хидромейиеоролоикой завода Србије йре двадесей пйдина и нису модификовани до данас. У складу са овим захйевима одвија се развој домаћих йроиивйрадних реаг̄енаса йоследъе две
 иредложена и корекиија захщева који се односе на иройивградне реагенсе.

1. Увод
(развој кемијских средсииава за уииицјј на време до 1980-иие.)
Могућност вештачке нуклеације атмосфе-рске и био је незнатно измењена варијанта руског влаге помоћу сребро јодида објавио је Вонегут реагенса публикованог 1962.године
у својим радовима из 1947. и 1949. године, што је у свету изазвало буран развој хемијских средстава за утицај на временске услове. Мада се вештачка нуклеација атмосферске влаге у свету подједнако примењује у сврхе изизивања кише као и за одбрану од града, а у извесној мери и за отклањање магле, код нас се овај феномен користи поред у сврхе заштите од града, и за растурање прехлађене магли (са течним пропаном)

Први противградни реагенс који је ушао у масовну употребу у Србији 1971 године на препоруку Војнотехничког института у Београду имао је следећи састав
50% сребројодид
$10,5 \%$ фенолформалдехидна смола
37,5\% амонијумперхлорат
2% феросилицијум

Према меренима која су захтев РХМЗ Срема мерењима која су на захтев РХМЗ облака академије наука Чехословачке, овај реагенс је на $-10^{\circ} \mathrm{C}$ давао око $2-2,45 * 10^{11}$ актив них језгара нуклеације по окаму реагенса.
У периоду 1971-1978. дошло је у свету до значајних нових сазнања о могућностима повеһања искоришћења скупог сребројодида

2. ТА САЗНАЊА СЕ УКРАТКО САДРЖЕ У

СЛЕДЕТЕМ:

а) Показано је да присуство адитива из реда ал калних јодида и амонијум јодида у генераторима аеросола сребројодида на бази ацетон ских раствора битно повећава број активни честида аеросола
б)Показано је да присуство алкалних јодида у чврстим пиротехничким смесама на бази сребројодида такође знатно повећава искоришћење сребројодида у овим смесама. Бељајев и др. су публиковали чврсту пиротехничку формулацију (силверспаре) са само 2% сребројодида и 24% калијум јодида са врло високим искоришћењем сребро јодида.
в)Вонегут је објавио могућност повећања нуклеационе ефикасности сребројодида модификацијом димензија елементарне ћелије кристала сребројодида

\% сребројодида, до 1976, и ТВ-1 са 65-78 \% сребројодата, после 1976.

Детаљан опис састава и активости ових реа генаса може се наћи у раду Р.Сакса и сарадика. Слика 1 приказује актуелно стање у свет о-тих у погледу активности течних чврстих формулација противградних реагенаса

2. ИНИЦИЈАТИВА РЕПУБЛИЧКОГ ХИДРОМЕТЕОРОЛОШКОГ ЗАВОДА
 СРБИЈЕ

Реагенси Olin i TB-1, мада су и данас присутни на америчком тржишту, због малог степена искоришћења сребројодида, нису деловали стимулативно на развој домаћих истраживања Међутим, на бази искустава руских аутора, из којих је произилазило да је домака формула ција противградног реагенса постала нерационална, а и због најава могућих еколошких тослепица претераног расипања сребројодида, аугуста 1978 године Хидрометеоролошки заоди рретуоне Југославије усвојили су преводи пру за Јавој новог реагенсана, на бази коих је Републички Хидрометеоролошки завод их је Републички Хидрометеоролотки захтеве (аутори А.Опра, дипл. Метеоролог и Милошевић, дипा физикохемичар) чшја се суштина изражава кроз следеће ставке:

1. Минимална активност: 10^{12} активних честица по граму реагенса на $-10^{\circ} \mathrm{C}$
2. Средњи пречник језгара кристализације у интервалу $10^{-5}-10^{-6} \mathrm{~cm}$,
3.Сам реагенс и продукти сагоревањја морају бити нетоксични
3. Сагоревање реагенса треба да буде равномерно и потпуно
Слика 1. *Број активних језгара по граму пиротехничке смесе у функцпји температуре. 1
 зује актдвност домаћег реагенса из 1970.

[^1]5.Реагенс мора бити нехигросконан 6.Сировине за израду реагенса морају бити приступачне, и по могућству домаћег порекла
7. Реагенс мора бити погодан за уградњу у постојећу конструкцију противградне ракете.
8. Реагенс мора да буде безбедан за произ водњу, уградњу у ракете и складиштење.
9. Реагенс мора бити стабилних и не промењивих карактеристика током 4 године складиштења ракета у пољским условима.

РХМЗ Србије упутио је исте године позив ком петентним институцијама да се прихват израде новог реагенса, уз додатну препоруку

да учешће активне супстанце, сребро јодида треба спустити до 20%. На овај позив пок ренута су истраживања нових формулациј противградних реагенаса у Институту за нуклеарне науке у Винчи и Институту за физичку хемију Природно математичког факултета у Београду (сада Факултет за физичку хемпју). Истраживања су ограничана на чврсте пиротенротияра заштите базврая на засејаваи бдака шомоћу ракета Паралелно са развоје багенаса тенао је и развој методоногије меагенаса текао је и развој

3. НОВЕ ФОРМУЛАЦИЈЕ

Из прегледа литературе о активности противградних реагенаса могло се закључити а реагенси са високим садржајем сребројодида углавном показују мали степен искоришћења сребројодида, који се може донекле повећати разблажењем паре сребројодида у процесу сорења реагенса, тј. спаливањем реагенса у брзој струји ваздуха. Из тога се могло закључити да ће смањење процентног садржаја искоришћења, јер би се пара сребројодида тиме ефикасније разблаживала у гасовитим продуктима сагоревања реагенса

Надаље, могло се закључити да комбинација слабо хигроскопног сребро јодида (који углавном дејствује спорим, контактном механизмом нуклеације, директним сударима са капљицама воде), и врло хигроскопног алкалног јодида потпомаже брзину нуклеације тако што хигроскопни део активне честице апсорбује влагу и формира капьицу, а сребројодид је замрзава (механизам депозиција-замрзавање). Овај процес нуклеације је знатно бржи јер се базира на дифузији молекула водене наре, која је далеко бржа од брзине дифузије кашљица воде и колоидног сребројодида. С обзиром да према фазним дијаграмима ${ }^{(13)}$, сребројодид са алкалним јодидима гради нова, кристалографски дефинисана, једми ся, мово се очекиати да димензија елементарне ћелије сребројодида, међутим, тај ефекат се вероватно могао остварити и другим алитивима. Из овог је било јасно да је истраживачку активност са циљем повећања искоришћена среброіолида требало усмерити ка:

1. ефекту разблажења паре сребројодида гасовитим продуктима сагоревања реагепса
. додацима хигроскопних компонепти - алкалних јодида,
2. додацима који модификују димензије елементарне ћелије сребројодида и тиме повећавају вероватноћу појављивања структуре која најефиксније делује на формирање нуклеуса леда.
Институт Винча је релативно брзо, 1981, а затим 1984. пласирао две економичније форму-Р-32 И ВТГ-10 Прва реаменам јави у Савезном заводу за иттелестуалы сво јину умала је слади саста
25% сребројодида
25\% сребројодида
29% амонијум перхлората
24 \% калијум хлората
14 \% фенолформалдехидне смоле
1% угља у праху
Ова формулација је по саставу и перформансама била слична формулацији под шифром Hailless ${ }^{(10)}$ франдуског произвођача Societe Lacroix, а коришћена је до 1989. у ракетама Ремонтног завода Сава Ковачевић у Тивту. Формулација ВТГ-10 садржала је 15% сребројодида а коришћена је од стране произвођача противградних ракета 19 Деңембар у Подгорици. Криве активност-температура за ове реагенсе објављени су у склону конгресно саопштења ${ }^{(14)}$. Може се предпоставити да j смањење садржаја сребројодида остварено на рачун новећања садржаја алкалних јодида, но аналогији са саставом том принципу је на Институту за физичку хемију нађена формула-
пија са 10% сребројодида, аутор С.Ментус дија са 10% сребројодида, аутор С.Ментус
коју је од 1985 . применивао Теас-Темко у коју је од 1985. примењивао Теас-Темко у саставу Макпетрол-Скопје. На сличним принпипима направљена је нова формулација са 10
$\%$ среброіодида којом је 1989 у Ремонтом за\% сребројодида којом је 1989 у Ремонтном за

Увођење великог процента хигроскопних ал калних јодида у формулације противградних денония смеса донело је велике због ситне гранулације и стога велике спешифичше површине сакушљале велике количине влаге у пропесу складиштена формирања смесе. Тако је у периоду 1985-1996 МДД Полиестар кори-стио властиту врло хигроскопну формулацију (аутор 3.Мишуровић дипл.физ.хем) која је имала проблеме са ре димл.физхем) која је имала проблеме са ре продуктивношћу основних карактеристика зацију, а смесу, ако садржи металне адитиве за подршку горења чини интерно хемијски нестабилном због брзе корозије металних адитива Стога је на Факултету за физичку хемију раз-

вијена формулација са нехигроскопним ком нлексним солима, из којих се неопходне хигроскопне компоненте формирају тек у процесу горења и са 8% сребројодида (аутор С.Ментус) Оваква смеса је отклонила све тешкоће код складиштења компоненти и хомогенизације пиротехничке смесе, и као таква може да садржи и металне примесе без опасности од њихове корозије. Ова смеса је од 1996-те у употреби у погону за производњу противградних ракета МдД Полиестар у Прибоју. С обзиром да МАg $_{4} \mathrm{I}_{5}\left(\mathrm{M}_{\text {- }} \mathrm{NH}_{4}, \mathrm{~K}\right.$, Na) какве се разви јају у комплексне соли процесу горења, захьа јујући високој покретьивости сребровог кат јона, спадају у високоровост овог реагенса мриисана зе, зог присуства хигроскошних и других аит, јва још и порасту статистичие рушие ове кристане модифиташије која за хтера мивмалну енергхју активачије за фор лиране критичног нуклеуса деда. За сада се активност овог реагенса у пракси не остварује у максималној мери из разлога што режим горења мора да се прилагоди тренутно коришћеној конструкцији и издржљивости ген ератора аеросола.

Слика 2. Преглед развоја активности домаћих
тврстих пиротехннчких смеса за противградх одбрану у периоду 1980 до данас. 1-P-32, 2-ВТГ $10^{(14)}$ 3-MC-10,(атест PXM3C), 4-CKM (атест

PXMЗС) 5- реагенс полиестра од $1996^{\text {¹8 }}$ (атест Colorado State University)
Важно је напоменути да су домаће формула ција противградних реагенаса од 1980 до данас биле равноправне или водеће у светским размерама, и да нема података да су степени искоришћења сребро јодида и активности ре соле, их година древазиђене ои стране оостаних аутора Посебно је вредшо истани
 које садрже релативно високе проденте среброіодида, $8-10 \%$, достигнут степен икоришћена који се иначе постиже само са апетонским растворима са свега $1-2 \%$ сребројодида као и да нове пиротехничке формулапије по ефикасности, за област температура виших од $-12^{\circ} \mathrm{C}$ знатно превазилазе теоријски предвиђени максимум ефикасности по Флечеру (Сл.2).

Поређењем активности полазног домаћег реагенса из 1971 (испрекидана крива на слици 1) и најактивније верзије (крива 5 на слици 2) на температури $-10^{\circ} \mathrm{C}$, види се да је захваљујући иницијативи Хидрометеороло-шког завода Србије из 1978 и истраживањима домаћих аутора у 15 -тогодишњем периоду дошло до пораста степена искоришнења сребро јодида у иротивградним пиротехпичким смесама за 25 1000 пута, зависно од типа реагенса. То значи да ракете иако данас носе у просеку 5 пута мању масу сребројодида, имају 5-200 пута већу ефикасност.
Искуства у истраживањима противградних реагенаса су указала да захтеви Републичког хи-дрометеоролочког завода, формулисани 1978, садрже неке непотребне ставке, а да су у погледу захтеване активности превазидјени. Намм, за бу д мерерва $10^{-5}-10^{-6}$ цм, који аероватно уроистиче из торије хетерогене вуклеације Флечера ${ }^{(19)}$ је непотребан, с обзиром да је модификованем механизма нуктеапије (препаз са нехигроскошних на хигроскопне аеросодове) ова теорија непримењива. Надаље агтев да реагенс на $-10^{\circ} \mathrm{C}$ има активност од захмане 10^{12} активних честица по граму широтехничке смесе је такође превазиђен, јер савтехнияке смесе је такоде превазияен, јер савремене формулације, према слици 2 , прених тешкоћа у производњи (на пр. високих захтева за хомогеношну смесе и енергичним сагоревањем за достизањје максималних активности, насупрот механичкој издржљивости ракетног генератора аеросола) овај захтев би могао да се за сада задржи на цифри $4-5 * 10^{12}$.

4. ЛИTEPATYРА

B.Vonnegut, J. Appl. Phys., 18, 593 (1947)
B.Vonnegut, Chem.Rev., 44, 277 (1949)
М.И. Аксенов, И. И. Вернидуб, А.И.Картсивадзе, А. М. Окудзава, Н.О.Плауде, АН Грузинкои ССР, Трудй Инст.Геофизики, 20, 197 (1962)
Ф.Анйж, Извештај Института за физику облака АН Чехословачке, Праг, ФО-199/1972
J.A.Donnan, D.N.Blair, W.G.Finnegan and P.St. Amand, J.Wea.Modification, 2, 155 (1970)
D.N.Blair, B.L.Davis and A.S.Dennis, J.appl.Meteor., 6,1012(1973)
L.A.Burkardt, W.G.Finnegan, P.St.Amand and C.D.Stanifer, US Pat.No 3,915,379, Oct.28, 1975
С.П.Бељајев Йо.Дјаченко, Н.С.Ким, Н.Матвеев и А. И. Сидоров, Метеор.Гидрол., 4,98 (1978)
B.Vonnegut, H.Chessin and R.E.Passarelli,Jr., US Pat.No 3,877,642, April 1975
B.Federer and A.Schneider, J.Appl.Meteor., 20, 997 (1981)
R.I.Sax, D.M.Garvey and F.P.Parungo, J.Appl.Meteor., 18, 195 (1979)
C.Рајшић, Прво Југословенско саветовање о противградној заштити и осталим видовима вештачког утицаја на време, Тара 1984
J.N.Bradley and P.D.Greene, Trans.Faraday.Soc., 63, 424 (1967)
Б.Прелесник, М.Ћурчић, М.Хутер И Р.Херак, Прво Југословенско саветовање о противградној зштити и другим видовима утицаја на време, Тара 1984, Књига радова, стр. 147
С.Ментус, Постушак за производњу противградног реагенса, заштићен патент, Савезни завод за натенте, ПП 2492/83
S.Mentus, US.Pat.No.07/893,284 Mexico Pat.No. 922780
С. Ментус, техничкотехнолошка документација за производњупротивградног реагенса СКМ, техничко унапредјепје у Ремонтном заводу Сава Ковачевић, Тиват, 1989
С.Ментус, Нова пиротехничка смеса за противградну заштиту и друге видове утицаја на време, техничко унапређење у МДД Полиестар, Прибој, 1996
N.H.Fletcher, J.Chem.Phys., 29,572 (1958)

РЕКОНСТРУКЦИЈА ПОПЛАВНОГ ТАЛАСА

У СЛИВУ РЕКЕ ГРУЖЕ У ТОКУ МАЈА 1996. ГОДИНЕ И

 ПРЕДЛОГ МЕРА ОДБРАНЕ ОД ЕКСТРЕМНИХ ПАДАВИНА НА СЈИВУЗорица Барбароша, дийл.инж, Зоран Вучинић, дийл.мей.
Мр. Драг̄ан Јанковић, дийл.инж. и Бранислава Кайор, дийл.инж.
Рейублички хидромейеоролошки завод Рейублике Србије, Кнеза Вииеслава 66, 11030 Беойрад, Југ̄ославија

Abstract

The paper contains a reconstruction of the flood wave water yield volume to the "GRUŽA" reservoir. The flood wave reconstruction was used to test the flood wave volume forekast model coming to the Gruža reservoir in order to make its efficiency evaluation.
The paper also gives some proposed measures to bi taken in case of extreme rainfall over the catchment.
У раду је урабена реконсйрукиија зайремине дойокаййийиавног̆ йаласа и нег̄ова йройайачија кроз акушуаациу "ГРУЖА"
Реконсиирукција йойлавной ииаласа је искориићена за йесииирање "Пройносииичког модела зайремине дойока йойлавной ииаласа у акумупициуу ГРУЖА ", ради оцене нјёове ефикасносийи, Дай је йредлог мера за йойребе одбране од ексииремник йадавина на сливу:

УВОД

Појава наглих великих вода на мањим сливовима је у летњим месецима најчешће последица јаких конвективних киша.

При наиласку наглих поплава неопходно је да се реконструише поплавни талас, при чему најделикатнији задатак представља прорачу вршног протока.

- Кише које су пале у току 15.05 .1996 . године на читавом сливу реке Груже, локално и обилније, условиле су веће порасте водо стаја на реци Гружи и њеним притокама.
- Доток воде са непосредног слива низводно од акумулације и режим рада акумулације "Гружа" условили су формирање већег поплавног таласа на доњем току реке Груже.

Карактеристике слива
Река Гружа је лева притока Западпе Мораве Извире на јужним падинама планине Рудник, а

у Западну Мораву се улива у близини села Чукојевац источно од Краљева, (прегледна карта слива реке Груже, Слика 1.). Највиша кота слива налази се на надморској висини од 1098 m.n.m., кота извора реке Гружа је на 560 m.n.m., ушће је на коти $182 \mathrm{~m} . \mathrm{n} . \mathrm{m}$., површина слива износи $615.6 \mathrm{~km}^{2}$.
Лучна брана подигнута у профилу "Туцачки Напе" површина слива акумулације "ГРУЖА" износи $286 \mathrm{~km}^{2}$.

Основне карактеристике акумулације "Груже"
Изградњом бране на реци Гружи у профилу Туцачки Напер формиран је акуму
лациони базен комплексне водопривредне ва мене следећих парцијалних запремина и кота: - У купна запремина акумулације је 64.6x $10^{6} \mathrm{~m}^{3}$, што одговара коти прелива $270 \mathrm{~m} . \mathrm{n} . \mathrm{m}$ Запремина мртвог простора је $8.5 \times 10^{6} \mathrm{~m}^{3}$, што

одговара коти минималног радног нивоа 258 m.n.m. Запремина корисног простора за изравњање вода за потребе система за водоснабдевање је 48.4×1. Овај користан прос тор ноа $258 \mathrm{~m} . \mathrm{n} . \mathrm{m}$. и коте нормалног радног

Слика 1. Прегледна карта слива реке Груже, са падавинским станицама

Анализа хидролошке ситуације

Хидролошка станица Губеревац на реци Гружи није укључена у извештајну хидролошку мрежу, па се са исте не располаже подацима у реалном времену. Станица није опремљена

лимниграфом, али су у току 16 и 17 маја 1996 године вршена ванредна осматрања водостаја на основу којих је реконструисан талас (Слика

Слика 2.
На хидролошкој станици Губеревац до 15 маја водостаји су били у стагнацији. У току 15 и 16 маја водостаји су били у већем порасту. Bpx таласа осмотрен је 16 маја у 19 часова при водолају 219 cm ст. Амплитуда пораста изноила је 219 cm . $\quad 37.1 \mathrm{~m}^{3} / \mathrm{s}$. Осмотрени одоло-
 стајје за 24 ст вог ол израдне бране "ГРУЖА" Водостаји су били у опадању до 20 маја а затим доново у дорасту за 91 cm . После маја, а зодосты су бии у стагашји до 29 маја ала је уследило опадање На ниво водостаја код хидроноше станице Губеревая има утицај режим рада акумулације "ГРУЖА".

Анализа рада акумулације"Гружа"
Извештај о управљању акумулацијом "Гружа" у одбрани од понлава за период од 1.01. - 01.06.1996. године, помогао је да се урада рековарија кроз акумулачкју "Гружа" гова пропагација кроз акумлациу Тружа Груже у тову меседа априла 1996 рокве Груже у оку м утиај на пунене године имале су лације.
обзиром да су падавине које су пале на слив Груже низводно од бране већ изазва-ле изливање воде из корита реке Груже, ценећи бране није се пристушило испуштању воде из акумулације преко те-мељних испуста.

Сталне пщусковите падавине погоршавају хидролошку ситуацију како узводно тако и низводно од бране.

Да се не би повећао обим понлава низво-дно од љране и испуста. љних испуста.

мулафиони простор до коте прелива бране $270.00 \mathrm{~m} . \mathrm{n} . \mathrm{m}$., и преко три преливна поља на брани у 5 часова и 15 минута, 16 маја почело је преливање воде.

Низводно подручје од бране пре него што је прорадио прелив на брани било је поплављено на 2 km од бране због изливања реке Груже и притока буичног карактера.

У 8 часова и 40 минута приступило се испуштању воде преко темељних иснуста да би се успоставила евакуација воде из доњих слојева акумулације и успоставио режим испуштања сагласно елаборату за управљаве акумулацијом.

- Запремина воде која је дотекла у акумулацију за 22 часа, $W=4600000 \mathrm{~m}^{3}$, испунила је преостали резервисани простор за прихватање поплавног таласа
- Максимални успор од 270.20 m.n.m. достигнут је 16 маја 1996. године у 13 часова када је брана испуштала преко темељних ис уста $Q=3.3 \mathrm{~m}^{3} / \mathrm{s}$, а испуст за биолошки минимум $Q=0.1 \mathrm{~m}^{3} / \mathrm{s}$, преко прелива је иреливало $Q=14.14 \mathrm{~m}^{3} / \mathrm{s}$ што укушн износи Quk $=17.54 \mathrm{~m} / \mathrm{s}$, протицај који је хидролошке станище Губеревап која се налази низводно од акумулације.
- Укупна запремина воде која је дотекла Ууппа запремина воде која је дотекла у
акумулацију за 36 часа $W=5863600 \mathrm{~m}^{3}$ $\mathrm{Pe}=20.5 \mathrm{~mm}, \mathrm{Qmax}^{2}=90,5 \mathrm{~m}^{3} / \mathrm{s}$.

Модел за краткорочну прогнозу запремине поплавног таласа који дотиче у акумулацију "Гружа"

Модел је урађен у "Одељењу за биланс и хидролошке прогнозе" Одговорни обрађивач је Мр. Драган Јашковић, дишл.инж., обрађивач је Бранислава Капор, дипл.инж. и група сарадника.

- Основна пдеја овог рада јесте да се оцени могућност тестирања модела који би давао ирогнозу запремине воде која ће дотећи у акумулацију, као и динамику дотицаја.
- Слив реке Груже до профила акумулације је релативно мали, процес формирања таласа великих вода на њему одиграва се веома брзо. То се нарочито односи на доток воде од интензивних киша, тако да се овај аспект проблема и разматра у раду прорачун слоја (Pe) ефективних падавина у реалном времену,

Прогностички модел се састоји од две компо ненте:

Прогностички модел слоја отицања (нето кише) $\mathrm{Pe}=\mathrm{f}$ ($\mathrm{P}, \mathrm{IPP}, \mathrm{Tk}, \mathrm{Ns}$), како зависност није линеарна а и собзиром на природу везе између параметара веома је тешко да се она представља у аналитичком облику, па се зато овде користи графички поступак нелинеарне коакспјалне корелације (Слика 3.)

- И јединични хидрограм који даје расподелу протока (запремину) у времену. Осредњавањем јединичних хидрограма добијен је јединични хидрограм за кишу $\mathrm{T}_{\mathrm{k}}=3$ часа. Из овог јединичног хидрограма изведени су јединични хидрограми за кишу трајања Тк $=6$ часова и Тк = 9 часова

На основу ових дијаграма конструисани су дијаграми сумарног дотока (зацремине) воде у акумулацију. Дијаграм сумарног дотока у аку мулацију даје укупан дотох у акумулацију ол слоја (Pe) ефективне кише, по времену, дакле сумарни доток од базног, површинског оти цања. Ово отицање према генетичкој теорији почиње од момента када интензитет кише постаје већи од интензитета инфилтрације. Код јаких киша, практично се може сматрати да отицање почиње када је почела падати киша.

Реконструкција поплавног таласа у про-
филу Тудачки Напер преко модела за
краткорочну прогнозу
Први корак је да се одреде почетни услови, IPP (залихе влаге у земљишту). Урађен је IPP за падавипе које су пале на сливу за период од 1.01-31.05.1996. године

Слика 4. Дијайрам сумарной дойока (зайренине) йойлавног̆ йаласа у акумулацији йо вре мену

> ХС.: Туцачки Найер

Река: Гружа

Слика 5. Реконсйрукција йойлавног й иаласа и њег̄ова йройаӣација кроз акумулацију Гружа у йрофилу Туцачки Найер

Са добијеним подацима IPP, P, Tk, Ns, преко "Графичке коаксијалне корелације" добија се $\mathrm{Pe}=16.3 \mathrm{~mm}$. Преко "Дијаграма сумарног дотока (запремине) поплавног таласа у акумулацију по времену", за Тк $=3$ часа добија се запремина воде која је дотекла за 36 часова W $=5183400 \mathrm{~m}^{3}$.

Нацртан је реконструисан поплавни талас и његова пропагација кроз акумулацију, хидрограми у облику троугла са базом која је дефинисана радом акумулације и у овом раду усваја се $\mathrm{Tb}=36$ часова (Слика 5.).

- $\mathrm{Omak}=79.99 \mathrm{~m}^{3} / \mathrm{s}$, протицај добијен преко модела.
- Qmak $=90.5 \mathrm{~m}^{3} / \mathrm{s}$, протицај добијен преко запремине дотока у акумулацију

Предлог мера заштите слива од ексремних
падавина је мереве падавина радарским осматрањима
На сливу реке Груже не постоје извештајне надавинске станице. Синоптичке станице Краљево и Крагујевац налазе се изван слива и не могу се користити као меродавне.
Модел за краткорочну прогнозу који се тестира у овом раду захтева метеоролошке прогнозе од 1 до 2 дана као и количину падавина јаких интензитета (падавине конвективне облачнос
времену.

Одељење хидролошких про гноза располаже синоптичким прогнозама од $1,2,5$ и виш дана али нема благовремену најаву о конвективним проде сима који изазивају нагл тим и нагле пошаве на мании сливовима и бујицама.

Нагле поплаве носе у себи велики ризик, угрожавају материјална добра и наносе случајевима и губитак људских живота.

у метеоролопком и хидролошком осматрачком тренутно \quad представља недостатак информација о интензитету и количини падавина у реалном времену.

У циљу допуне временске прогнозе и њене ефикасности за потребе Одељења прогнозе вода, ночела је сарадња са Сектором противградне заштите
Од почетка примене радара у метеорологији као један од основних циљева био је и покушај мерења количине падавина радаром. Предност оваквог начина мерења је у добијању просторне расподеле количине падавина, што је од изузетног значаја за хидрологију

Пратећи светске трендове и у Републичком хидрометеоролошком заводу, од прве набавке

метеоролошког радара, почиње се са експериментима за мерење количине падавина радаром. Такође је и набавком метеоролошких радара MITCHUBISHI RC-34A било више покушаја мерења количине падавина. Међутим, сви ови појединачни покушаји дали су неочекивано лоше резултате. Основни разлози за овако лоше резултате, супротно светским искуствима, недостатак пратеће опреме (рачунара повезаних са радаром) и недостатку прецизне методологије
Повезивањем ностојећих радара са рачунарима на радарским центрима Ваљево Ужице и Ниш и коришћењем Мведског сис тема RDS-ERIKSON, добијају се задовоьавајући резултати у погледу процен изнад одређен

Слика 6.

области

Од почетка маја 1998 .године за потребе Оде љења проннозе вода Хидролошког Сектор РХМЗ Србије, ночело се са проценом количине падавина у сливу реке Груже прегледна радарска планшета (Слика 6.).

Региструје се сва радаром видљива облачност са падавинама. Користи се радар радарско центра ужице који је од номеутог слив максимално удаљен 80 km а минимално 60 km, што су оптимална растојања за радарску мроцену количине падавина, а орографија ј

Овај радарски центар опремљен је радаром MITCHUBISHI RC-34A јапанске производње и аутоматизованим системом RDS-ERIKSON. Меморисање слиха PPI пресека обављаће се сваких 5 минута па елевацији од 1 степена. Из тако снимљених слика на основу стандардних алгоритама вршиће се процена количине надавина изнад слива реке Груже.
Овако добијени резултати биће упоређивани са подаццма са падавинских станица у овом сливу,

Заквучак
Са благовременом најавом екстремних испуштање воде из акумулације и благовре падавйна на неком сливу, можемо очекивати ефикасне хидролошке прогнозе.

Модел за краткорочну прогнозу запремине понлавног талас који дотиче у акумулапију "Гружа" користио би се за израну чрогноза запремине дотока у акумулацију по времену
Оваква прогноза обезбедила би контролисано

Литература:

Модел за краткорочну прогнозу запремине поплавног таласа који дотиче у акумулапију "Гружа" РХМЗ Србија "Одељење за биланс и хидролошке прогнозе", Мр. Драган Јанковић, дипл. инж. Бранислава Капор, дипл. инж., и сарадници,1988. година

Студија Радарско мерење падавина у Србији, Др. Ђура Радиновић, дишл. мет. и Мр. Александар Костић, дипл инж.,1997.година.

Извештај о управљању акумулацијом "Гружа" у одбрани од поплава за период од 01.01 1.06.1996. године, Јавно комунално предузеће "Водовод и Канализација" Крагујевац

Анализа хидролошких и метеоролошких услова на сливу реке "Груже" у току маја 1996. године РХМЗ Србије, Одељење за прогнозу вода.

Инжењерска хидрологија, Др. Емир Зеленхасић, дишл.инж.,1991.година
Параметарска хидрологија, Др. Славољуб Јовановић, дипл. инж., 1975.година.

УЛОГА МЕТЕОРОЛОГИЈЕ У СИСТЕМУ ПРЕВЕНЦИЈЕ И ЗАІІТИТЕ ОД ЕЛЕМЕНТАРНИХ НЕПОГОДА И ИНДУСТРИЈСКИХ КАТАСТРОФА (УДЕСА)

мр Владимир Делић, дийл. инй. хем. і̄ех.
Пензионер, Миленйија Пойовића 35/22 11000 Нови Беойрад, Југ̃ославвија
мр Славко Косииоски, дийл. мей.
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 6б, 11030 Беойрад, Југосславија

Abstract

Well known chemical accidents in the world (Bopal, Sandoz, etc.) indicated thet meteorologicala conditions at the time of accudent, beside phisico-chemical and toxicological characteristics, tipe and quantity of released dangerous matters, significantly determine the proportion of the chemical accidents and hazardious consequences to the people and environment.

The paper gives detailed presentation conceming the role of meteorological parameters in chemical accidents in accordance to the forecast of contaminated cloud movement. Suct a forecast can enable the decision makers to make all the neccesery steps and measures in order to decrease the possible consequences.

Айсииракий

Познаиии хемијски удеси у свейу (Бойаи, Сандоз, и др.) су иоказали да меииеоролоики услови у време удеса, иоред физичко-кемиских и шоксиколоиких каракиерисииика, врсие и масе ослобабених ойасних майерија, у значајној мери одређују размере хемијской удеса и иииеииин йоследице йо ъуде иживойну средину.
 кемијски удес у складу са йройнозом расйросииирава конйаминационой облака. Таква йройноза ина значајну упойу у йредузинаньу одг̄оварајубих корака и мера за сманене шииених йоследии на најмань мойу布у меру.

УВОД

Хемијски удеси при производни у хемијској индустрији, складиштењу, транспорту и другим сферама живота, но својим учесталостима, размерама и штетним последицама по људе и животну средину спадају у ред најопаснијх појава савременог доба. Они више нису случајност, него постају правило. Након неколико катастрффалних хемијских удеса (Севасо, Бопал, Мексико Сити, Савдос и др.) и

повећаног интересовања за заштиту животне средине у целини, повећано је и интересовањ рручака различитих специјалности за проб лематику хемијских удеса

интересовање се односи у првом реду на могуће врсте и количине хемијских материја које се могу неконтролисано ослободити при удесу, затим њихове физичко-хемијске и (еко)

токсиколошке карактеристике, могуће повредиве бјекте и локације, околности под којима би могло доћи до хемијског удеса, локалне микрометеоролошке и топографске услове, прогнозу распростирања контаминационог облака, заштита и санација последица као и штетне ефекте по становништво и жив отну средину

Метеоролошки услови у време удеса, поред физичко-хемијских и токсико лошких карактеристика, врсте и масе ослобођених опасних материја, у значајној мери одребују размере хемијског удеса и штетне последице по људе и животну средину. Због тога се у овом раду рриступило детаљном приказу улове маса оролошкия параметара на одковор при ка вас ледицама по људе и животну средину.

ПОЗНАТИ ПРИМЕРИ ХЕМИЈСКИХ УДЕСА И УЛОГА МЕТЕОРОЛОШКИХ ПAPAMETAPA

Сведоци смо последњих година бројних хемиских удеса у индустрији, саобраћају и сл., са великим бројем људских жртава и оштећења здравља, као и несагледивим материјалним, социалним, психолошким и другим штетним последицама

Иако средства јавног информисања ретко описују локалне метеоролошке услове и време хемијског удеса, познат је већи број хемијских удеса у којима су локални метеоролошки услови одиграли значајну улогу, у негативном или позитивном смислу.
Познато је, да се једна од најтежих катастрофа у историји индустријске цивилизације десила у Бопалу, Индија, 3. деңембра 1984. године, када је у фабрици пестицида из подземног резервоара, због пуцања сигурносног вентила, неконтролисано истекло преко 25 тона метил изоцијаната, у времеиском периоду од 1 сата. У трагедији живот је изгубило преко 3.000 , а накнадно још 10.000 љьуди, са трајним послебило затровано преко 100.000 људи. ШІтетне последице су и данас присутне, а многе су пренесене и на потомке затрованих.

Удес се догодио око 2 сата ноћу, између 2 и 3 децембра, када је нагло почео да истиче метил изоцијанат и формира контаминациони облак отровних гасова (изоцијаната, хидроцијанида, фозгена и др.), који је након 5 минута прекрио цео фабрички круг, а у току ноћи још неколико квадратних километара густо насељеног

радничког насеља у граду.
Због веома "ниске" температуре ваздуха за то климатско подручје, свега $14^{\circ} \mathrm{C}$, гас се брзо хладио и постепено спуштао према тлу, а због велике влажности ваздуха и испарљивости изоцијаната од $39^{\circ} \mathrm{C}$ на појединим местима кондензовао и као отровна киша падао на људе и земљу. На несрећу ветар је дувао, при томе усмеравајући контаминациони облак, у правцу густо насељеног радничког насеља.

Контаминациони облак се у доста компактном облику задржавао веома дуго (постоје инфор мације о 56 сати) на угроженом подручју. на јвероватнији разлог је јако стабилно страти фикована атмосфера, са повећаном влажношћу ваздуха током ноћи. Због тога се контаминациони облак ширио ниско изнад тла и повремено враћао у зону удеса.

Овакве, за дисперзију контаминационо облака, неповољне турбулентне и дифузионе карактеристике атмосфере, поред неорганизо ваног узбуњивања и евакуације, највише су допринели изузетно великом броју погинулих и тешко затрованих људи.

Процене указују да и у оваквој катастрофи постоји и срећна околност, јер да је ветар ду вао у супротном правцу, контаминациони облак би захватио још насељенији део града, па би и штетне последице вероватно биле још теже.

У хемијском удесу који се десио 20 . новембр 1984.године у предграђу Мексико Ситија дошло је до експлозије цистерне пропана у складишту једне компаније. Пожар је изазван експлозијом муњевито се ширио под утицајем снажног ветра у правцу складишта оближње петрол компаније, где је проузроковао нов експлозије и пожаре, а затим је уништио десетак блокова кућа у радничкој четврти Последице ове катастрофе, највише због неп овољних метеоролошких услова, су преко 60 мртвих, преко 2.000 људи са тешким тровањем и опекотинама, а око 250.000 људи је остало без крова над главом, што говори о огромно материјалној и другим штетама

Постоје још доста примера хемијских удеса где су тренутни метеоролошки услови доприн ели да штетне последице буду знатно већих размера него што би се очекивало, али постоје и случајеви када су повољни метеоролошки услови знатно умањили размере штетних пос ледица при хемијском удесу.

Maja 1984. године у фабрици ракетног горива у граду Хендерсон, Невада, САД,, дошло је до
 морово, од чега је уништена цела фабрита Сроее брзе евакуачије, која је наређена пост оредог пожара у овом улесу јі шогинуло 9 вуди, а преко 200 је теже и лакше повређено. Постедице овог удеса би биле катастрофане но становние града да јах ветар није контами национи облак, састављен од различитих оксичних материја усмерио према оближној пустињи, где се брзо расформирао.

Други пример се десио у луци Шибеник 23. септембра 1988. године, после поноћи, када се у складишту вештачког ђубрива запалило (уствари топило) око 17.000 тона ђубрива нпк, количине отровних гасова (амониака, нитратних и сумпорних гасова и сл.). Захваљууући брзој и стручној интервенцији ватрогасних јединица и евакуацији око 12.000 људи, али и повољној брзини и смеру ветра према ненасељеном подручју, удес је прошао без људских жртава и са само 40 -так људи са лакшим здраственим проблемима

Интересантан је и најсвежији пример експлозије ауто цистерне са 2.440 кг. амонијака, који се десио 27. маја. 1998. године на зрењанинском путу, недалеко од насеља Борча. Од последица тровања амонијаком двоје људи је умрло (један после неколико дана), седморо је било тешко затрованих и са јаким опекотинама, а 40 је прошло са лакшим опекотинама.

Због потпунијег сагледавања простора и времена кретања контаминационог облака који се формирао непосредно после експлозије и који је изазвао овакве жртве овај случај смо
посебно тртирали, коришћењем математичког такозваног "puff " модела (Turner 1969,EPA 1986, EPA 1987a).

У тренутку експлозије која се догодила нешто после 14 сати дан је био ведар, дувао је ветар из североисточног квадранта са брзином од $1.2 \mathrm{~m} / \mathrm{s}$ атмосфера је била умерено нестабилно стратификована (Пасквил - Тарнерова класа Б) са условима за вертикална конвективна кретања и температура је износила $27.7^{\circ} \mathrm{C}$. Ови метеоролошки условили су омогућили релауз изражено разблаживање отровних гасова и

пара због повољних турбулентних и иифузних карактеристика дела атмосфере у којој се јав ила експлозија амонијака. Треба такође напо менути да су се метеороилошки услов незнатно мењали током нередних три сата када је дошло до потпуног разблаживања кон тами национог облака.

Применом овог модел акоји је специфицирана од стране америчке агенције за заштиту природе (Environmental Protecton Agency-EPA) за потребе праћења екплозивног ширења гасова и пара са наведеним улазним метеоролошким подацима и одговарајућим физичко-хемијским параметрима амонијака (испарљивост, одно смеше и др.) рачунате су просторне и вреноно облака као и промене у простору и времену.

Резултати добијени применом наведено модела, датих у у Табели 2 , показуіу да су људи, који су се нашли током 5 min . од тренутка експлозије унутар контаминационог облака отровних гасова и пара полупречника 215 m , а на растојању од 540 m . северозападно од места испуштања амонијака, примили смртоносну дозу већу од 5325 ppm .

У интервалу од 5 до 16 min од тренутка ек плозије облак се ширио крећући се у правцу оминантног ветра достижући полупречник од 370 m . И поред разблаживање, услед дисперзије проузрокована турбулентним процесима у ат мосфери, концентрације су на растојању до 1328 m од места удеса у правцу ветра још увек биле веће од 300 ppm . Тако да су људи који су били, унутар овог облака, на растојању до 1328 m примили токсичну дозу (Ђурић 1966 WHO 1987).

До потпуног разблаживањеа дошло је након 41 min од тренутка експлозије када се облак по лупречника 572 m нашао на растојању од 2724 m од места удеса. Тек након овог времена су конщентрације биле мање од законом дозвољене - $50 \mathrm{ppm}\left(35 \mathrm{mg} / \mathrm{m}^{3}\right)$.

Ошште анализе досадашњих познатих хемијских удеса указују да се углавном дешавају у ноћним или раним јутарњим сатима (смањен пажња и опрезност радника и обезбеђења), аада су са метеоролошког аспекта углавном ајнеповољнији услови (слаб ветар или без ветра, непостојање вертикалних струјања до повећања штетних последица по животе и здравље људи и животну средину.
3. МЕТЕОРОЛОПКИ ПАРАМЕТРИ КОJИ НАЈВИIIIE УТИЧУ НА ТОК ХЕМИЈСКО УДЕСА

На ток хемијског удеса поред параметара као што су врста, количина физичкохемијске карактеристике, у значајној мери утичу и тренутни микро метеоролошки услови у зония настанка удеса, као и карактеристике и топографија тжа.

Метеоролошки услови у целини утичу на облик и величкну формирања контаминационог облака, иравац, орззну и дубину распростирања (хоризонталног и вертихалног), као и време задржавања концентрација опасних по живот и здравље људи и животну средину на угроженој локацији.

Исто тако, тренутни метеоролошки услови имају значајан утицај уколико дође до изливања већих количина опасних материја на тлу, јер од њих у великој мери зависе постојаност и испарљивост опасне материје, а тиме и присуство штетних концентрација у приземним слојевима ваздуха.

Најзначајнији метеоролошки параметри, који утичу на формирање и понашање контаминационог облака, а тиме и штетне последице по људе и животну средину су:

температура ваздуха и тла правац и брзина ветра,

стабилност ваздуха
-блачност, влажност и падавине
Температуре ваздуха и тла непосредно утичу на агрегатно стање ослобођене опасне материје, њену постојаност и испарљивост, тиме и на густину контаминације и концентрације штетних материја у ваздуху, а посредно на стабилност ваздуха и понашање контаминационог облака (Ђурић 1966).

Високе. температуре повећавају испарљивост изливених течних матрија са тла, а тиме и токсичност у приземним слојевима атмосфере Ниске температуре обезбеђују већу постојаност нарочито течних опасних материја на месту удеса.

Правац, брзина и карактер ветра имају најзначајнији утицаја на понашање неконтролисано ослобођених опасних материја у ваздуху. Смер распростирања и брзина расплињавања контаминационог облака непосредно зависе од турбулентних и других термодинамичких кре-

тања унутар слоја мешања. Интензитет ат мосферске дифузије се значајно повећава са повећањем брзине ветра, условљавајући при томе интензивно разблаживање опасних материја унутар контаминационог облака. Брзина ветра утиче и на испарљивост течне фазе са земљишта. Меуутим, на ове појаве у великој мери утичу природне и вештачк препреке на тлу
Вертикална стабилност приземног слоја ваздуха такође битно утиче на понашање контаминационог облака и време задржавања ви соких концентрација опасних материја вертикално струјање (конвекпија) усговљавају дизање и брже расплињавање контамина ционог облака \mathbf{y} стабилним усговима инверзије, вертикална струјања ваздуха су закемарљива, што доприноси да контаминациони бива, што доприноси да контаминациони пактном облику, са високим конщентрацијама опасних материја, остане у приземном слоју ваздуха испуњавајући и сва удубљења на тлу

Повећана облачност, влажност и падавине су значајне појаве у приземном слоју атмосфере, јер у време удеса утичу на формирање контаминационог облака на различитим висинама од тла, повећање кондензације токсичних гасова, пара и аеросола у облаку а њихов бржи пад на тло. Јаке падавине условљавају смањење концентрације токсичних материја у ваздуху, било због хидролизе или кондензације и пада на земљу. С друге стране слаба киш или измаглица условљавају задржавање токсичних материуа у контаминационом облаку непосредно изнад површине земље у дужем временском периоду.

у случају да дође до хемијског удеса, непово љан или повољан утицај тренутних микроме теоролошких услова на развој хемијског удеса а тиме и штетне последице по животе и здравље људи и животну средину, приказан је на табели 1.

Овде треба истаћи још једну важну чињеницу, да сви наведени метеоролошки услови могу значајно да се промене у веома кратком временском интервалу, али и да се задржи иста временска ситуација и више сати. Ово такође може пресудно да утиче на повећање или смањење штетних последица по луде и жив отну средину

повољности	Метеоролошки параметр							IIIтетне После- дице
	Ba3дyx		Брзина ветра m/s	Правац ветра ${ }^{\circ}{ }^{\circ}$)	$\begin{gathered} \text { Стабил. } \\ \text { по } \\ \text { правцу } \\ \hline \end{gathered}$	Степен облачн.	$\begin{aligned} & \text { Доба } \\ & \text { дана } \end{aligned}$	
	Вертик. стабил.	$\begin{gathered} \text { Teмпер. } \\ { }^{\circ} \mathrm{C} \end{gathered}$						
$\begin{array}{\|c\|} \hline \text { Непово- } \\ \text { вни } \end{array}$	$\begin{gathered} \hline \text { Инвер- } \\ \text { змја } \end{gathered}$	Већа од темпер.тла	2-4	$\begin{gathered} \text { Ка } \\ \text { насељу } \end{gathered}$	Стаби лно	Ведро, делим. облачно Без хйни	Рано јутро илио вече	Знатно повећане
Повољни	Korbeкција	$\begin{array}{\|c\|} \hline \text { Мањеод } \\ \text { темп. } \end{array}$ тла	$\begin{gathered} \text { До } 1 \\ \text { или } \\ \text { преко } 6 \end{gathered}$	Су- прот.од насеља	Јако нестабилно	$\begin{gathered} \text { Ведро } \\ \text { или јака } \\ \text { кмша } \end{gathered}$	$\begin{gathered} \text { Oко под- } \\ \text { нева } \end{gathered}$	Умањене

Табела 1. Утицај метеоролошких услова и њихова повољност.

Досадашња искуства са хемијским удесима указууу да се у већини случајева дешавају у најнеповољнијем времену (ноћу или у раним јутарњим часовима) и са доми-нантним негативним карактеристикама када су у питању микрометеоролошки параметри
4. ЗНАЧАJ МЕРЕЊА И ОСМАТРАЊА МЕТЕОРОЛОШКЕ СИТУАЦИJЕ ЗА УПРАВЉАНЕ ХЕМИЈСКИМ УДЕСОМ

у савременим условима перманентне опасности од настанка хемшіског удеса у индусрији, саобраћају, при стладишттењу хемијски материја и многим другим сфєрама живота
 оролошких параметара постало је саставни део мера управљања хемијским удесом.

Зависно од благовремено измерених параметара и правилне прогнозе мете оролошке ситуације у регионима, где постоји отенцијална опасност од хемијског удеса, за висиће и адекватно спровођење најцелисход нијих мера одговора на удес, евентуалне ева уације и заштите угрожених људи, а тиме бим штетних носледица.

Са становишта превенције, одговора на удес спешне заштите и санације последица, ос новни метеоролошки параметри које би тре бало трајно прикупљати на потенцијално угроженим локалитетима су:

брзина и правац ветра у приземном слоју ваздуха,

температуре тла и ваздуха
степен вертикалне стабилности ваздуха критеријум $\Delta t / v^{2}$),
ваздушни притиса
влажност ваздуха
облачност,
количине падавина
У мрежи метеоролошких станица Србије на 29 места Републички хидрометеоролошки завод врши континуална мерека свих метеоролошких параметара од значаја за управљање хемхјским удесом, како у приземном слоју ваздуха тако и на висинама, а постоји секундарних нолутанятаи одређивања концентрација у приземном слоуу ваздуха

На карти индешлификагдје хазарда /слика 1./, коју је израдило Републнчко Министарство заштите животне средине 1992 . године, приказани су градови са индустријским објектима у којим постоји повећана потенцијална опасност од хемијског удеса. У исту карту су уцр(мерна места), оспособљене за мерење свих потребних микрометеоролошких параметара.

Распоред метеоролошких станица показује да су мерењима обухваћени многи градови и простори на којим је повећана опасност од хемиског удеса.

Међутим, узимајући у обзир важност познавања микрометеоролошких параметара, специфичност појединих локалитета у нашој земљи, карактеристика индустријских постројења и близину насељених места у венини индустријских зона, намеће се потреба формирања истурених метеоролошкх стаца или мерних места у близини ризичнијих фабрика, ради правовременог добијања потребних пода-

ака за потребе управљања хемијским удесом
Поред одговарајућег покривања подручја са овећаним ризиком од хемијског удеса мете ролошким станицама и мерења најважнијих араметара, неопходно је развијати математичке (рачунарске) моделе дисперзи птетних материја, које би се ослобађале при емијским удесима, ради брзих процена прогноза распростирања опасних материја у риземним слојевима атмосфере и обима поенцијалне опасности за различите метеоролошке услове.

Сиика 1. Карииа идениииффккаццје хазарда и меитеоропоиких сйтница у Србији

5. ЗАКЈУУЧЦИ

1. На основу досадашњих искустава са хеми- заузима значајно место.

јским удесима свет је извео јединствен 3. Метеоролошки подаци играју значајну закључак, да нико нјје потпуно заштићен од улогу у управљању ризиком од хемијско хемијског удеса у индустрији, саобраћају, удеса, нарочито у фази превентивних припрема складиштењу опасних материја, како у градо има тако и на отвореним просторима, а штетне
последице могу бити несавладиве и по правилу прелазе оквире фабрике, града чак и региона.
. Потенцијална опасност од хемијског удес на индустријским постројењима, складиштима танспорту и сл., захтева јединствен и мулти исцплинаран приступ у изучавању свих проб ема од значаја за управљање хемијски удесом. Метеоролошка наука при овом
 и одговора на удес, заштити људи и животне средине, а тиме и смањење штетних последица на што је могуће мању меру.
4. Препорука овога рада је да уз свестрано изучавање проблематике хемијских удеса, сви ризичнији индустријски центри у Републици Србији покрију метеоролошким станицама или мерним месгима, на којим би се обављала стална метеоролошка мерења и осматрања, а подаци достављали фабрикама, где постоји повећана опасност од хемијског удеса.
Д. Ђурић, 1966.: Биофизика и Биохемија индустријских отрова, Београд, 1966год. Air quality д. Һури, 1966.. Биофизика и . Regional Publication, Europien series No. 23. Copenhagen Berkovich R H R Olesen, K B Gision, 1986: Modeling air pollution from industrilal and area sources, Bench R., H.R. On Confer-朝
Turner D.B, 1969: Workbook of atmospheric dispersion estimates, U.S Department to helth, educaton nd walfaure, Cincinati
U.S EPA, 1986. Guideline of Air Quality models (Revised) EPA-450/2-027,U.S EPA Office of air quality U.S EPA, 1986. Guideline of Air Qu

Ulanning and standards, NNTISB86. U.S. EPA 1987a, suppliment A, To the guideline on
U.S. EPA Office of air quality planning and standards.

$\begin{aligned} & \text { Протекло време } \\ & \text { од тренутка } \\ & \text { удеса (s) } \end{aligned}$	Полупречник контаминацио ног. облака (m)	Висина контаминацио облака (m)	Растојање облака од места удеса (m)	Конщентрација Амонијака (ppm)
0	28.4	14.2	0	78577
75	134.0	1.6	79.1	37194
94	144.9	1.8	97.7	29273
152	170.0	2.4	157.9	15926
189	183.9	2.9	199.2	11354
223	196.5	3.6	244.2	8006
270	210.3	4.3	295.2	5780
283	215.6	4.5	311.2	5325
304	220.1	5.1	337.2	4514
380	241.4	6.8	435.4	2793
455	260.9	8.8	537.9	1856
472	267.9	8.9	559.2	1738
531	279.2	11.0	643.9	1303
540	282.1	11.1	655.5	1262
567	290.6	11.6	691.8	1136
607	296.3	13.3	752.8	955
662	311.7	14.5	828.7	789
683	312.4	15.8	864.2	724
759	327.8	18.4	977.7	565
810	339.1	20.0	1053.7	485
835	342.5	21.1	1093.0	450
850	346.0	22.0	1112.3	433
911	356.6	24.0	1210.0	366
945	367.7	24.5	1258.0	337
987	370.1	26.8	1328.3	303
1063	383.2	29.8	1448.0	254
1139	395.8	32.9	1568.8	216
1214	408.1	36.1	1690.7	185
1323	431.1	39.8	1860.1	151
1417	445.5	43.9	1014.4	128
1512	459.6	48.0	2169.9	110
1606	473.2	52.3	2326.4	91
1701	486.4	56.6	2484.0	83
1795	499.3	61.0	2642.6	73
1890	551.8	61.5	2802.0	65
2160	540.3	79.4	3267.6	48
2430	572.1	92.9	3723.9	37
2700	602.3	106.6	4202.8	29

Напомене:
Смртна доза за амонијак од 5000 до 10000 ppm
Токсична доза за амонијак од 300 до 500 ppm
Гранична вредност имисије амонијака $33 \mathrm{mg} / \mathrm{m}^{3}$ или 50 ppm

МЕРЕЊЕ КИНЕТИЧКЕ ЕНЕРГИJЕ ЗРНА ГРАДА ПОМОТУ

 ГРАДОМЕРАНада Павловић Бердон
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66, 11030 Веодрад

Abstrakt

In order to establish the objective methods for efficiency evaluations for the activity on the hailstorm clouds, we use the specially prepared experiments. These are used to determine the micro-physical characteristics of solid precipitation and a direct verification on physical mechanism of modification process, as well as the determinaion to the cause-consequence correlation between the seeding and the obtained results. The objective of the experiment with the hailpads was to identify the differences in hail kinetic energy and hailstone spectra on protected and non-protected areas being the estimation of the hail suppression effects.

$А б с \bar{и} р а к \bar{u}$

 рисйе се сйециално йрийремљвни ексйеримениии йомоћу којих се одређују микрофизичке карак-
 вих резулийайа. Циљ екйерименйа са гарадомерима је био уйврђивање разлике у кинейичким енерйијама г̄рада и сйекйрима зрна аграда на брањеној и небрањеној ииерийорији као оцена ефекайиа зашйииие од г ррада.

1. УВОД

циљу утврђивања објективних метода за иену ефеката дејства на градоносне облаке користе се сспецијално припремљени експери менти помоћу којих се одређују микрофизичке карактеристике чврстих и течних падавина, преко тога и физичке промене градоносни облака дејством реагенса. Експериметт се рши само, ако се претходним апализам.
 јавьају довољно чесго и да се при честиама при којима се јављају за дато трајање експеримогу са прихватьивом спучајноныу детекто ети у форми вариабидности нараметара кој се модифихуіу. Та варијабилност је кључн проблем у вештачком утицауу на време.

Веома је тешко детектовати вештачку номену код појава као што су киша и град, је оне саме имају велику варијабилност. Ком плексност процеса у облацима и тешкоће $у$ мерењу њихових карактеристика ствара тешкће у квантитативној оцени вештачке

промене изнад неке површине за време једног специфичног периода времена, када је базирано само на физичким меревима. Физички приказ допушта директну верификацију хипотезе о физичком механизму модификације процеса и упврывање узрочно поллеичне везе измеяу засеавања п веких резулата. У коначном доношењу кванкиатв оце ре
 обезбеђује поуздано мишшиње о резултатима

2. МСТРАЖИВАНН ПІРОБЛЕМ

Струкруру савременог експеримента чине осматрање, иланирање и мерење у екплораторној фази, а у конфирматорној се ригорозно тестирају хипотезе изведене из прве фазе.

Пре спровођења самог експеримента неопходно је дефинисати стастистички и

Експеримент који је реализовао Републички хидрометеоролошки завод Србије се састојао у постављању две мреже градомера (7x7) на површини од $441 \mathrm{~km}^{2}$ на небрањеној (Босна) и брањеној територији (Поцерина) (Слика 1.). Области су изабране тако да буду просторно релативно блиске и климатски сличне, и да се небрањена област не налази иза брањене у односу на најчешћи правац непогода, тако да заштићена од контаминације реагенсом

Слика 1. - Локација грдомерних мрежа А Источна Босна; В - Поцерина

Циљ експеримента је био утврђивање разлика у кинетичким енергијама града и спектрима зрна града на брањеној и небрањеној терито рии као оцена ефеката одбране од града Првенствено је требало овладати методом мерења помоћу градомера, а затим извриит одређене прорачуне.

3. ПРИІРЕМА И ОРГАНИЗАЦИЈА

 EKCIEPИMEHTAДа би се реализовао овај екперимент било \mathbf{j} потребно урадити слердеће: направљено је 25 градомера и 50 специјално обрађених пооча, тако да је у 1984. тодани у период од 15 . 06.15. 09. радиа мрежа (5к5) ва 225 ко у поцер белена три датума са појвои сраиа Ис

ровремено су вршена и радарска осматрања изнад мреже у циљу добијања упоредних пода така са приземним мерњима

На основу добијених резултата, одлучено је да се мрежа прошири на (7×7) градомера и иссто ветна мрежа постави на небрањеној територији. У току зиме 1984/85. године израдили смо 75 нових градомера и набавили и сами обрадили потребан број градомерних плоча. У сеони 1985. године осматрања су трајала од 1 5. - 15. 08. јер је то период када најчешне доази до падања града. Поред градомера, н дређена места распоређено је и 25 кишомера. Оматрачи су редовно достављьали извештаје ил бригу о плочама и традомерима. У току 1985. године такође су вршена радарска осма рава са три радарска центра (Ваљева, Ву куље и Ужица) изнад територије Босне и Поцерине. Такође, извршена је калибрашиј ррдомерних плоча за 1984. и 1985 . оддин обрада свих оштећенихх плоча, које су пре тходно фарбане црном бојом, како ои се отисци боље видели. Поред тога изра弓ена ј сва потребна опрема за израду и препарацххј радомерних плоча.

А OПИС ИНСТРУМЕНАТ

Град је метеоролошка појава која има неправ илну расподелу у простору и времену, ал сваке године ствара значајне штете на пољо привредним културама. Карактеристичн размере траса града крећу се од некони стотина метара до неколико десетина кило метара. Вишегодишњи просек осмохрно рада у једној тачки је и годинама не бчде за бележен ни један случај. Према томе репрезентативни подаци се могу добити само помо末у густе мреже. То захтева да инстру менти за детекцију буду јефтини и једноставн за руковање. Исовремено треба да мере бро зрна града и вихову расподелу по величини. т араметии су важви не само због теориско спитивања процеса стварања зрна града, већ у еликој мери утичу и на величину штте цроузроковане традом, односно пружају могућност за оцену ефеката одбране од града

Индикатор града или градомер пасивног тина је најједноставнији инструмент за осматрање града. Служи за одређивање количине зрна града, расподелу по величини, односво постављени у мрежу традомери одреяуу трасе

 рефдекснвнсти облаша са нодарма из тра ромерне мреже помоty parapa се проченују

кинетичка енергија града, што је био један о поступака за оцену ефеката противградн Швадарској (Federer at at 197879, Waldvo Waldvoge 1982.).

Градомер се састоји из два дела: сталка и плоче за мерење зрна града. Мерна плоча градомера димензија $0.20 \mathrm{~m} \times 0.20 \mathrm{~m} \times 0.02 \mathrm{~m}$ је плоча која се може деформисати и на којој зрна града остављају мерљиве трагове. Плоча инцикатора се поставља хоризонтално на висини од 1.00 m са чврстом подлогом испод целе површине, тако да на путањи падајућих зрна нема препрека.

Прва мерења помоћу градомера извршена су у току лета 1959. године у Колораду због процеьивања резултата експери-мент противградне заштите (Schleusener and Jenning 1960.) Материјал коришћен за градомерну плочу и метод калибрације су били слични данашњем, али је могућност процењивања трагова била доста лошија. Од тада је градомер коришћен у доста експерямената на више места (нпр. Admirat, 1973; Federer et al, 1978; Morgan et al, 1980; Симеонов,1982.).
У пракси је коришћена мерна плоча најчешће квадратног облика израђена од меког пенасто
 и због лакшег очитавања трагова повриина је бојена или ореррвена аумишјуском фо шјіо лијом.

уобичајени поступак одређивања величине зрна је следећи: за сваки траг се мери мања оса па се помоћу измереног пречника и криве баждарења одређује у који интервал пречпика може да се сврста зрно града. Калибрација плоча служи да се помоћу трагова града одреди каква су их зрна проузроковала. Због гога се у међународној пракси (Vento, 1978., Sarrat et al 1977; Lozowski and Strong 1978. итд.) углавном користе следеће претпоставке:

зрна еррада су пойиасииого облика; зрна аерад се йри ударуо иипочу не дефорииииу;
гусииина зрна је једнака,
зрна йадају својон "коначном брзином",
ииречник иррайа који је йрузрокованя верииикално йадјјћин зрном зависи сано од величине зрна инег̄ове кинейичке енерйие.,

- нана оса йрайа се ииоклайа са онии йречником који би насийао да зрна г̄рада йадају вериииикано.

Узимајући у обзир наведене претпоставке баждарење мерне ниоче се извршава на следећи начин: "са еквивалентне висине падања" пуштамо челичне куглице различитих димензија да слободно падају на мерну плочу осе трагова и полушречнита челични куглица при датом трагу насталом ои зин града можемо одредити димензије зрна (крива бажгарена ррихазана на Слиеи 2).

бара
Оштећене плоче градом се превлаче бојом како би се боље видели отисци, а након очитавања одређује се стварна вредност пречника зрна.

Кинетичка енергија зрна града $\mathrm{E}_{\mathrm{T}}\left(\mathrm{Jm}^{-2}\right)$ измерена помоћу градомера за сваку плочу се рачуна из формуле:
$E_{T}=4.58 \cdot 10^{-6} \sum_{i=1}^{p} n_{i} D_{i}^{4}$
где је :
$n_{i}\left[m^{-2}\right]$ - број зрна по m^{2}
$D_{i}[\mathrm{~mm}]$ - пречници зрна града (средина интервала $\triangle D_{i}$)
p - број осмотрених интервала

Слика 2. Крива баждарења (1985.год.) 2 r пречник отиска, $2 R$ - пречник зрна
Ово је тзв. тотална кинетичха енергија , а глобална се израчунава из формуле:
$E_{G}=S \cdot \sum_{i=1}^{k} E_{T_{i}}$
S - површина коју репрезентује градомер
($9 \mathrm{~km}^{2}$)

- укупан број градомера који су забележили

град
Глобална кинетичка енергија се односи ша поједине датуме са непогодом. Подаци за Босну небрањена област) и Поцерину (брадњена област) дати су у табелама 1 и 2

Веза између флукса кинетичке енергије dE/dt и фактора радарске рефлексивности Z је узета из литературе (Waldovogel et al 1978), а добијена је емпиријски и представљена формулом:
$\frac{d E}{d t}=5.0 \cdot 10^{-6} \cdot Z^{0.84}$
где je dE/dty $\left[\mathrm{Jm}^{-2} \mathrm{~s}^{-1}\right]$.

5. РЕЗУЛТАТИ

У табелама 1 и 2 приказани су подаци по датумима о глобалној кинетичкој енергији зрна рада, максималне вредности кенетичке енергије, класни интервали у којима је

Табела 1. Подаци са градомерних нлоча на небрањеној области (Босна)

Датум	$\mathbf{E}_{\mathbf{G}}$	$\mathbf{E}_{\text {Tmax }}$	$\mathbf{D m a}$ \mathbf{x}	$\mathbf{S}_{\mathbf{G}}$
21.05 .85	188.01	9.15	$13-17$	36
22.05.	435.51	24.09	$13-17$	45
30.05.	92.29	5.22	$9-13$	27
31.05.	336.33	28.19	$17-21$	27
8.06	2432.79	104.41	$17-21$	63
23.06.	604.62	33.72	$21-25$	54
24.06.	375.84	20.95	$13-17$	36
17.07.	2078.28	182.45	$21-25$	36
01.08.	3333.06	336.12	$13-17$	18
07.08.	111.96	6.07	$13-17$	27
10	1391.69	750.37		369

забележен највећи пречник зрна града одређеног датума и површина захваћена градом у мрежи градомера на територији Босне и Поцерине. Види се да је на небрањеној област забележено 10 , а на брањеној 6 дана са градом.

На небрањеној области је забележена за то време већа глобална кинетичка енергија (13 $091.69 .106 \mathrm{Jm}^{-2}$) него на брањеној (9075.87 територији Босне је $3 \quad 333.06$. $106 \mathrm{Jm}^{-2}$ на површини од $18 \mathrm{~km}^{2}$, док је у Поцерини на дан 23.06.1985. године забележена највећа E_{G} од 4 $186.53106 \mathrm{Jm}^{-2}$ на површини од $99 \mathrm{~km}^{2}$, тако да је енергија града у Поцерини била мања него у Босни јер је распоређена на већу површшнуу Максимална кинетичка енергија по једном градиомеру осмотрена је 01.08.1985. године на територији Босне и то износи $336.12 \mathrm{Jm}^{-2}$, а на територији Поцерине $\mathrm{E}_{\text {Tmax }}=319.11 \mathrm{Jm}^{-2}$, а за бележена је 26.06. 1985. године.

Табела 2. Подаци са градомерних плоча на брањеној области (Поцерина)

Датум	$\mathbf{E}_{\mathbf{G}}$	$\mathbf{E}_{\operatorname{Tmax}}$	$\mathbf{D m a x}^{\mathbf{S}}$	$\mathbf{S}_{\mathbf{G}}$
$22.05 .^{\prime}$ 85.	2149.0 2	124.77	$17-21$	72
08.06.	746.91	23.88	$13-17$	81
17.06.	73.53.	7.47	$13-17$	18
23.06.	4186.5 3	319.11	$17-21$	99
17.07.	1904.6 7	117.45	$17-21$	63
07.08.	15.21	1.69	$9-13$	9
6	9 075.87	594.37		342

У табели 3 су дате фреквенције пречника зрна града по класним интрвалима за Босну и Поцерину. Класни интервал 0.5 mm представљь суградицу, 5-9 mm је зрно кукуруза, од 9-1 mm је зрно пасуња, од $13-17 \mathrm{~mm}$ је величине лешника, од $17-21 \mathrm{~mm}$ је величине ораха, а од $21-25 \mathrm{~mm}$ је величина голубијег јајета.
Табела 3. Фреквенције пречника зрна града сврстане у класне интервале за Босну и Поцерину

$\begin{aligned} & \text { Клас } \\ & \text { е } \end{aligned}$	фреквенција (fi)		Релативне фреквенције	
$\begin{aligned} & \mathrm{D}(\mathrm{M} \\ & \mathrm{M}) \end{aligned}$	$\begin{aligned} & \text { Бoch } \\ & \text { a } \end{aligned}$	Поцерина	Босна	Поцерина
0-5	11	30	11	30
5-9	18	30	29	60
9-13	37	26	66	86
13-17	16	13	82	99
17-21	7	4	89	103
21-25	2	0	91	103
	91	103		

Графички приказ ових података дат је на ција пречни 2 и то преко хистограма фреквенфреквенција код Босне пада у класни иптервал од 9-13 mm, док је у Поцерини то за класне интервале $0-5 \mathrm{~mm}$ и од $5-9 \mathrm{~mm}$.

Слика 1. Хистограм фреквенција пречника ллика 1. Хистограм фреквенција пречника
зрна града $2 R$ за источну Босну у 1985. години

Кумулативне фреквенције показују да 58% случајева иа ведичну шречнита до 9 mm за
 ноцериуа сврстано је 32% спучајева. То погапрече да су веће врерности пречника зрна града забележене на територији Босне него на територији Поцерине. Да би се дошло до поуздане статистичке анализе типа расподеле пречника стана града потребан је већи узорак односно наставак овквих иснитивања за више година Поред израчунатихх величина ($\mathrm{E}_{\mathrm{T}}, \mathrm{E}_{\mathrm{G}}, \mathrm{S}_{\mathrm{G}}$, $\mathrm{Dmax}^{\mathrm{E}} \mathrm{E}_{\mathrm{T}_{\max }}$) могу се израчунати M_{G} - целокупна маса палог града, N_{G} - целокупан број палих ${ }^{\text {зрна }}$ града, $\mathrm{Eav}=\mathrm{E}_{\mathrm{G}} / \mathrm{S}_{\mathrm{G}}$ - просечна површинска густина кинетичке енерије зрна, $\mathrm{Mav}=\mathrm{M}_{\mathrm{G}} / \mathrm{S}_{\mathrm{G}}-$ просечна површинска густина

масе зрна, $\mathrm{Nav}=\mathrm{N}_{\mathrm{G}} / \mathrm{S}_{\mathrm{G}}$ - просечна површинска густина броја зрна.
Слика 2.Хистограм фреквенција пречника зрна града $2 R$ за Поцерину у 1985 . години
Морамо констатовати да у овом тренутку радрски подаци пису пружили задовољавајуће резултате што значи да у будуће њиховој бну пажву. На основу радарске рефлексивну

радарски критеријум за раздвајање кише од дејство на грмљавинске облаке. града, што је веома важно код критеријума за

6. ЗАКЉУЧАК

Може се констатовати да је овај експеримент организован и вођен врло систематично и посуреже и да су избор локација и постављање реоа значаји за дале ачализе Прижупљеши нодачи из овог експеримента су полазна ос нова за повезиване радарских карактеристика градоносних облака са приземним подацмма Као наставак ових анализа при прецизним радарским мерењима може дасе извршити калидрација радара за одређивање флукса кинетичке енергије, као и одређивање критеријума за раздвајање града од кише.
Сматрам да се потпуно овладало методом мерења и обраде градомерних плоча, као и
начином њихове припреме за коришћење. Добијени резултати о тоталној и глобалној енер

ЛИТЕРАТУРА

Vento D. 1976: The hailpad calibration for Italian hail damage documentation. J.Appl. Meteor. 15. 1018-1022 Vento D., Morgan G., 1980: A study of the directian of wind accompanying hail in Colorado, Illinois, Italy and Switzerland, and of windcaused variations of hailfall on an ultra-fine scale hailpad network containing obstacles to windflow, Papers presented at the third WMO scientific conference on weather modification, Clermont Ferrand, France
Doras N.,Mezeix J.F., Admirat P. and Ronet J.P., 1979: Phiysical and stastistical concepts for the evaluation of a hail - modification experiment. Seventh conference on inadvertent and planed weather modification, Banff, Alberta, Canada, 190-192.

Lozowski E. P and Strong G. S.1978: On the calibration of hailpads, J. Appl. Meteor. 17. 521-528
Mezeix J.F., Waldvogel A. and Chassany J. 1981: Researrch of predictors and covariables of kinetic enorgy of hailfalls in Grossversuch IV. J. Appl. Meteor. 22, 755-762
Morgan G., Vento D. Mezeiy J. F. Admirat P. Federer B., Waldvogel A. Wojtiw L. and Wirth E., I980; A comparison of hailfall intensity and spatial vairiability in the United States and Europe based on data from instrumented networks, Papers presented at the third WMO scientific conference on weather modification, 607 613.

Mezeix J. F. and Doras N. 1981: Varaous kinetic energy characterictic of hailpatterns in the Grossversuch IV experiment, J. Appl. Meteor. 20, 377-385

Szekely C. and Zoltan C. I984: Indikator grada i mogucnosti njegove primene, Idöjaras, $88, \mathrm{~N}^{\mathrm{o}} 1$ (prevod sa madjarskog)
Strong G. S., Davis W. A., 1980: An automated hailpad analysis system, Papers presented at the thzrd WMO scientific conference on weather modification, Clermont - Ferrand, France

Federer B. Waldvogel A., W.Schmid, Hampel F.,Schweingruber Stahel W. Mezeix J F. Doras N. and Vento D. 1981. First rezult of Grossversuch IV 755-762

Waldvogel A,. Federer B., 1980: On the truth af ground truth meansurements, Papers presented at tho third WMO scientific canference on weather modification, Clermont - Ferrand, France
Waldvogel A., Schmad W. and Federer B. 1978: The kinetic energy of hailfalls. Pat I: Hailstone sprectra. journal of Applied Meteorology, 17, 515-520

ПРЕОВЛАБУЈУТИ ПРАВАЦ КРЕТАЊА
 КОНВЕКТИВНЕ ОБЛАЧНОСТИ

 У ОДНОСУ НА ВИСИНСКИ ВЕТАР

 У ОДНОСУ НА ВИСИНСКИ ВЕТАР}

Слободан Голубовић, дийл. мей.
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66,
11030 Беойрад, Јуи̃ославија

Abstract

Long term observations of the convective clouds movements over the territory of Serbia showed that most of these processes has a uniform directional movement. It is interesting to investigate the connection of convective cloudiness movement direction and the wind flow directions at 500,700 and 850 mb .

Абсииракий

Вииег̄одииье иираћень йремеиийньа конвекииивне облачносиии изнад ииерийорије Србије йоказало је да већина ових йроцеса ина уређено крейаюе. Инйересанийно је исйийаиии везу иравца иремешиана конвекиивне облачносии и иравца сирујава да яо йовриинама.

Резиме

Вишегодишњим радарским осматрањем и праћењем конвективних облака у данима када је дејствовала одбрана од града, установљено је да већина њих има уређено кретање. Правилност у кретању изражена је, пре свега, код процеса који се крећу већом брзином. Анализа обухвата углавном конвективну облачност са овом карактеристиком. Ветар висини дефинише струјање изнад ненештања те има утицај на правац премештања конвективне облачности. Циъ све стрјања на налажене севоима $850,700,500$ милибарском
 и правца кретања дејства одбране од града.

Сређивање података

Подаци на којима је вршена обрада везани су за календар дејства одбране од града за сезону 1997-у. Дани у којима је конвективна облачност имала мале брзине кретања, односно није била са јасно дефинисаним правцем премештања, нису узети у анализу. Класификовање података вршено је коришћењем руже ветра са 16

раваца. Сваком дану дејства са дефинисаним правцем премом дану дејства са д јенан одим 16 праваца руже ветра. Правац премештања праваца руже ветра. Нраваци наношен је на апсцисн, а ветар на висини на ординатну осу графика. Подаци о ветру на висини за изабране датуме узети су из сондаже Београда за 1997 годину

Статистика

Помоћу регресионе криве се на основу једне случајно променљиве x може нешто закључити о другој случајно променљивој \mathbf{y} Информација која се добија о тој другој случајно променљивој утолико је поузданија, у колико је чвршћа веза између две променљиве Чврстина линеарне везе, мери се помоћу коефици-јента корелације ρ. Ако између \mathbf{x} и у не постоји функционална зависност, $\rho=0$ Ако је $\rho=1$, значи да између \mathbf{x} и \mathbf{y} постоји линеарна функционална веза. За тачке (x_{i}, y_{i}) које показују тенденцију линеарности важи

$$
y_{i}=\alpha x_{i}+\beta+\varepsilon_{i}
$$

где ε; представља одступање од линеарне Средње вредности,
функције $\alpha x+\beta$.
Парови (x_{i}, y_{i}) код линеарне регресије, y већој или мањој мери, имају тенденцију да се $\left.\begin{array}{l}\text { групишу око праве. У колико је дисперзија } D(\\ \varepsilon,\end{array}\right)=\sigma^{2}$ већа, расипање тачака око праве αx
$\left.\varepsilon_{i}\right)=\sigma^{2}$ већа, расипање тачака око праве αX
$+\beta$ је веће и обрнуто.
Проблем линеарне регресије састоји се у оцењивању параметара α, β, и σ^{2} на основу парова (x_{i}, y_{i}) неке популације.
За линеарну функцију облика
$y=a x+b$
a и b су оцене параметара α и β ито

$$
a=r \frac{S y}{S x} \quad b=\bar{y}-a \bar{x}
$$

где је r оцена параметра ρ, а $S x, S y$ су оцене вредности стандардне девијације σ_{x} респективно.

$$
\bar{x}=\frac{\sum x}{n} \quad \bar{y}=\frac{\sum y}{n}
$$

$$
S x^{2}=\frac{1}{n-1}\left(\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right)
$$

$$
S y^{2}=\frac{1}{n-1}\left(\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}\right)
$$

$$
r=\frac{n \sum x \cdot y-\sum x \cdot \sum y}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right] \cdot\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}
$$

Налажењем оцена параметара a и b добијамо једначину линеарне регресије парова ($\mathrm{X}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$).

У 1997-ој години било је 37 дана са дејством где су правци кретања конвективне облачности имали уређено кретање. Променљивој
премештања
конвективне обе облачности, а променљивој у правац ветра на 500 мб. површини.
$\bar{x}=\frac{\sum x}{n}=251.31$
$\bar{y}=\frac{\sum y}{n}=244.97$

дисперзија по x и y је
$S x^{2}=\frac{1}{n-1}\left(\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right)=10590.41$
$S y^{2}=\frac{1}{n-1}\left(\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}\right)=8035.80$

коефицијент корелације

$$
r=\frac{n \sum x \cdot y-\sum x \cdot \sum y}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right] \cdot\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}=0.94
$$

параметри

$$
a=r \frac{S y}{S x}=0.82 \quad b=\bar{y}-a \bar{x}=38.9
$$

дакле, једначина регресије на 500 милиба-рској површини, као што је приказано на слици 1. има облик.

$$
y=0.82 x+38.9
$$

Спика 1. Рег̄ресија на 500 mb .

Статистички параметри за ниво 700 мб. су

$$
\begin{array}{lll}
\bar{y}=246.97 & \bar{x}=251.34 & S x^{2}=10590.41 \\
\mathrm{a}=0.8 & \mathrm{~b}=45.92 \quad \text { r}=0.86 & S \mathrm{y}^{2}=9093.92
\end{array}
$$

једначина регресије на 700 милибарској површини, као што је приказано на слици 2. има облик.

$$
y=0.8 x+45.9
$$

једначина регресије на 850 милибарској површини, као што је приказано на слици 3. има облик

$$
\begin{aligned}
& \bar{y}=246.17^{\bar{x}=257.67} \quad S x^{2}=9355.37 \\
& a=0.77 \quad b=47.76 \quad r=0.82 S y^{2}=8244.31 \\
& y=0.77 x+47.8
\end{aligned}
$$

Саика 3. Рейресија на 850 mb .

Статистички параметри за ниво 850 мб. и

Закључак

Као што показује коефицијент корелације r линеарна веза најчвршћа је на 500 милибарској, а затим нешто мања на 700 и 850 милибарској површини.

То практично значи да за нестационарне процесе конвективног развоја са довољном сигурношћу можемо рећи да су у линеарној вези са правцима струјања на висини.

Литература

Вукадиновић, С. В., 1990.: Елементи теорије вероватноће и математичке статистике, Привредни йрейлед, Беойрад

МЕЗОАНАЛИЗА ПРИЗЕМНИХ ПОДАТАКА У ИЗРАЗИТО ГРАДОБИТНОМ ДАНУ

Нада Павловић Бердон
Марија Миладиновић
Рейублички хидромейеоролошки завод Србчјя Кнеза Вишеслава 66, 11030 Беойрад Јусослаєија

Abstract
In mesoanalisis we use the data from Main meteorological stations on the territory of Republic of Serbia for the one day with maximal activity of hail suppression during 1997. year. On the cartographic review we can a change of pressure, temperature and relatively humidity, which follows the fields of wind and precipitation
Абсииракий

У мезоанализи су коришћени йодаци са Главних меиеооролошких сыаница на ииерийорији Рейублике Србије за један дан са најинииензивнијим дејсиивима Сисииема одбране од града у шоку 1997. године. На карииог̄рафским йриказима се йрайи йроцес насийанка несйабилносиии, условљен иермодинамичким йроменама у аймосфери, йреко иромена йрииииска, шемйерайуре и влайе, ииио йраиее йоьа веиира и йддавина.

1. УВОД

Циљ рада је да се у данима са јаким развојем конвективне облачности, анализирају приземна поља температуре, притиска и влажности и упореде, у којој мери су времески и просторно те промене сагласне са променама на висини. За картографски приказ ова три метеоролошка елемента, коришћен је метод сукцесивне корекције, који је изабран на основу резултата у раду Т. Каракостаса и О. Какалиагона (1991. г.), као најбољи за овакву анализу. Као пример анализиран је један датум са најинтензивнијим дејством у току 1997. године. Детаљно је приказан развој времена у току 21. 05. 1997. године, и дати су картографски прикази поља три поменута метеоролошка елемента.

2. ОБРАДА ПОДАТАКА И АНАЛИЗА

РЕЗУЛТАТА
у мезоанализи су коришћени подаци са Глав них метеорлошких станица на територији Републике Србије. На основу сатних разлика

вредности притиска, температуре и релативне влажности сваке станице понаособ, добијене су тенденцие поменутих величина, које су графички приказане на картама.

2.1. АНАЛИЗА ВРЕМЕНА НА ДАН

21.05.1997. г.

Због јаког развоја конвективних облака на дан 21. 05.1997. године, анализирана су поља промена притиска, температуре и влажности у терминима од 13-21 сати по CEB-у (Слике од 1. до 24.). Према развоју синоптичке ситуације на дан 21.05.1997. године, дошло је до продубљивања долине која се од Скандинавског полуострва пружала преко западне Немачке и источне Француске све до Средоземног мора. Ова дубока долина на 500 mb -ском нивоу је условљавала прилив влажног и хладнијег ваздуха, који је у југозападној струји долазио на наше подручје.
У приземљу је центар јаке циклонске активности био на граници Чешке и Мађарске, а подручје Југославије је било у топлом сектору

овог циклона. Фронт се са севера спуштао према нашој земљи, тако да је према синоптичкој карти Србије у термину од 12,0 сати заузимао следени нии Вршач у темнн реород сри фронт се преместио на линиу: д 18,00 саии фрона Кораония Куршумлиа ласоор, у зоки, Кмта је био јак кошек Лесковац. У зони фрона је бис јак кепогоивни Пазво ранјим анализама (Павловић 1978 г) шознато је да се јака конвекција јавља мраво у случајениа дубоких долина нао што убоких долина, као што

2.1.1 IIPOMEHA ПРИTИСКА

На Сликама од 1.- 8. приказане су промене притиска у периоду од 13 до 21 сат. Будући да се метеоролока мерења не врше по летњем рачунању времена, када те податке упоредимо са дејствима одбране од града и развојем конвективне облачности, времена метеоролошких осматраша се при анализама посматрају номерено 1 сат уназад. Између 13 и 14 сати Слика 1.), максималан раст притиска од $0,4 \mathrm{mb}$ за у Крушевшу и Нишу што указује на 2 щентра ширкулашије, који су уз огроман пораст влажности од $+43 \%$ са центром у Смедеревској Паланци и минимумом у Нишу од - 5% (Слика 17.), изазвали конвекцију са најачим интензитетом изнад Крагујевца, где долази до пада температуре од - $8,4^{\circ} \mathrm{C}$ у току 1 сата (Слика 9). На местима где се највеће промене ове три величине поклапају долази до поремећаја стабилности по вертикали и до развоја конвективних облака.Између 14 и 15 сати (Слика 2.), притисак изнад Ћуприје пада за $0,6 \mathrm{mb}$, а изнад Ниша за $0,4 \mathrm{mb}$ и долази до уравнавања поља притиска изнад Србије, што се још више наставља у следећем терину (Слика 3.).На Слици 4. се види да у термину између 16 и 17 сати, притисак поново расте за $0,7 \mathrm{mb}$ изнад Ћуприје. У периоду између 17 и 18 сати (Слика5.), притисак нагло расте изнад Ваљева, што условљава нови талас конветивних развоја који се пружа од северозапада ка југоистоку (обухвата Радарске центре Ваљево, Крушевац и Нишп) и то се види у термину 19-18 сати на Слици 6. На Слици 7. се види најава трећег таласа дејства који обухвата Радарске центре Ваљево, Букуљу, Бешњају и Крушевац. Овде је поремећај попримио веће размере и формирана су 4 центра циркулације и то изнад Ваљева, Крагујевца ($-0,2 \mathrm{mb}$), Краљева ($+1,6$ $\mathrm{mb})$ и Ниша ($-0,4 \mathrm{mb}$). Максималан пораст влажности је поново у Крагујевцу $+34 \%$
(Слика 23.), где је и највећи пад температуре $4,4^{\circ} \mathrm{C}$ (Слика 15).

2.1.2 АНАЛИЗА ТЕМПЕРАТУРЕ

У свим овим анализама поље температуре има најизраженије промене и најнестабилније је На Слици 9. која приказује разлику темпера тура од 14 и 13 сати јавља се пад температуре у виду пада од - $8,4^{\circ} \mathrm{C}$ са центром у Крагујевцу Дејство на кумулонимбусе је спроведено између 14,05 и 15,05 сати. Између 14 и 15 сати формирају се два центра циркулације темпера туре на тлу и на линији раздвајања долази до вертикалног уздизања ваздуха (Слика 10.) Између 15 и 16 сати (Слика 11.) поље неста билности се премешта у правцу Неготинске крајине, где дејство траје од 15,32 до 16,50 сати (дејствују Црни Врх и Ниш). Између 16 и 17 сати, као што се види на Слици 12. центар поља са падом температуре од $-2,9^{\circ} \mathrm{C}$ је изнад Ваљева, где се дејствује од 17,00 до 20,08 сати Центар пада температуре се премешта од запада ка истоку и тако се развија и конвекција у другом таласу дејства тога дана. Наиме, це фронтални систем се премешта од севера ка југу, а конвективне Һелије се развијају на десној страни и премештају на леву, као по ве познатим шемама развоја вишеһелијских конвективних облака.У термину од 17 до 18 сан (Слика 13.), пад температуре се повенава изна Ваљева и износи - 6,9 С. У следекем тер мину (Слика 14.) поље темперануре се раз на више центара са максималним падом од $3,1^{\circ} \mathrm{C}$ изнад Зајечара, док се у термину од 20 сати (Слика 15.) максималан пад од $-4,4^{\circ} \mathrm{C}$ опет јавља изнад Крагујевца

2.1.3 АЛИЗА РЕЛАТИВНЕ ВЛАЖНОСТИ

У периоду између 14 и 15 сати (Слика 18.) до лази до промене конфигурације релативне влажности, тако да се формирау 3 центра, и то око Крагујевца (- 27\%), Смедеревске Паланке ($+40 \%$) и Крушевца ($+14 \%$). У тер мину 16-15 сати (Слика 19.) релативна влажност има највећи пад око Крагујевца и Һуприје и то -15%. У следећем термину, тј. до 17 сати релативна влажност се уједначава расте максимално до $+8 \%$ (у Смедеревско Паланци). Између 17 и 18 часива (Слика 21.) влажност нагло расте у подручју Ваљева и то чак до $+45 \%$, што ствара нови ценгар за кон вективни развој и већ у следећем сату (Слика 22.) се премешта у правцу Крагујевца (пораст
 до 20 сати (Слика 23). У 21 сат (Слика 24.)

Слика 1. Промене притиска $\mathrm{P}(14-13 \mathrm{~h}) \mathrm{mb}$ 21.05.1997.

Слика 2. Промене притиска $\mathrm{P}(15-14 \mathrm{~h}) \mathrm{mb}$ 21.05.1997.

Слика 3. Промене притиска $\mathrm{P}(16-15 \mathrm{~h}) \mathrm{mb}$ 21.05.1997

Слика 4. Промене притиска $\mathrm{P}(17-16 \mathrm{~h}) \mathrm{mb}$ 21.05.1997

Слика 5. Промене притиска $\mathbf{P}(18-17 \mathrm{~h}) \mathrm{mb}$ 21.05.1997.

Слика 6. Промене притиска $\mathrm{P}(19-18 \mathrm{~h}) \mathrm{mb}$ 21.05.1997.

Слика 7. Промене притиска $P(20-19 \mathrm{~h}) \mathrm{mb}$ 21.05.1997.

Слика 8. Промене притиска $\mathrm{P}(21-20 \mathrm{~h}) \mathrm{mb}$ 21.05.1997.

Слика 9. Промене температуре
$\mathrm{T}(14-13 \mathrm{~h})^{\circ} \mathrm{C}$
21.05.1997.

Слика 10. Промене темшературе

Слика 11. Промене температуре $\mathrm{T}(16-15 \mathrm{~h}){ }^{\circ} \mathrm{C}$ 21.05.1997.

Слика 12. Промене температуре $T(17-16 \mathrm{~h})^{\circ} \mathrm{C}$ 21.05.1997.

Слика 13. Промене температуре
$\mathrm{T}(18-17 \mathrm{~h}){ }^{\circ} \mathrm{C}$

Слика 14. Промене температуре $\mathrm{T}(19-18 \mathrm{~h})^{\circ} \mathrm{C}$ 21.05.1997.

Слика 15. Промене температуре $\mathrm{T}(20-19 \mathrm{~h})^{\circ} \mathrm{C}$

Слика 16. Промене температуре T(21-20h) ${ }^{\circ} \mathrm{C}$ 21.05.1997.

Слика 17. Промене релативне влажности $R(14-13 \mathrm{~h}) \%$ 21.05.1997.

Слика 18. Промене релативне влажностг $\mathbf{R}(15-14 \mathrm{~h}) \%$ 21.05.1997.

Слика 19. Промене релативне влажности $\mathbf{R}(16-15 \mathrm{~h}) \%$ 21.05.1997.

Слика 20. Промене релативне влажности R (17-16h)\% 21.05.1997.

Слика 21. Промене релативне влажности R (18-17h)\% 21.05.1997.

Слика 22. Промене релативне влажности R (19-18h)\% 21.05.1997.

Слика 23. Промене релативне влажности $R(20-19 \mathrm{~h}) \%$
21.05.1997

Слика 24. Промене релативне влажности R (21-20h)\% 21.05.1997.

промене су много блаже и уједначене на целој територији Србије

ЗАКЉУчАК

На основу урађених анализа о дејствима система одбране од града и претходно описаној може се констатовати, да је на дан 21.05.1997. године, на територији Србије дејсова борва су трајала од 14,05 до 21,56 дејства. Дејсва та аја је са 224 противградне саниче испавено 927 ротивградних ракета Висие врхра облага су достиале 15 km , ин
 тензитети радарске рефлексивности су прелазил 50 вв, а $100 \mathrm{~km} / \mathrm{h}$ Када се укрене сатн промене температуре притиска и влжности из термина у термин, најбоља

приземљу, добија се преко промене температура, затим влажности, а најблаже је то изражено преко промене притиска. Највеће промене температуре се у потпуности покзивнијим ррезвојима конвективних ћелија. Промене релативне влажности, повезане су са најинтензивнијим чврстим и течним падавинама, такође просторно и временски. Из анализираних података може се закључити да се у областима поклапања центара пада или раста притиска и температуре, стварају динамички услови за настанак конвективних облака са кишом, нљусковима и градом.

ЛИТЕРАТУРА

Karacostas T. and Kakaliagon O, 1991: Objective analysis schemes and their applications to hail mesurement network in the Greek NHSP, Mavrovo
Pavlovic N 1984. Infuence of the northwest front penetrations to the hail suppression activities, 18. ICAM, Opatija
Павловић Н 1978 : Приказ синоптичких ситуација, које су условиле обимна дејства противградне заштите, СОАЕН, Аранђеловац

ЗНАЧАЈ МЕТЕОРОЛОГИЈЕ У ПОЉОПРИВРЕДИ

ПРОСТОРНА РАСПОДЕЛА СУМА ЕФЕКТИВНИХ ТЕМПЕРАТУРА КАО ОСНОВ ЗА РАЦИОНАЛНО ГАЈЕЊЕ ОЗИМЕ ПШІЕНИЦЕ И КУКУРУЗА НА ТЕРИТОРИЈИ РЕПУБЛИКЕ СРБИЈЕ

Мр Добривоје Живковиһ

Рейублички хидромейеоролоики зивод Србије, Беойрад

On the basis of long range data, the spatial temperature sums distribution for the territory of Serbia given in this paper. The temperature sums above $5^{\circ} \mathrm{C}$ determining the growth of winter wheat ar choosen as well as the temperature sums above 10° C determining the maize production, two cultivations being the most important ones for our agricultural production. On the basis of the average sums above $5^{\circ} \mathrm{Coccuring}$ in autumn period of wheat vegetation, the spatial distribution of the last and safe dates of wheat seeding this crop in our conditions is given. On the basis of the spatial temperature distribution above $10^{\circ} C$, the optimal spatial distribution of maize cross-breed growth of certain FAO maturit groups on the territory of Serbin is given af wind and profitabilty for the growth of these crops cover regionalization and highest economic bencfits and and profitability for the growth of these crops cover ing mor than 80% of oll sawn areas in Serbija.

Абсииракй

За ииерийорију Рейублике Србије дайа је йросйорна расйодела сума йелйерайиура на основу виие̄годињих йодайака. Одабране су суме ииемйерайиура изнад $5^{\circ} \mathrm{C}$, које дейерминииу гајење озиме йшенице, и суме ӣемйераййра изнад $10^{\circ} \mathrm{C}$, које одређууу а̄ајење кукуруза, као две йољске кулиичре које су најзначајније за наи айрар. На основу йросечних сума изнад $5^{\circ} \mathrm{C}$ у јесењем делу

 ових кулйиура, које заузилају йреко 80% сейвене, њивске йовриине Рейублике.

1. УВОДНЕ НАПОМЕНЕ

Озима пшеница и кукуруз су најзаступљеније пољопривредне културе које се гаје на територији Републике. Просечне засејане површине од око 2.5 милиона хектара под кукурузом и око 850.000 хектара под озимом пшеницом чине сваке године преко 80% укупно засејаних њивских површина, ангажујући значајна фи нансијска средства за остваривање њихове производње. Свака уштеда и малог процента тих средстава значи значајна средства која се могу искористити за друге намене у аграру или у пратећој производњи за аграр.

Циљ овог рада је да пружи слику топлотног режима који влада на територији Републике

као и просторну расподелу топлотног режима преко сума температура које просечно долаз аа ову територију и која ће, преко животних роцеса биљака бити трансформисана роцеса вия виноса оих култура
 ериторија Републке, иако условно заузим
 елике разлике у количнама остварен оплотне енергије коју примају одређени де ови Републике, условљени рељефом, експо зицијом, педолошким и другим чиниоцима.

у раду су анализиране суме биолошки акти них температура преко просечних 30 годишњих осматрања у мрежи ГМС које су до

надморске висине до 600 м, односно у висинској зони интензивне пољопривредне производње Зоне које су приказане картама са веһим просечним оствареним сумама ефективних температура пружају потенцијалну могућност гајења генома дуже вегетације, тиме и могућност остваривања већег приноса при истим условима спољне средине и нивоа агро технике.
2. СУМЕ ЕФЕКТИВНИХ ТЕМПЕРАТУРА
(ПРЕКО $5^{\circ} \mathrm{C}$) У ЈЕСЕЊЕМ ПЕРИОДУ (OKTOFAP-HOBEMEAP) HA ТЕРИТОРИЈИ РЕПУБЛИКЕ

Правилним датумом сетве озиме пшенице то ком октобра мора се омогућити да биљке нинну и довољно се развију и припреме за уиитаве у периону (до краја новембра)

 Іросечно за територију Републике (Карта 1) стварује се сума температура преко $5^{\circ} \mathrm{C}$ о $73^{\circ} \mathrm{C}$, са распоном од $227^{\circ} \mathrm{C}$ (Зајечар) до 32 C (Београд).

Карйа 1. Просиорна расйодела иросєчних сума ефекіиивних ииеммйерайиура $>5^{\circ} \mathrm{C}$ у $\overline{\text { й }}$ еиоду ккйобар - новембар на $\overline{\text { йер. Србији }}$
Знајући потребе за процесе ницања пшенице (око $50^{\circ} \mathrm{C}$) и процесе укорењавања до стања почетног бокорења (још $180^{\circ} \mathrm{C}$) када су биљке довољно припремљене за презимљавање дата

е (Карта 2) просторна расподела оптималних датума сетве ове културе током октобра, како би се биљке потребно припремиле за мировање. Свако одступање од тих датума сетви значи слабију предзимску припрему биљака као и надокнаду недостајућег развоја у пролетњем периоду. Преношење јесење вегетације у пролећни део значи сабијање фаза раста и развића током пролећа, што ће резултирати мањим приносом. Оптимални датуми сетве током октобра, према могућим топлотним сумама, крећу се од 6. октобра (Зајечар, Пожега, Приштина) па до 25 . октобра (Београдски крај).

Карӣа 2 Ойшимали дайчми сепиве озиме Кариа 2. Оишимални дайуми сейве
$\overline{\text { йменице йоком окиообра на पиер. Србије }}$
3. СУМЕ ЕФЕКTИBHUX TEMIEPATYPA (IIPEKO $5^{\circ} \mathrm{C}$) У ПPOЛETHOM (MAPT. ЈУНИ) ДЕЛУ ВЕГЕТАЦИЈЕ ППЕНИЦЕ

На Карти 3. дате су просечно могуће суме тем пература (преко $5{ }^{\circ} \mathrm{C}$) које се остварују од да тума њихове појаве (14. марта) па до краја јуна месеца. Та сума варира од $848^{\circ} \mathrm{C}$ (Приштина) до $1.126{ }^{\circ} \mathrm{C}$ (Београд) просечно $998{ }^{\circ} \mathrm{C}$. За пролећну вегетацију пшенице до фазе пуне зрелости потребно је око $850^{\circ} \mathrm{C}$. Хладнији предели (према Карти) су на граници тражене суме и ту се строго морају поштовати датуми

сетве ујесен, док топлији крајеви имају могућност дела надокнаде пропуштене јесење вегетације услед касније сетве.

Карта 3. Просшорна расйодела йросечних сума ефекйивних ииемйерайура $>5^{\circ} \mathrm{C}$ у йериоду марйи - јуни на аииер Србији
4. СУМЕ ЕФЕКТИВНИХ ТЕМПЕРАТУРА (ПРЕКО $10{ }^{\circ} \mathrm{C}$) У ПЕРИОДУ ПУНЕ ВЕГЕТАЦИУЕ (АПРИЛ-СЕПТЕМБАР) НА ТЕРИТОРИJИ РЕПУБЛИКЕ

У топлом делу године просечно се оствари око $1.402^{\circ} \mathrm{C}$ ефективних температура преко $10^{\circ} \mathrm{C}$, а које омогућавају вегетацију термофилних ултура, где спада и кукуруз. Амплитуда вари рања суме ових температура на територији Ре публике је изузетно велика, око $452^{\circ} \mathrm{C}$, од места са најмањом могућом сумом у Приштини $\left(1.169^{\circ} \mathrm{C}\right)$ до места са просечно највећом сумом ових температура у Београду ($1.621^{\circ} \mathrm{C}$). На Карти 4. дата је просторна расподела ових тем пература на територији Републике.

Карйиа 4. Просйорна расйодела йросечних сума ефекииинних ииемйерайура $>10^{\circ} \mathrm{C}$ у йериоду айрил - сеймембар у Србији

Кукуруз је хибридна биљка са одређеним (фиксираним) геномом, тако да су хибриди по дужини вегетације од ницања до пуне зрелости уврштени у 10 ФАО група са разликама у доспевању од око 8 дана. Наш климат омогућава гајене хибрида по ФАО групе 8 , према
 просечно могућим сумама ефективних
пература (већих од $10^{\circ} \mathrm{C}$) које се остварууу.

Према просечно оствареним сумама температура дата је на Карти 5. просторна расподела гајења одређених хибрида кукуруза, од најхладнијих места која омогућавају нормалну вегетацију хибрида ФАО групе 300 до најтоплијих места где се могу гајити хибриди дуже вегетације, до ФАО групе 800

Гајењем хибрида дуже вегетације у хладнијим крајевима улази се у свестан ризик успеха коначног остваривања птанираног приноса ове културе. Недостајућа топлотна енергија неког хладнијег подручја не може бити анулирана другим чиниоцима гајења нити појачаном

Карйиа 5. Ойшимална йодручја г̄ајена кукуруза одређених ФАО ̄̄руйа на аиер. Србије

агротехником. Стога треба у систем гајења ове културе узимати хибриде који могу оптимално искористити локалне услове при нормалном нивоу примењене агротехнике

5. ЗАКЉУЧЦИ

.Код гајења озиме пшенице поштовати оптимално дате датуме сетве, како би ова култура нормално прошла све своје фазе раста и развића, до коначне зрелости.
2. И код гајења кукуруза поштовати просторну расподелу оптималних зона гајења хибрида одређене дужине вегетације, како би и ова култура дала оптималан и најрентабилнији коначни принос.
3. Дате просторне расподеле сума одређених ефективних температура показууу значајну локалну разлику на територији наше Републике о чему треба водити рачуна код избора сорти и хибрида, и система њиховог гајења.

КОРИШЋЕЊЕ ОПЕРАТИВНИХ АГРОМЕТЕОРОЛОШКИХ ИНФОРМАЦИЈА ЗА ПРОЦЕНУ ВОДНОГ БИЛАНСА ПОЛОПРИВРЕДНИХ КУЛТУРА

Пейар Сйасов, дийл.яеий.,Славича Радовановић,дийл.инж.

 Рейублички хидромейеоролоики заєод Србије, Кнеза Вииеслава 6б, Беойрад, Југ̈ославија
Abstract

Daily collection and data processing from the network of the principle meteorological stations in Serbia enable a calculation and analysis of water balance for the main agricultural crops (wheat, maize, soya bean, sugar beat, etc) concerning daily, weekly and 10-days period. This type of agrometeorological inforation represent a basis for the estimation of agriculturat crop condinons during a in Serbia. The typical examples of calculating the soil water balance on the basis of daily and decade sequences of relevant data are given. A high correlation between cumulative water balance index (I) from the FAO model and performed yield has been established.

Абсииракий

Дневно йрикуйљане и обрада йодаиака из мреже гллавних мейеоролоиких сиианица рейублике Србије омойућава да се врии обрачун и анализа водной биланса гллавних йољойривредних кул-
 Овај вид агрромейеоролоиких информација чини основу за оцену сииана йолойривредних кулйура йоколя вегеиииационе сезоне, йримену одг̄оварајућих мелиорационих мера, као и йроцену очекиваних йриноса у сваком йроизводном рејону Рейублике. Даиии су каракииерисйични $\overline{\text { йримери обрачуна водног̈ биланса земвиийа на бази дневних и декадних низова релеванйиних }}$ $\overline{\text { йодайака. Ӯ̄ирђена је висока корелациона веза кумулаииийивной индекса водной биланса (I), }}$ добијен йрименом ФАО модела, са осйвареним йриносима.

1. УвоД

Постојећи оперативни систем праћења (мониторинга) климе у оквиру метеоролошке службе Србије, са дневним прикупљањем, контролом и обрадом климатолошких и агрометеоролошких података и развој банке историјских и текућих података измерених у мрежи метеоролошких станица, има великог значаја како за бржи развој метеоролошке делатности тако и за ефикаснију примену пода латности, тако и информација о времену и клими у

различитим привредним гранама, а посебно у пољопривреди која непосредно зависи од временских и климатских услова

Табеларни преглед (таб.1) илуструје широк спектар грана у области пољопривреде где се метеоролошки подаци могу користити у реалном времену, наглашавајући при том који су подаци непходни а који пожељни ако су на располагању. Почев од интеграције темпера-

туре, преко величине потенцијалне и стварне процене приноса и квалитета, метеоролошки евапо-транспирације, топлотног и водног би- подаци и изведени продукти налазе широку ланса пољопривредних култура, затим заштите биља од биљних болести и штеточина, па до

Таб.1.
МЕТЕОРОЛОШКИ ПОДАЦИ ЗА ПОЉОПРИВРЕДУ
А- ИНТЕГРАЦИЈА TEMПЕРАТУРЕ: степен-дан или степен-час
А- ПНТЕГРАЦИЈА ТЕМПЕЕРАТАРЕ: СТ
С- ПОТЕНЦИЈАЛНА ЕВАПОТРАНСПИИРАЦИЈА, Реュman
D- ЕВПОТРАНСПИРАЦИЈА У СТАКЛЕНИЦИМА И ПЛАСТЕНИЦИМА
Е- РЕАЛНА ЕВАПОТРАНСПИРАЦИЈА, Метод енергетсКог биланса
F- РЕАЛНА ЕВАПОТРАНСПИРАЦИЈА, Аеродинамқчки-профилни метоД
G- ВОДНИ БИЛАНС ПОЉОПРИВРЕДНИХ КУЛТУРА
H- ПОМОТ У НАВОДњАВАळУ
I- ПРОЦЕНА ПРИНОСА И КВАЛИТЕТА
Ј- ПОМОЋ У ОЦЕНИ ЕРОЗИЈ

K- ЗАІІТИТА ОД ГРАДА
L- ЗАІІТИТА ОД МРАЗА

М- ІТТЕТНИ ИНСЕКТИ (развој и симулација)
N- ГљивичНА овољЕњА (развоји симулацмја)
O- МИКРОМЕТЕОРОЛОГИJA

ИЗМЕРЕНИ ИЛИ РЕГИСТРОВАНИ ПОДАЦИ	A	B	C		D	E	F	G	H	1			K	L	M			o
ИЗЛАЗНЕ КОМБИНАЦИJе								$\begin{aligned} & \mathrm{B}+\mathrm{C}+\mathrm{E} \\ & +\mathrm{F} \end{aligned}$	G	$\mathrm{C}_{\mathrm{G}}^{\mathrm{A}+}$					A			
ДАН И पАС	*									*								
ВАЗДУШНИ ПРИТИСАК																		
СРЕД. ТЕМП. ВАЗДУХА	*		*			*	*			*			*	*	*			
МИН. ТЕМП. ВАЗДУХА	\bigcirc									*				*				
MAKC. TEMI. BA3ДYХA	-									*								
МИН. НА 5 cm ИЗНАД ТЛА														*		*		
TEMПEPATYPA ЗЕМљИIITT	*									*								
РЕЛ.АТИВНА ВЛАЖ. ВАЗДУХА			\bigcirc			-	-						*	-		*		
TEMП. MOKPOГ TEPMOMETPA			*			*	*							*		${ }_{0}$		
EP3UHA BETPA			*				*						*	*				
ПPABAL BETPA													*	.				
ВЕРТИКАЛНА БРЗИНА ВЕТРА																		
КОЛИЧИНА ПАДАВИНА								*		*			*					
TPAJAHE ПАДАВИНА													*					
ИНТЕНЗИТЕТ ПАДАВИНА								o		*			*					
ЕВАПОРАЦИЈА (ПОВРІІИНА ВОДЕ)		*																
TPAJABE OCYHYABABA			0		${ }^{\circ}$	0												
ГЛОБАЛНА РАДИЈАЦИЈА			\bigcirc		*	-				*								
НЕТО РАДИЈАЦИJA			*			*								-				
ФОТОСИНТЕТ. АКТИВНА РАДИЈАЦИЈА (FAR)																		
$\begin{aligned} & \text { TОППОТНИ ФЛУКС У } \\ & \text { ЗЕМ./ВАЗД. } \\ & \hline \end{aligned}$						*												
TPAJAGE ВЛАЖ. ЛИШЋ¢																		
ВОДНИ ПОТЕНЦИЈАЛ ЗЕМ.									-									
КВАЛИТЕТ ВОДЕ (рН, сланост)									*									
ПОЛУТАНТИ (увазд. п води)																		
ДОДАТНИ ПОДАЦИ																		
OCMATPABA BPEMEHA																		
СТАНЕ КУЛTYPA								*	*	*			-	*	*			
ПОЉОПРИВРЕДНА ПРАКСА тИПОви ЗЕмыИШТТ																		

ПОЉОПРИВРЕДНА ПРА
ТИПОВИ ЗЕМЬИШТА

иподаци

Анализа климатских услова, а посебно режима падавина на подручју Србије, указује на значајне промене регистроване током последњих деценија:

- уочено је ширење и померање области са просечном годишњом сумом падавина од 600 mm према југу и југозападу,
- падавине током зимског периода често не обезбеђују довољне резерве воде у земљишту,
- дефицит падавина током вегетационе сезоне постаје све израженији.

Ове чињенице потенцирају значај перманентног праћења свих релевантних елемената водног биланса, који чине основу за оцену стања пољопривредних култура током вегетационог периода, примену одговарајућих мелиорационих мера, као и процену очекиваних приноса у сваком производном подручју Републике. Стога је предмет овог рада дневна и 10 дневна процена и анализа водног биланса значајнијих пољопривредних култура на локалном и регионалном нивоу.

2. МЕТОДЕ РАДА

Промене резерве воде ($\Delta \mathrm{m}$) површинског слоја земљишта рачунате су применом једначине водног биланса (Kunkel, 1990)

$$
\Delta \mathrm{m}(\mathrm{~d}) / \Delta \mathrm{t}=\mathrm{P}-\mathrm{ET}-\mathrm{O}-\mathrm{D},
$$

где је: $m(d)$ - резерва воде у површинском слоју земљишта дебљине d, P - падавине (mm), ET евапотранспирација (mm), O - отицај, D процеђивање (дренажа) у дубље слојеве, а Δt интервал времена (дан, декада)

У оквиру FAO, развијен је модел за агрометеоролошки мониторинг и прогнозу приноса (Frere i Popov, 1979), који се огледа у праћењу водног биланса (у 10 -дневним интервалима) и стреса који биљке трпе услед појаве недостатка воде. Овакав поступак подразумева утврђивање кумулативног индекса (I), који на старту има вредност $\mathrm{I}=100 \%$, а током вегетационе сезоне остаје исти или се смањује, у зависности од тога да ли резерве воде у земљишту задовољавају потребе биљака или је наступио дефицит. Утврђени дефицит воде, у било којој декади, изражава се у процентима

од укупних захтева испитиваног усева за читав вегетациони период, а добијена вредност се одузима од вредности индекса I из претходне декаде. Обрачун I се врши до краја вегетавионе сезоне када добијена вредност изражава кумулативни утицај, одн. проценат задовоъења укупних потреба за водом. Последња вредност I обично је високо корелисана са оствареним приносом дате културе, осим ако утицаји других фактора нису били израженији (болести и штеточине, јаки ветрови, град, ...).

Обрачун евапотранспирације (PETk) при повољним условима влажности земљишта, која је неопходна за правилно одређивање дефицита воде, извршен је применом концепта о референтној евапотранспирацији (Er) и коефицијената културе (Kk). У оригиналном моделу FAO, Er је рачуната методом Penman-a. Овде је примењен знатно једносавнији метод који су наши аутори (Вучић,1971, Драговић,1976, Бошњак, 1983) развили на бази експерименталних истраживања при оптималним условима влажности и плодности земљишта.

3. РЕЗУЛТАТИ ИСПИТИВАНА И ДИСКУСИЈА

Практична примена модела водног биланса захтева да се на почетку вегетационог периода одреди расположива резерва воде у земљишту ($\mathrm{m}(\mathrm{t}=0)$), најбоље директним мерењем (гра(миметриском, неутронском или другом метовиметријском, неутронском или другом метослучај, процена на основу режима падавина у претходном периоду и водно-физичких особина земљишта.

Примери обрачуна дневног биланса прилива и потрошње воде од стране усева кукуруза приказани су за 1990. (сл. 1) и 1991. годину (сл. 2). Остварени приноси од свега $3233 \mathrm{~kg} / \mathrm{ha} \mathrm{у} \mathrm{првој}$ (1991) и $6103 \mathrm{~kg} / \mathrm{ha}$ у другој години (1992) у ди(1991) и 6103 kg /ha у другој години (1992) у директној су вези са водним билансом земљишта Дефицит воде у 1990. години наступио је већ почетком друге декаде јула и, уз два прекида
(модел региструје прекид дефицита воде ако је пало више од 5 mm у једном дану или је извршено наводњавање), наставио до краја вегетационог периода. У 1991. години (сл. 2) дефицит воде се појавио тек у другој половини

септембра када није имао неког значајнијег утицаја на принос у региону Београда.

Променом улазних података у зависности од локације и године, мења се слика водног биланса која омогућава да се дневно (декадно) прати динамика резерве приступачне воде у земљишту, као и време појаве и интензитет дефицита воде. Поред могућности да се сагледа стање влажности на локалном нивоу и евентуално изврше одређене интервенције (наводњавање, пре свега, ако за то има услова), истовремен обрачун компонената водног биланса за већи број места даје могућност за сагледавање глобалног стања водног биланса у Републици у било ком времену, што може бити од користи код доношења неких одлука на републичком нивоу.

Илустрације ради, у таб. 2 приказани су резултати обрачуна појединачних елемената водног биланса по декадама за месец август 1994. Могу се уочити две глобалне карактеристике: прво, дефицит воде у различитим производним рејонима наступа у различито време због

неуједначеног режима падавина на подручју Србије, и друго, услед различитих односно еєих захтева за водом, шећерна репа у односу на кукуруз и соју раније потроши расположив резерве воде у земљишту, а израчунати дефи цит је израженији.

C друге стране, примена FAO модела и добијени резултати обрачуна индекса I (таб. 3) омогућавају да се за сваку декаду током веге тационе сезоне утврди степен задовољења по треба за водом у односу на оптималне вредности (PETk). У поредна анализа за подручје Београда показује да је дефицит воде у сушној 1990. години био карактеристичан за већи де вегетационог периода Крајем јула кумула тивни индекс I је износио 77.6%, а месец дана касније, крајем августа, свега 54.3%. Веге тација кукуруза у овој години завршила је са купним дефицитом од 51.4%. Насупрот ове метеоролошки услови у 1991. години били с знатно повољнији за пораст и развић пролећних усева. Вредности индекса $\underline{1}$ (таб. 3) потврђууу да су потребе кукуруза за водом до краја прве декаде септембра биле у потпуности задовољене ($\mathrm{I}=99.7 \%$).

1. Водни биланс земљишӣй йод кукурузом на йодручју Беоӣрада, 1990. Год.

Кумулативни индекси I^{*} (на десној страни таб 3) добијени су уважавајући сугестије Драговића (1991) у погледу потребе коришћења реалне резерве воде (сл.1, сл.2) у земљишту приликом обрачуна водног биланса дате културе. У том случају, вредности I* су нешто веће од I, односно израчунати дефицит воде је за неколико процената смањен..

После обрачуна индекса I (или I*) за већи бро места и у дужем низу година, постоји могућност да се изврши статистичка анализа зависности остварених приноса од одговарајуђих индекса. Иако на принос пољопривредних култура делује и велики број других фактора (земљиште, сорта, технологија гајења...), добијени резултати (сл. 3) указују на

значајну подударност крива индекса I и дручју централне Србије.
просечних приноса кукуруза остварених на по-

1. Водни биланс земъишййа йод кукурузом на йодручју Бео̄̄рада, 1991. Год.

Анализа временске серије приноса указује на овом подручју Републике јављао дефицит воде веома изражена и учестала одступања од који је у односу на оптималне потреб́е линије тренда, пре свега, као последица ути-. ($\mathrm{I}=100 \%$) износио $10-40 \%$. Појединих година и цаја променљивих агрометеоролошких услова у појединим местима дефицит воде је достизао током појединих година. Индекс I на крају и ниже вредности од 50%.
вегетационог периода (крај септембра) мењао
се у интервалу од $60-90 \%$, што значи да се на

Таб. 3 ПРИМЕНА FАО МЕТОДОЛОГИЈЕ ЗА ОБРАЧУН КУМУЛАТИВНОГ ИНДЕКСАВОДНОГ БИЛАНСА НА ПОДРУЧУУ БЕОГРАДА

Мес.-дек.	Pn	Pa	Tsr	Kk	PETk	$\begin{array}{\|c\|} \hline \text { Pa } \\ \text { PETK } \end{array}$	Pesерва	S/	$\begin{gathered} \text { Shawm } \\ \mathrm{D} \end{gathered}$	I(\%)	P.pe3	$\mathbf{S}^{\prime} / \mathbf{D}^{\prime}$	$\begin{gathered} \mathbf{s}^{\prime} / \mathrm{kum} \\ \mathbf{D}^{\prime} \end{gathered}$	$\mathrm{I}^{\prime}(\%)$
1	2	3	4	5	6	7	8	9	10	11	${ }^{\text {8 }}$	${ }^{9}$	10'	11
AחP-I	14													
AIIP-II	21													
AITP-III	18						60,0	0,0	0,0	\#\#\#\#	60,0	0,0	0,0	\#\#\#\#
MAJ-I	18	1,7	16,7	0,15	24,9	-23,2	36,8	0,0	0,0	\#\#\#\#	38,4	0,0	0,0	\#\#\#\#
MAJ-II	25	10,4	19,6	0,16	31,5	-21,1	15,7	0,0	0,0	\#\#\#\#	17,3	0,0	0,0	\#\#\#\#
MAJ-III	32	8,5	17,9	0,15	29,4	-20,	-5,2	-5,2	-5,2	99,0	-3,6	-3,6	-3,6	99,
JYH-I	31	20,8	18,9	0,16	30,7	-9,9	-9,9	-9,9	-15,1	97,0	4,7	0,0	-3,6	99,3
JYH-II	33	55,3	18,9	0,15	29,1	26,2	26,2	0,0	-15,1	97,0	30,9	0,0	-3,6	99,3
JYH-III	32	13,1	23,7	0,18	42,2	-29,1	-2,9	-2,9	-18,0	96,4	1,8	0,0	-3,6	99,3
ЈУЛ-I	26	31,0	21,7	0,18	39,4	-8,4	-8,4	-8,4	-26,4	94,7	4,5	0,0	-3,6	99,3
SYJ-II	23	1,0	21,0	0,18	38,1	-37,	-37,	-37,1	-63,5	87,4	-32,7	32,7	36,3	92,8
Јул-ІІ	25	4,9	22,8	0,19	46,8	-41,9	-41,9	-41,9	-105,4	79,0	-74,6	-74,6	-110,9	77,9
ABT-I	13	15,2	22,5	0,19	43,5	-28,3	-28,3	-28,3	-133,7	73,4	10,1	0,0	-110,9	77,9
ABC-II	19	0,2	22,6	0,19	43,2	-43,0	-43,0	-43,0	-176,7	64,9	-32,9	-32,9	-143,7	71,4
ABT-III	18	1,1	22,1	0,19	47,6	-46,5	-46,5	-46,5	-223,2	55,6	-79,3	-79,3	-223,0	55,6
CEIT-I	19	8,2	17,9	0,12	22,1	-13,9	-13, ${ }^{\text {- }}$	-13,9	-237,1	52,8	-2,6	-2,6	-225,7	55,1
CEITII	18	12,4	14,5	0,10	15,2	$-2,8$	-2,8	-2,8	-239,9	52,3	3,5	0,0	-225,7	55,1
CEn-III	16	11,8	16,2	0,11	19,0	-7,2	-7,2	-7,2	-247,	50,8	-3,6	-3,6	-229,3	54,4
Сума/сред	401	196	19,8	0,16	503	-307								

Година: 1991														
AПP-I	14													
AIP-II	21													
AMP-III	18						60,0	0,0	0,0	\#\#\#\#	60,0	0,0	0,0	\#\#\#\#
MAJ-I	18	16,8	14,8	0,13	19,8	-3,0	57,0	0,0	0,0	\#\#\#\#	59,3	0,0	0,0	\#\#\#\#
MAJ-II	25	51,4	12,2	0,12	15,3	36,1	93,1	0,0	0,0	\#\#\#\#	95,4	0,0	0,0	\#\#\#\#
MAJ-III	32	26,7	13,4	0,13	19,6	7,1	100,2	0,0	0,0	\#\#\#\#	102,5	0,0	0,0	\#\#\#\#
SYH-I	31	57,6	19,0	0,16	29,8	27,8	128,0	0,0	0,0	\#\#\#\#	130,3	0,0	0,0	\#\#\#\#
JуH-II	33	0,5	22,9	0,17	40,1	-39,6	88,5	0,0	0,0	\#\#\#\#	90,7	0,0	0,0	\#\#\#\#
JYH-III	32	28,2	21,0	0,17	35,5	-7,3	81,2	0,0	0,0	\#\#\#\#	83,4	0,0	0,0	\#\#\#\#
Јул-I	26	24,2	21,3	0,18	39,7	-15,5	65,7	0,0	0,0	\#\#\#\#	67,9	0,0	0,0	\#\#\#\#
ЈУл-II	23	4,0	24,3	0,19	46,5	-42,5	23,2	0,0	0,0	\#\#\#\#	25,4	0,0	0,0	\#\#\#\#
Јул-ІІ	25	115,7	21,9	0,18	44,4	71,3	94,5	0,0	0,0	\#\#\#\#	96,7	0,0	0,0	\#\#\#\#
ABT-I	13	19,8	22,3	0,19	42,7	-22,9	71,6	0,0	0,0	\#\#\#\#	73,9	0,0	0,0	\#\#\#\#
ABC-II	19	6,2	22,2	0,19	43,1	-36,9	34,7	0,0	0,0	\#\#\#\#	37,0	0,0	0,0	\#\#\#\#
ABT-III	18	6,8	19,0	0,16	34,5	$-27,7$	7,0	0,0	0,0	\#\#\#\#	9,3	0,0	0,0	\#\#\#\#
CEI-I	19	13,4	17,3	0,12	21,9	-8,5	-1,4	-1,4	-1,4	99,7	0,8	0,0	0,0	\#\#\#\#
CEIT-II	18	1,5	19,1	0,13	25,8	-24,3	$-24,3$	-24,3	-25,7	94,7	-23,5	-23,5	-23,5	95,2
CEI-III	16	10,9	20,4	0,14	27,9	$-17,0$	-17,0	$-17,0$	$-42,7$	91,2	-8,8	$-8,8$	-32,3	93,4
Сума/сред	401	\#\#\#\#	19,4	0,16	\#\#\#\#	\#\#\#\#								

4. ЗАКЉУЧЦИ

Добијени резултати указују на значај перма- код доношења одређених планских и операнентног праћења водног биланса у свим произ- тивних одлука, али се глобални проблем честе водним рејонима, јер је неспорна чињеница да је варирање у водном билансу земљишта основни разлог варирања приноса у Србији. Овакве информације могу бити веома корисне

5. ЛИТЕРАТУРА

Бошњак, Ђ.: Потребе за водом и заливни режим соје. Наука и производња. Vol. 15.(1-2). ИIIK Осијек. 1987.
Драговић, С.: Одређивање заливног режима анализом водног биланса земљишта. Зборник радова, Свеска 19. Институт за ратарство и повртарство, Нови Сад. 1991
Frere, M. and Popov, G.F.: Agrometeorological Crop monitoring and forecasting. FAO plant production and protection paper, Rome, 64pp. 1979
Kunkel, K.E. : Operational Soil Moisture Estimation for Midwestern United States. J. Appl. Meteor., 29, 1158 1166. 199

Вучић, Н.: Биоклиматски коефицијенти и заливни режим биљака - теорија и практична примена. Водопривреда, 6-8.1971.

ИСПИТИВАЊЕ ПОТЕНЩИЈАЛНЕ ЕВАПОТРАНСПИРАЦИЈЕ

 И ДЕФИЦИТА ПАДАВИНА НА ПОДРУФЈУ СРБИЈЕСлавица Радовановиһ, дийл. инж., Пешар Сиасов, дийл. мей. Рейублички хидромейеоролоики завод Србије, Киеза Вииеслава 6б, 11030 Беойрад, Јуz̄ославија

Abstract

By applying several known methods (Penman, Priestly-Taylor, Makkink,...) and using standard meteorological data, the values of potential evapotranspiration (Ep) were calculated. The comparative analysis of obtained results enabled us to make a choice of the most suitable method to determinate EP and potential rainfall deficit (P-Ep) at the territory of Serbia. During the determination of water deficit
for a certain agricultural crop, Ep was corrected by applying bioclimate coefficients of the crop (Kk).
 вредносииии иоииенццјане евайоиирансйирачије (Ер), корисииећии сииандардне меииеоролоике йодаике. Комйараиивна анализа добијених резулйаииа је омог̆ућиаа да се изврии избор најиововнијег меиода за уиврђиване Ер и иоиенииаиног дефицииа иадавиа (р-ьр) ма иодручји

1. УВОД

Потенцијална евапотранспирација (Ер), пред- авају максималну потрошњу воде ниског ставља један значајан климатски параметар који налази широку примену у пољопривреди, хидрологији, метео-рологији и др. Величина евапо-транспирације указује, пре свега, на топлотни потенцијал датог региона, јер у условима када евапотанспирација није лимитирана залихама воде у земљишту, највећи део расположиве енергије се троши на евапотранспирацију. Такве вредности могу бити искоришћене као индикатори влажења или сушења неке површине, једноставно поређењем Ер са падавинама.

С друге стране, Ер се користи као индикатор потреба биљака или вегетације за водом. Када нема дефицита воде у земљишту биљьке се развијају боље, а евапотранспирација достиже своје максималне вредности (Epk). Имајући ово у виду, може се прихватити да израчунате климатолошке вредности Ер, применом неке од познатих метода(Penman, Priestly-Taylor,Makkink,...), приближно израж-

авају максималну потрошњу воде ниског привредну културу, потребно је вредности Ep кориговати једним коефицијентом који зависи од саме културе и фазе развића. Примена коефицијента културе (Кк) омогућава да се тачније одреде различите потребе биљака за водом током вегетационе сезоне и време појаве и интезитет дефицита воде.

Предмет овог рада је да се упореде резултати обрачуна Ер применом метода Penman-a, Priestly-Taylor-a, Makkink-а и изврши избор једне од њих, имајући у виду резултате мерења евапо-транспирације помоћу лизиметара РХМЗ Србије. Одабрана метода је затим искоришћена да се утврди просторно- временска расподела потенцијалног дефицита падавина ($\mathrm{Dp}=\mathrm{P}-\mathrm{Ep}$) на подручју Србије. Посебно је анализирана појава дефицита воде и њена учесталост у критичном периоду развића важнијих пољопривредних култура.

На основу теоријских разматрања и вишегодишњег експерименталног рада развијен је велики број метода за обрачун евапотранспирације. Избор методе зависи од расположивих климатолошких података и тачности резултата који се траже.

У овом раду су примењене три методе и то: Penman-a, Priestly-Taylor-a u Makkink-a.

2.1. METOДA PENMAN-a

Потенцијална евапотранспирација (Ер) је дефинисана помоћу једначине (Garnier,1992).
$\mathrm{Ep}=\mathrm{f}(\mathrm{Re}, \mathrm{At})_{\mathrm{M}, \mathrm{O}, \mathrm{Sr}}$
Види се да је Ер функција (f) од расположиве енергије (Re) и атмосферских услова (At) који утичу на пренос паре са површине која испарава. Услови влажности земљишта (M), утицај адвекције или тзв. " ефекта оазе" (О), као и отпор стома (St) у условима за потенцијалну евапотранспирацију нису ограничавајући фактори.

Фактори Re и At су успешно комбиновани у добро познатој једначини Penman-a (Penman 1948);
$\mathrm{Ep}=\Delta /(\Delta+\gamma) \mathrm{Q}^{*}+\gamma /(\Delta+\gamma) \mathrm{Ea}$
у овој једначини, Δ је промена максималног напона водене паре у зависности од темпера туре, $\left(\mathrm{mb}^{\circ} \mathrm{C}^{-1}\right), \gamma$ - психрометријска констант (0.66), а Q* - биланс укупног зрачења који репрезентуje Re у једначини (1). Еа је фактор који изражава атмосферске услове (At) ка функција од брзине ветра (U) и влажности ваздуха. Овај аеродинамички члан одређује се помоћу једн. (3):
$\mathrm{Ea}=0.26(\mathrm{es}-\mathrm{ca})(1.00+0.54 \mathrm{U})$
где је

- максимални напон водене паре (mb) при гемператури T,
еа- стварни напон паре (mb),
U - брзина ветра на висини од $2 \mathrm{~m}\left(\mathrm{~ms}^{-1}\right)$.
Обзиром да се биланс зрачења (Q^{*}) мери на веома ограниченом броју станица (код нас сада

само на једној станици - Зелено брдо), обрачун Q* је извршен применом израза који су у оквиру FAO, за практичну примену развили Frere и Popov (1979); тј.
$\mathrm{Q}^{*}=(1-\mathrm{A}) \mathrm{Q}_{0}(\mathrm{a}+\mathrm{b} \mathrm{n} / \mathrm{N})-$ $-\sigma T^{4}(0.56-0.079 \sqrt{\text { ea) }(0.10+0.90 n / N)}$ где је:

A- албедо (за већину усева $\mathrm{A}=0.25$)
и - стварно осунчавање,
Qо - екстратерестричко зрачење изражено у mm испарене воде за вредност соларне константе,
N - потенцијално осунчавање,
a,b - константе,
$\sigma \mathrm{T}^{4}$ - радијација црног тела (mm).

2. МОДЕЛ "РАВНОТЕЖЕ"

PRIESTLY-TAYLOR-a
У повољним условима за потенцијалну евапотранспирацију влажност ваздуха непосредно изнад површине биљног покривача тежи засићењу. С друге стране, ветар при самој површини биљака значајно слаби у односу на брзину на висини од два метра. Заједничко дејство ових параметара доприноси да аеродинамички члан (Еа) у Penman-oвој формули тежи некој константној вредности.

Ова чињеница је искоришћена да се дефинише модел "равнотеже" за Ер у облику:
$\mathrm{Ep}=\alpha \Delta /(\Delta+\gamma) \mathrm{Q}^{*}$
где је $\alpha(=1.26)$ Priestly-Taylor-ова константа.
2.3. МЕТОДА MAKKINK-a

Ова метода је слична моделу равнотеже. Међутим, у њој су уместо биланса зрачења коришћене вредности глобалног сунчевог зрачења ($\mathrm{K} \downarrow$),тј.:
$\mathrm{Ep}=\Delta /(\Delta+\gamma) \mathrm{K} \downarrow-0.12$
(6)

Глобално сунчево зрачење се мери на нешто већем броју станица у нас, али најчешће се за обрачун истог користи регресиона једначина Ангрстем-а која се већ садржи у једн. 4 (први део)

3. АНАЛИЗА РЕЗУЛТАТА

Обрачун потенцијалне евапо-транспирације, применом методе Penman-a, Priestly-Taylor-a и Makkink-a (прва и трећа, као и методе Blaney-Criddle-а и класе A, усвојене су од стране FAO као стандарди за обрачун потенцијалнереферентне евапотранспирације) извршен је на бази података са 31 главне метеоролошке станице (ГМС) за период 1991-1996.

Табела 1 даје преглед добијених просечних сума Ер за подручје Србије, а на сл. 1 су приказане средње дневне вредности за испитивани период. Може се лако уочити да метода Pen-man-a даје веће вредности Ер у односу на методе Priestly-Taylor-а и Makkink-а. На годишњем нивоу и за вегетациони период суме Ер по Pen-man-и су веће за 26 и 21%, односно 20 и 22%. Карактеристично је да метод "равнотеже" током свих месеци даје ниже вредности Ер у односу на Penman-a, док метода Makkink-a ниже вредности даје током вегетационог периода а веома блиске за месеце у хладнијој половини године.

Избор методе, која ће се искористити за утврђивање дефицита падавина($\mathrm{Dp}=\mathrm{P}$-Ер), извршен је на основу поређења израчунатих (помоћу поменуте три методе) и измерених вредности Ер (помоћу два тежинска лизиметра од којих је један напуњен смоницом а други черноземом). Резултати мерења референтне евапотранспирације (Er) ниског биљног (смеша трава) покривача (таб.2), показују да је, током све три године испитивања (1990-1992), потрошња воде била већа у лизиметру са земљиштем типа чернозем (Er-L2) него у лизиметру са смоницом (Er-Ll) и то за око 13.0% за вегетациони период. Поређењем ових вредности евапотранспирације (таб.2) са подацима добијеним методама Priestly-Taylor-а и Makkink-a (таб.1), може се констатовати велика подударност. Кумулативне криве на сл. 2 то јасно потврђују

Имајући у виду резултате претходне анализе, као и минималан број неопходних улазних параметара за обрачун Ep , за анализу дефицита падавина одабран је метод Makkink-a.

Разлика између падавина (P) и Ep, коју Baars (1966) назива климатолошким дефицитом

тадавина, a Bloc et al. (1978) потенцијалним водним билансом, израчуната је за све ГМС на територији Србије. Подаци (таб.1) показују да се у просеку дефицит падавина на подручју Србије појављује у периоду мај-август, при чему је мажи у пролећним месецима (-23.0 до 28.6 mm) а знатно израженији током јула (50.8 mm) и августа (-49.1 mm). Постоје значајне рзлике по месецима и годинама испитивања (1991-1996), али се, што се тиче вегетационе сезоне, може са великом сигурношћу рећи да је појава дефицита падавина редовна. За испитивани период добијен је просечан дефицит од 149.4 mm , а посебно је карактеристичан период 1992-1994 када је дефицит потребне воде достигао вредности од -175 mm до -283 mm (1993) Просторни распоред дефиита 1993). Просторни распоред дефицит падавина (карта1) показује да је суша у 1993 години била у већем делу Војводине, цен тралне и источне Србије и на Косов израженија од поменуте просечне вредности услед чега је дошло до значајног смањења приноса важнијих пољопривредних култура Много повољнији услови у погледу укупно дефицита падавина за вегетациони период (46.5 mm) имала је 1995 . година (таб.1), што се позитивно одразило на резултате пољопривредне производње. Међутим, и у овој ре лативно влажној години (са просечном годишњом сумом падавина од 767 mm , од којих је 450 mm пало током вегетационе сезоне дефицит је у појединим регионима био већи од 150 mm (карта 2).

Највећи део дефицита падавина у нашим климатским условима остварује се током јула и августа, тј. у периоду када су потребе за водом пролећних култура најизраженије. У том смислу корисна је информација о учесталости појаве дефицита падавина, нарочито за лока литете где има изграђених система за навод њавање

Уобичајено је у пракси наводњавања да се потребе биљака за водом одрећују применом биоклиматских коефицијената културе (Кк) и референтне евапо-транспирације (Er), одн коришћењем производа Kк*Er. У повољним условима влажности земљишта током критичног периода у развићу дате културе максимална евапотранспирација биљака се приближава вредности $\mathrm{Er}, \mathrm{Tj} . \mathrm{Kk} \cong 1$. Bloc et al. (1978) су за услове Француске користили вред

ност $\mathrm{K}_{\mathrm{K}}=1$ за период највеће осетљивости ку- јом климом(FAO,1986) коришћени нешто већи куруза на недостатак воде, док су у многим коефицијенти (Кк=1.1-1.2). истраживањима у земљама са знатно аридни-

Крива кумулативне вероватноће појаве дефи- јулу и августу. Кумулативна вероватноћа од цита падавина у Београду (сл.3), урађена на 50% одговара дефициту воде од око 60 mm , а у бази 30 -годишњег низа података (1961-1990) и 25% случајева недостатак воде је већи од Кк=1, указује да се у преко 80% година на подручју Београда појављује дефицит падавина у

Са.3. КРИВА КУМУЛАТИВНе ВЕРОВАТНОТЕ ОЈАВЕ КЕФИЦИТА ПАДАВИНА У БЕОГРАДД

4. ЗАКЉУЧЦИ

Abstract

на основу анализе добијених резултата може се закључити следеће: осунчавању или облачности).

Примена методе Penman-a за обрачун потенцијалне евапотранспирације у нашим условима, даје веће вредности Ep у односу на методе Priestly-Taylor-a и Makkink-a, као и у поређењу са измереном евапотранспирацијом (Er) помоћу лизиметара. Обзиром на веома великој подударности између израчунатих и измерених вредности евапо-транспирације, метода Makkink-а може се користити у пракси за одређивање Ер, на основу података о темпера- тури ваздуха и глобалног зрачења (измерено

5. ЛИТЕРАТУРА

Bars, C. Ir., 1966: Calculation of the advisable capacity of sprinkler instllations, based on meteorlogcal data. Bloc,D.,Desvignes, Ph., Gerbier, N., Remois, P., 1978: Contribution a l'etude agrometeorologique du mais en France.
FAO, 1986: Early agrometeorological crop yield assessment, Rome.
Frere,M.,Popov,F.,G.,1979: Agrometeorological crop monitoring and forecasting, FAO Plant production and Protection paper 17, Rome
Garnier, J.B. 1992: Compendium of lecture notes in climatology, WMO-No 726
Penman, H.L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London

| нетода | Гокен | | 11 | III | N | v | n | nil | nill | Ix | x | x\| | x\|l| | 1-xi1 | V-1x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PENMAN | 191 | 7.3 | 15,1 | 51,2 | 663 | 9,1 | 1360 | 126.8 | 100,9 | 74.8 | 34,5 | 18,3 | 7.7 | $1{ }^{2} 23$ | 598, |
| | 1992 | 115 | 19,9 | 51,7 | 81,8 | 116,3 | 1113 | 13,7 | 148,3 | 823 | 426 | 16,2 | 7.5 | 888, | 679, |
| | 1993 | 7,2 | 16,0 | 41,2 | 78.8 | 118,9 | 1424 | 1523 | 136.6 | 75.9 | 46.7 | 24,6 | 10.8 | 84,4, | 204, |
| | 199 | ${ }^{11,8}$ | 23,5 | 53.5 | ${ }_{7,1}$ | 118,4 | 131, | 141,9 | 1342 | 887 | 36,4 | 15,4 | 7,9 | 836,6 | 68, 1 |
| | 199 | 10,6 | 24,7 | 45.9 | $n, 7$ | 1045 | 122, | 146,4 | 1079 | 64.9 | 34,0 | 12,8 | 124 | 763,7 | 22,4, |
| | 1996 | 12,3 | 16,6 | 36.7 | 76,4 | 111,9 | 139,4 | 1445 | 117,1 | 56,2 | 36,9 | 19,1 | 6,7 | 73, | 445.5 |
| | ред. | 10,1 | 19,3 | 46,7 | 76,0 | 110,2 | 130, | 14,9 | 124,2 | 73, ${ }^{\text {a }}$ | 38,5 | 16,0 | 8,8 | 786, | 656,0 |
| Prisstretancor | 199 | 0,3 | 8,7 | 29.6 | 52. | 14.1 | 1173 | 117, | 92,3 | 54,7 | 20,3 | 5,6 | 0.7 | 572 | 508,1 |
| | 9 | 2,5 | 8.0 | 25.8 | 54.8 | 88.1 | 1220 | 120,7 | 107, | 49,0 | 23, | 3.6 | 0.6 | 585 | 52,5 |
| | 1993 | 3,2 | 6.5 | 26,2 | 54,9 | 94,7 | 114.6 | 117. | 96,0 | 50,8 | 20.9 | 6,3 | 1,3 | 584,1 | 528.8, |
| | 199 | 2, | 10.2 | 28,5 | 55,1 | | 1120 | 12, 2 | 1023 | 58.5 | 19,6 | 2.0 | 1.4 | 608.2 | 546,6 |
| | 1995 | 3.6 | 7.5 | 27.4 | 54.7 | 87,6 | 110,4 | 128,3, | 9, 0 | ${ }_{50,2}$ | 16.5 | 6.0 | 5.1 | 588,2 | 5222 |
| | 1996 | 4.3 | 9,5 | 29.4 | 53.6 | 4.8 | 1197 | 117,3 | 94,0 | 45, | 21,8 | 1.3 | 3.8 | 590, | 5252 |
| | ед. | 1,6 | 8,4 | 27,0 | 54,3 | 8,0 | 112, | 120,8 | 97,3 | 1,5 | 20,3 | 4.1 | 1,2 | 588,2 | 522,6 |
| maxkink | 199 | 11,0 | 14,2 | 35,0 | 53,8 | 6,8 | 108.3 | 100,7 | 84.4 | 66,5 | 31,5 | 14,4 | 6.8 | 500 | 47,5 |
| | 1992 | 9,4 | 19,1 | 36,9 | 575 | 86,3 | 848 | 1122 | 116.5 | 69,5 | 30,4 | 15.5 | 8.0 | 6459 | 526,7 |
| | 1993 | 12.2 | 16.9 | 31,1 | 59.5 | 9.6 | 109.2. | 115,5 | 1039 | 64,1 | 36,4 | 11, | 10,1 | 680,3 | 42.5 |
| | 1994 | 11,0 | 16.5 | 43.7 | 52.6 | 92. | 102, | 119, | 107, | B, 2 | 32.5 | 16,6 | 9.4 | 669.1 | |
| | 199 | 8.6 | 23.8 | 324 | 59,1 | 80.4 | 972 | 117,5 | 86,0 | 55.7 | 39,9 | ${ }_{11,6}$ | 6,7 | $66^{6}, 1$ | 996, |
| | 199 | 83 | 14,2 | 26.8 | 54,4 | 85.0 | 111,5 | 113.3 | 89,2 | 44,0 | 29.5 | 18, | ¢ | 6027 | 498,5 |
| | срвд. | 10, 1 | 17,4 | 34,3 | 56,2 | 83,2] | 107, | 11.8 | 91, | 62.1 | 33, | 14,5 | 8.0 | 631.2 | [13,4 |
| PADAMNE | 191 | 17, | 35.8 | 49.7 | 6,9 | 81.2 | 46,7 | 120,0 | 58,8 | 25.3 | 820 | 61,3 | ${ }^{34,3}$ | 657 | -386, |
| | 192 | 10.3 | 39,5 | 21,1 | 17,5 | 32,6 | 128 | 41,8 | 21,9, | 27,2 | 95.6 | \$0,0 | 33,3 | 52,7 | 317, |
| | 1993 | 22,3 | 17.5 | 67,4 | 34,1 | 34.3 | 55,2 | 36.3 | 37, | 62. | 26.0 | 62.5 | 78,9 | 533, | 299,3 |
| | 194 | 50,2 | 29,5 | 26.8 | 66,1 | 46,6 | 0.9 | n, 7 | 47, | 41.5 | 48,7 | 21, ${ }^{\text {a }}$ | 36,4 | $5 \pi .7$ | 364,5 |
| | 1995 | 83,2 | 44,5 | 55,1 | 58.5 | 74.5 | 84,8 | 64,7 | 5, | 920 | 3.1 | 55.0 | 76.3 | 766, | 449.6 |
| | 1996 | 31,5 | 61,0 | 50,9 | 49.2 | 2,1 | 40.8 | 31, | 524 | 140,6 | 39.3 | 2,7 | 828 | 7450 | 406 |
| | сРеп. | 35,6 | 37,1 | 45,2 | 57, | 60,2 | 73,5 | 61,0 | 48, ${ }^{\text {c }}$ | 64.2 | 4,1 | 58, | 57.0 | 645,6 | 364,0 |
| potencualn
 officit
 padavina
 Prepphmm
 Ep po makknkw | 191 | 6.4 | 21,6 | 14,6 | 13.2 | 17.4 | -61, 6 | 19,3 | 22.5 | 41.2 | 50,6 | 47.0 | 27,4 | 672 | -914, |
| | 192 | 0.9 | 15,4 | 15.8 | 14.0 | 53,6 | 381 | n,3 | 94.6 | 423 | 65.2 | 64,5 | 25,3 | 53.2 | 8 |
| | 1993 | 10,1 | 0.6 | 36,3 | 25,4 | 56,3 | .53, | -7, 2 | 66.8 | 1,7 | -10,5 | 51,4 | 68,8 | -126,6 | -283, |
| | 194 | 332 | 12.9 | 16,9 | 13,5 | 45.6 | -11, | 40,0 | 50, | 31.6 | 16.2 | 5,1 | 27, | -1,4 | - 174,9 |
| | 1995 | 74,6 | 20,7 | 22.7 | 0,7 | 5.9 | 12.5 | 528 | -11,0 | 36.3 | 36.8 | 43,4, | 69.6 | 1477 | 46,5 |
| | 1996 | 23,2 | 46,9 | 24.0 | 5.5 | 6.1 | 0.6 | -81,6 | 36.8 | 96.6 | 9,8 | 54,7 | 75, | 1429 | -91,0 |
| | сред. | 25,7 | 19,1 | 10,8 | 1,5 | 23,01 | 28,6 | 90, 8 | 49,1] | 2.7 | 15,8 | 4,3 | 4,0 | 144 | 49,4 |

Ix,uncrap 1	Tonite	i	,	n	vil	niI	ix	x	
pen: crouns	1990	33,	90.7	100,6	118,7	15,	40.6	320	
	191	66,5	72	85, 1	97,9	99.	47,	30,7	
	1992	64,0	68,9	101,3	915	81,2	38,	35.2	45
	сгед.	54,	7,3	102,0	104,	35,6	42,1	32,6	
	Yoxus	v	v	n	ni	vil	ix	\times	
	1990	48.0	68,8	1122	134,	117,0	60.8	51.6	54
	191	55.0	$\underline{2,4}$	99.8	106,8	10, 7	n, 0	420	
	1992	57.3	80,0	116,3	135,0	99,	48.9	38.1	
	crea.	3,4	73,	109,4	125,	108,6	39,9	${ }_{43,9}$	
		54,0	\% s,	105, 7	115,1	97,	51,	38,3	

ПРИМЕНА МЕТЕОРОЛОШКИХ ПОДАТАКА У АНАЛИЗИ ВОДНОГ БИЛАНСА ЗЕМЉИШТА И СУШЕ ЗА ПОТРЕБЕ НАВОДНАВАЊА

Проф. Др Светимир Драговић, Мр Ливија Максимовић, Ђура Карагић, дипл.инг. Научни институт за ратарство и повртарство Нови Сад, М. Горког 30, 21000 Нови Сад

Проф. Др Буро Боиъак, Мр Боривој Пејић
Полопривредни факултет Нови Сад, Д. Обрадовића 8, 21000 Нови Сад

Potential evapotranspiration is the basis for water balance calculation. As direct methods for measurement of potential evapotranspiration call for special equipment and a number of measurements, procedures have been designed measure potential evapotranspiration indirectly, via meteorological data. Potential evapotranspiration has been measures by the methods of Penman, Thornthvaite and Blaney-Criddle.

Water balance calculation may be used to analyze the occurrence of drought, drought duration and intensity, and the effect of drought on crop yields obtained in natural conditions and in irrigation. In the variable climatic conditions of the Vojvodina Province, drought occurs frequently. Long or short dry periods occur every year. Depending on the period of occurrence and duration, drought significantly decreases crop yields causing extensive damages in agricultural production. As the model of global climatic changes foresees an even larger water deficit, the problem deserves our undivided attention

Абстракт

Полазна основа за обрачун водног биланса је потенчијална евапотранспирачија. Директне методе мерења потениијалне евапотранспирачије захтевају поседованје одређене опреме, бројна мерења, па је разрађен читав низ поступака за иидиректно утврћиваъе ъених вредности на бази метеоро Вредности потенцјалне евапотранспирачије обрачунате су методама Penman, Thornthwaite и BlaneyCriddle.

Брачуном водног биланса може се анализирати појава суше, дужина трајања и интензитет, као и утииај на остварене приносе у природним условима производње, односно у условима без наводњавања. у променьивим климатским условима Војводине суиа је честа појава и јавља се скоро сваке године у краћим или дужсим интервалима. У зависности од периода у којем се појавьује и дужине трајања значајно умањује приносе и проузрокује огромне штете у пољопривредној производьи. Моделом о глобалним климатским променама предвића се јои већи дефицит воде у биљној производни тако да се јавља потреба за њеном детаљном анализом.

Увод

лиима у целини са свим својим елементима и факторима има велико уицаја на биљну роизводњу. Међутим, тешко је одредити посебан тицај појединих климатских елемената на раст и развиће биљног света јер су међусобно повезани и условљени, и потребно је сваки поједини елеменат посматрати у функцији са другим јер се физички

амбијент понаша као целина. Клима, земъииште биъка су нераздвојна целина и само тако се мог анализяратн. Нанме, од колянне падавина завие природни прилив воде у земьиште, од земььишта његових својстава зависи прихватање падавина задржавање и економисање водом у току потрошње Гајене биљке усвајају воду и постављају одређен

захтеве у погледу њеног снабдевања. У систему слима-земљиште-биъка неопходно је утврдити одређене законитости и на тај начин природне услове искористити за практичне потребе. Вода има посебну улогу у животу биљака, јер се сви животни процеси у њима нормално одвијају само у условима непрекидног и довољног обезбеђења водом. Ниједан други чинилац спољне средине не оставља тако дубок траг на спољну и унутрашну структуру биљака као недостатак воде у земљишту и ваздуху, истиче Петинов (цит. Вучић, 1976). Пустињским или полупустињским пределима вода доноси живот, а у области умерене климе, уз разумно и стручно коришћење обиље и сигурност. У условима повећаног прираштаја становништва све земље света чине огромне напоре y циљу повећања пољопривредне производве, која у многим земьама

 рејонима

У нашим променљивим климатским условима у петњем периоду суша је редовна појава, и често оставља озбиъне последице на умањење приноса пољопривредних биљака. Са агрономског аспекта дефинише се недовољном обезбеђеношћу биљака водом, односно када је стварна потрошња воде мања од потреба биљака за водом без обзира на узроке. Последњих година суша је интензивнија, чешће се јавља и дуже траје, тако да у неким рејонима често угрожава производюу. У наредном периоду може се очекивати још већи дефицит воде у билној производњи, што је предвићено моделом о глобалним климатским променама, тако да се јављь потреба за детаънијом анализом овог феномена.

Пре него што се приступи пројектовању система за наводњавање потребно је детаљно анализирати климатске услове, у првом реду падавине, јер нриступочном обжжу за нормалан раст и развине За ту намену конструише се крива обезбеђеност адавинама којом се утврђује вероватноћа појав одређене количине падавина у испитиваном периоду. Неопходно је утврдити и потрбе биљака з водом (ЕТР), kako би се обезбедило оптимално снабдевање биљака водом у току вегетације Директне методе мерења ЕTP повезане су са коришћењем одређене опреме, бројним узорковањима и мерењима, и због тога је разрађен читав низ поступака за индиректан обрачун њени вредности на бази метеоролошких и других

елемената. Мебуутим, упркос бројним мерењима и упоређенима остаје констатација да не постоји универзални индиректни метод за различита климатска подручја, већ је сваки од њих локалног или регионалног карактера. Упоређењем обезбеђености падавинама са потенцијалном евапотранспирацијом утврђује се дефицит воде у вегетационом периоду и тако одређује норма наводњавања, хидромодул заливног система, као и димензионисање хидрограђевинске опреме.

меТОД РАДА

Основа за обрачун водног биланса је потенцијална евапотранспирација. Постоји више обрачунских метода за одређивање потенцијалне евапотранспирације које имају универзалну примену на ширем подручју у зависности од климатских карактеристика рејона. За обрачун потенциаалне Thorthaнааітирације коришћене су методе Penman, примењене методе, поред вредности потенцијалне (ETP) или референтне (ETo) евапотранспирације, за обрачун водног биланса потребно је познавати вредности различитих метеоролошких елемената.

Метода Репman-a
$\mathrm{ETo}=\mathrm{Cp} *\left[\mathrm{~W} * \mathrm{Rn}+(1-\mathrm{W}) * \mathrm{f}(\mathrm{u})^{*}(\mathrm{ea}-\mathrm{ed})\right]$
Eto = референтна евапотранспирација $(\mathrm{mm} / \mathrm{dan})$
$\mathrm{W}=$ температурни коефицијент (зависи од температуре и гсографске ширине)
$\mathrm{Rn}=$ нето радијација, изражена у еквивалентима евапотранспирације (mm/dan)
$\mathrm{f}(\mathrm{u})=$ функција хоризонталне брзине ветра
еа $=$ максимални притисак водене паре у ваздуху на температури водене површине (mb)
ed $=$ притисак водене паре у ваздуху при температури тачке росе (mb)
$\mathrm{Cp}=\mathrm{Penman-oв} \mathrm{корекциони} \mathrm{фактор}$
Метода Thornthwaite-a:
$\mathrm{ETo}=16 * \mathrm{~K}\left(10^{*} / / /\right)^{\mathrm{a}}$
ЕТо $=$ месечна потенцијална евапотранспирација (mm)
$\mathrm{K}=$ корекционии коефицијент за географску ширину
$t=$ средња месечна температура ваздуха $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{I}=$ годишшьи термички индекс (добија се сабирањем месечних термичких индекса
$\mathrm{i}=$ месечни термички индекс $\left(\mathrm{i}=(\mathrm{t} / 5)^{1.514}\right)$
$a=$ експоненцијални коефицијент ($a=0.016 * I+0.5$)
Метода Blaney-Criddle-a
$\mathrm{ETo}=\mathrm{Cb} *\left[\mathrm{p}^{*}(0.46 * \mathrm{~T}+8)\right]$
$\mathrm{ETo}=$ референтна евапотранспирација (mm/dan)
$\mathrm{Cb}=$ Blaney-Criddle корекциони коефицијент (зависи од минималне релативне вл)
$\mathrm{T}=$ средња дневна температура ваздуха $\left({ }^{\circ} \mathrm{C}\right.$)
$\mathrm{p}=$ проценат дневног трајања обданице у односу на годишњу вредност обданице као 100%

За обрачун ЕTP коришћени су такође и подаци о висини испаравања воде са слободне водене површине из евапориметара различитог типа: Class "A", Wilda i Picha

За обрачун ЕТР ратарских и повртарских биљака, као и водног биланса у агроеколошким условима Ворводине користи се и биоклиматски метод рвај поступак се користи и као основа за заливни режям ратарских и повртарских биљака, односно за одређивање времена заливања. Такође има и општи значај, јер се његовим обрачуном може анализирати појава суше, њено трајање и интензитет

Анализа суше вршена је обрачуном индекса суше De Martonn-а (Миливојевић, 1980), методом Hergreaves а (Бошњак, 1993), Драговић (1995) и водног биланс земљишта (Вучић и Бошњак, 1989), (Драговий, 1997).

а конструисање криве обезбеђености падавна за потребе наводњавања коришћени су вишегодишњи подаци, узети са Главне метеоролошке станице Римски Шанчеви. Анализа је вршена за хидролошку тодину, вегетациону сезону и период јул-август Падавине су сређене по висини у силазном низу, а затим груписане у интервал од 25 ория рој година у сваком интервалу, формир умулација изнад и обрачунат просек интервала

РЕЗУЛТАТИ ИСТРАЖИВАНА

Обрачун ETP методама Penman, Thornthwaite пи Blaney-Criddle

У литератури постоје бројне формуле за индиректни обрачун ETP У већини формула користе се појединачни метеоролошки елементи, а у неке је укључено више метеоролошких и других елемената у настојању да се утврди комплекснија анализа деловања више фактора на ETP. Бошњак (1985) је користио различите методе за обрачун референтне евапотранспирације (ЕТо) са циљем да се анализом корелације утврди однос обрачунате ЕTP и ЕTP кукуруза и соје утвруене полсским оллдима у агроеколошким условима Војводине. Коришһене су методе Penman, Thornthwaite и Blaney-Criddle (Таб. 1). Добијене су различите вредности ЕТо по формулама наведених аутора, а такође и знатна одступања од измерених вредности ЕТР кукуруза и соје. Међутим, остварена је статистичси оправдана корелација ЕТо паведеним формулама са измерено ЕTP кукуруза и соје. То је гаранциа да снвима формуле могу коровия уа користе утврђен
 Једначине регресде нио ини индекси за превођење брряунатих вренности ETP у вредности ETP кукуруза и соје (Таб. 2)

Обрачун ЕТР мерењем испаравања воде са

слободие водене поврпине
Постоји могућност да се потребе биљка за водом повежу са испаравањем воде са слободне воден површине што у многоме олакшава решење проблема, јер се испаравање са водене површшин мери у метеоролошким станицама широм света Основу оваквој конщепщији даје чињеница да евапотранспирација (ЕТ) при оптималном снабдевању биљака водом, као и испаравање с слободне водене површшне подлежу физички законима испаравања. Иако транспирациј неоспорно зависи од услова споьне средне, ис тако зависи и од ссобина биљке, па је она у ствар биофизички процес и зато укуну потрбу б водом треба сматрати само приблкжн
 поврмине. Корииоче моефичјіенте, не може обзира на кору да се прихвати као сигурна основа за свброчун потеба бидага за водом, већ је неотходно да се ове потребе утврде, а тек онда је могуће утврдити корелашију између добијених вредности испаравана са слободне водене површине. На ова начин добијене формуле и односи имају регионалн

карактер, али и велику практичну вредност за се користи и биоклиматски метод применом одређено подручје. Бошњак (1984) указује да се хидрофитотермичких индекса (Вучић, 1971). обрачун ЕТР биљака индиректно преко евапорације Хидрофитотермички индекси показују колико из евапориметара поузданије одређуује него помоћу једног или више метеоролошких елемената који се користе у формулама јер су Е и ЕІР условљене истим метеоролошким чиниоцима. Коришћени су подаци висине евапорације из евапориметара различитог типа Class „A", Wilda i Picha. Истовремено је утврђена ЕТР кукуруза и соје на огледном пољу Института за ратарство и повртарство у Новом Саду применом различитих комоинација заливања и конроле без павдњавања поступком водног биланса земљишта. Утврђена је Е из свих ввапориметара и ЕТР кучруза и соје, што Е из сви ека E из вопориметара може користити као значова за обрачун ETP биъака (Бошњак, 1983). Корекциони инденси су приказани у Таб. 3. Добијеним инденсима се поједноставъује обрачун ETP што у пракси наводњавања омогућује свакодневно билансирање садржаја лакоприступачне воде у земљишту, односно одређивање времена заливања.

Обрачун ЕТР биоклиматским поступком

За обрачун ЕTP ратарских и повртарских биљака у $\mathrm{St}=$ сума средње дневних температура за период или агроеколошким условима Војводине врло успешно

Хидрофитотермички индекси показууу колико милиметара воде троше биљке евапотранспирациуу за сваки степен средње дневне температуре ваздуха. За обрачун ETP могу да се користе и други метеоролошки елементи дефицит засићености ваздуха воденом паром, релативна влажност ваздуха, соларна радијација, инсолација, брзина ветра и др. Најприхватљивије је користит средњу температуру ваздуха, јер се до ве најлие у долал, а но вре вов не пресечне вредности хидроритотермччних индекса за период вегеташије нукуруза износе 0.15 (Вучић и Јошћ, 1970), шећерне репе 0.18 Драговић (1973), соје 0.16-0.17 (Вучић и Бошњак, 1980), сунцокрета 0.16, лущерке 0.20 (Бошшак, 1991), хмеља 0.18 (Кишгеци, 1974), кромпира 0.19 (Бошњак и Пејић, 1995). Обрачун потенцијалне евапотранспирације вршй се формулом:
$\mathrm{ETP}=\mathrm{hi} \cdot \mathrm{St}$
ЕТР = потенцијална евапотранспирација за период или потпериод вегетације (mm)
$\mathrm{hi}=$ хидрофитотермички индекс потпериод вегетације(${ }^{\circ} \mathrm{C}$)

Таб. 1. Обрачуната ЕT (mm) формулама Penman, Thornthwaite и Blaney-Criddle (Goшњғак, 1985)

Година	Месец	Penman	Thornthwaite	Blaney-Criddle
1979	IV	95,3	52,7	115,3
	V	136,9	109,5	159,8
	VI	158,7	160,6	187,4
	VII	134,8	139,9	178,3
	VIII	127,5	130,7	165,9
	IX	89,5	96,1	134,6
	Укупно	724,7	689,5	941,3
1980.	IV	70,6	44,1	108,2
	V	106,5	89,3	148,1
	VI	149,3	133,0	174,5
	VII	130,4	141,2	181,1
	VIII	110,0	129,1	166,6
	IX	68,9	77,6	128,8
	Укупно	635,7	614,3	907,3
1981.	IV	98,6	58,9	119,1
	V	125,4	102,7	156,2
	VI	104,5	147,2	180,6
	VII	124,3	149,5	183,1
	VIII	90,8	138,0	169,2
	IX	35,9	98,3	135,6
	Укупно	579,5	694,6	942,8

Таб. 2. Корекциони индекси ЕTP кукуруза и соје у односу на обрачунате вредности ЕТ (Бошњак, 1985)

Meсец	Kукуруз			Coja		
	Penman	Thornthwaite	Blaney-Criddle	Penman	Thornthwaite	Blaney-Criddle
Vegetaci	0,42	0,52	0,34	0,37	0,45	0,29
j	0,91	0,85	0,69	0,75	0,70	0,57
VI	0,88	0,80	0,63	0,87	0,79	0,62
VII	1,03	0,85	0,67	1,00	0,82	0,65
VIII	0,86	0,61	0,42	0,84	0,60	0,41
IX						0,51
Просек	0,82	0,73	0,55	0,77	0,67	0

Таб. 3. Корекциони индекси ЕTP кукуруза и соје у односу на Е из евапориметара (Бошњак, 1983)

Месец	Кукуру3			Coja		
	Class A	Wild	Piche	Class A	Wild	Piche
Вегетација	0,42	0,83	0,32	0,37	0,77	0,28
VI	0,75	1,88	0,70	0,63	1,55	0,59
VII	0,70	1,50	0,67	0,69	1,47	0,66
VIII	0,67	1,61	0,67	0,64	1,56	0,64
IX	0,53	1,34	0,46	0,50	1,26	0,44
Просек	0,60	1,33	0,51	0,57	1,32	0,51

Вредности хидрофитотермичких индекса нису исте променом метеоролошких услова који одређуу целом периоду вегетације, мање су на почетку и потрошњу воде (Драговић и сар., 1991), (Таб. 4) рају вегетације, а највеће у летњим месецима и у Резултати водног биланса могу се приказивати корелацмји су са растом и развићем биљака и табеларно и графички (Таб. 5. и Граф. 1)

Таб. 4. Хидрофитотермички коефицијенти биљака за агроеколошке услове Војводине (Драговић, 1991)

Месец	Средња дневна темп. ${ }^{\circ} \mathrm{C}$	Биљна врста			
		Шећерна репа	Кукуруз	Coja	$\begin{gathered} \text { Озима } \\ \text { пшеница } \end{gathered}$
Maj	$\begin{gathered} <15.1 \\ 15.1-18.3 \\ >18.3 \end{gathered}$	$\begin{aligned} & 0.12 \\ & 0.15 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.14 \\ & 0.17 \end{aligned}$	$\begin{aligned} & \hline 0.10 \\ & 0.11 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.17 \\ & 0.21 \end{aligned}$
Јун	$\begin{gathered} <18.4 \\ 18.4-21.0 \\ >21.0 \end{gathered}$	$\begin{aligned} & 0.17 \\ & 0.20 \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.16 \\ & 0.18 \end{aligned}$	$\begin{aligned} & \hline 0.15 \\ & 0.17 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.13 \\ & 0.15 \end{aligned}$
Јул	$\begin{gathered} <20.1 \\ 20.1-22.7 \\ >22.4 \end{gathered}$	$\begin{aligned} & 0.19 \\ & 0.21 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.18 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.18 \\ & 0.20 \end{aligned}$	
Август	$\begin{gathered} <19.2 \\ 19.2-22.4 \\ >22.4 \end{gathered}$	$\begin{aligned} & 0.17 \\ & 0.12 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.18 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.17 \\ & 0.19 \end{aligned}$	
Септембар	$\begin{gathered} <15.4 \\ 15.4-18.3 \\ >18.3 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.12 \\ & 0.14 \end{aligned}$	$\begin{aligned} & \hline 0.10 \\ & 0.12 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.11 \\ & 0.13 \end{aligned}$	

Tab. 5. Обрачун водног биланса шећерне репе у 1993. години (Драговић, 1996)

Датум	Средња дневна темп. ваздуха $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)$	Падавине (mm)	ХФТИ	Дневна ЕТР (mm)	Сумарна ETP (mm)	Наводња вање (mm)	Прилив воде у наводњавању (mm)
1.05.	16.8		0.15	2.52	2.52		55.00
.							
.0 .07.	18.4		0.19	3.50	222.78		258.00
2.07.	20.7		0.21	4.34	227.13		258.00
3.07.	24.3		0.24	5.83	223.96		258.00
4.07.	26.0		0.24	6.24	239.20		258.00
5.07.	27.1		0.24	6.50	245.70		258.00
6.07.	20.3		0.21	4.26	249.97		258.00
7.07.	15.0	7.2	0.19	2.85	252.82		265.2
8.07.	17.0	0.4	0.19	3.23	256.05		265.6
9.07.	19.7		0.19	3.74	259.79	60.00	325.60
10.07.	22.8		0.24	5.47	256.26		325.60

Графичким приказом водног биланса се сагледава природни дефицит воде у вегетационом периоду. Што је удаленост линија потенцијалне и стварне евапотранспирације већа, и појава удаљавања усовима је дошшја и обрнуто Јасно се уочава ночетак интензитет и трајање суше. Дефицит воде почетак, интензитет и трајање суше. Дефицит воде његов утицај на остварене приносе. Разлика између вредности линија потенцијалне и стварне евапотранспирације представља недостатак воде који је потребно надокнадити наводњавањем.

Граф. 1. Водни биланс шећерне репе у 1993. години (Драговић, 1996)

Коришһење метеоролошких података у анализи суше
Суша је један од најважнијих ограничавајућих фактора билне производње. Главни узрок суше је недовољна количина и неповољан распоред олошривредног становишта суша се дефинише ма овосатан воде у вемљишту у односу на потребе сајених биљака за обезбеђење услова за нормалан раст и развиће биъака Поповић (1997) истиче да се суша јавља сваке године на територији Југославије, у трајању од 25.9 до 46.4 дана. Уколико бескишни период траје месец дана или дуже у току вегетационе сезоне, принос већине гајених билни врста мањи је за 50% или више у односу на оптималне услове. Уколико се суша појави у неколико узастопних година, утицај на $\left({ }^{\circ} \mathrm{C}\right.$ пољопривредну производњу је катастрофалан.

Године са довољном количином и повољним распоредом падавина у Југославији су ретке. Према Вучићу (1991) појавила се 1976. и до 1991. године није се поновила. Оваквих година има око 10%.
Евидентно је да су и у прошлости суше биле честа појава, да су захватале широка пространства и имале трагичне последице на људе. Међутим, мало је писаних докуменана у којма су зоношке стуке и појаве. Тек након оснивања метсоролошк елукее и
 готинама анализирати трајање и интензитет суше. За анализу суше у шроменьивим климатсния условима од метсоролошких елемената најчешће се користе подаци о укупној количини и распоред

падавина током године, посебно у току вегетационог периода, као и подаци о температури и релативној влажност ваздуха. Коришћењем метеоролошких интензитет суше може се одредити помоћу, инденса суше", који је дефинисао De Martonne (Миливојевић. 1980) употребом следећих формула:
Годишњи индекс суше
$\mathrm{I}=\mathrm{P} /(\mathrm{T}+10)$
Индекс суше за вегетациони период
$\mathrm{I}=2 \mathrm{P} /(\mathrm{T}+10)$
$\mathrm{I}=12 \mathrm{P} /(\mathrm{T}+10)$

Месечни индекс суше
$\mathrm{P}=$ сума падавина за анализирани период
T=средња температура ваздуха испитиваног периода (${ }^{\circ} \mathrm{C}$)

Граничне вредности индекса суше:

<10	.ррло аридни услови
$10-20$	аридни услови
$10-21$	семиаридни услови
$20-30$	

>30
Ощена интензитета суше према суми годишших или вегетационих падавина не представља реалан индикатор у поређењу са анализом према количини падавина у уулу и августу, када су захтеви биљака за водом највећи. Анализа суше за подручје источне Србије (Драговић, 1997), потврдіује овај закьучак (Таб. 6).

Таб. 6. Проценат сушних година (1967-1995) у источној Србији према индексу суше (Драговић, 1997)

Анализирани период	Граничне вредности индекса суше			
	<10 врло аридно	$\begin{gathered} 10-20 \\ \text { аридно } \end{gathered}$	$\begin{gathered} 20-30 \\ \text { семи аридно } \\ \hline \end{gathered}$	$\begin{gathered} >30 \\ \text { хумидно } \\ \hline \end{gathered}$
Година	0.0	3.4	58.6	37.9
Вегетациони период	0.0	24.1	55.2	20.7
Јул+Август	24.1	37.9	20.7	17.2

Индекс обезбеђености водом (MAI) користи се щиром света за одређивање дефицита падавина за биљну производњу. Дефинише се као однос између месечне количине падавина са 75% вероватноном
појаве (Р) и потенцијалне (ЕТР) или референтне (ЕТо) евапотранспирације, односно потреба биљака за водом у одређеном подручју

$\mathrm{MAI}=\mathrm{P} / \mathrm{ETo}$

Према Hergreaves-u (1992), рејони са месечним MAI вредностима нижим од 0.33 сматрају се аридним и неповољним за пољопривредну производњу без наводњавања.

Таб. 7. Општа потенцијална евапотранспирација (ETo), падавиже са вероватноһом обезбеђености 75% (P) и индекси обезбеђености водом (MAI) (Бошњак, 1993)

ETo		Месец			
		VI	VII	VIII	VI-VIII
		100	100-120	100-120	300-340
P (mm)	Суботица	52	44	44	140
	Нови Сад	70	44	39	165
	Сремска Митровица	70	44	32	174
MAI	Суботица	0,52	0,44-0,37	0,44-0,37	0,46-0,41
	Нови Сад	0,70	0,44-0,37	0,39-0,32	0,55-0,48
	Сремска Митровица	0,70	0,44-0,37	0,32-0,26	0,58-0,51

Вредности месечних индекса обезбеђености влагом, како истиче Бошњак (1993), врло су ниски, посебно у јулу и августу (Таб. 7). На основу ове Војводини у летњем периоду семи аридна до аридна.

Да ои се анализирала суша са пољопривредно становишта, поред метеоролошких података, потребно је познавати и приносе пољопривредних биљних врста остварене у таквим условима. Наиме, у сушним годинама приноси пољопривредних биљака значајно се смањууу, нарочито оних врста које имају веће потребе за водом. Међутим, када дефицит падавина у периоду вегетације износи више од једне половине потреба за водом гајених биљака, а период без продуктивних падавина траје месец или више дана, при у овносу н о отимаше услове Такве ниние назиају се естресно сушие (Драгови, 1994)

Пре него што се приступи пројектовању система за наводњавање потребно је утврдити природну обезбеђеност биљака водом од падавина, што представљь озбиљно питање, нарочито у

Таб. 8. Водни биланс земљишта (Драговић, 1997)

Локација	Елементи	Вегетац период							Год. сума
		IV	V	VI	VII	VIII	IX		
Зајечар	$\mathrm{t}^{\circ} \mathrm{C}$	11.1	16.2	19.4	21.2	20.6	16.5	17.5	
$1967-1995$	$\mathrm{P}(\mathrm{mm})$	52	68	70	59	38	41	328	593
	$\mathrm{ETP}(\mathrm{mm})$	40	75	116	138	128	59	556	
	$\mathrm{ETR}(\mathrm{mm})$	40	75	116	66	38	41	376	
	$\mathrm{M}(\mathrm{mm})$	0	0	0	72	90	18	180	
Војводина	$\mathrm{t}^{\circ} \mathrm{C}$	12.1	17.0	19.9	22.0	21.6	18.2	18.5	
$1946-1991$	$\mathrm{P}(\mathrm{mm})$	52	62	86	68	54	38	360	590
	$\mathrm{ETP}(\mathrm{mm})$	44	79	119	143	134	66	585	
	$\mathrm{ETR}(\mathrm{mm})$	44	79	119	78	54	38	412	
	$\mathrm{M}(\mathrm{mm})$	0	0	0	65	80	28	173	

Граф. 1. Крива обезбеђености падавинама за рејон јужне Бачке за хидролошку годину (А), вегетациони период (В) и период јул+август (С) 1924-1996. године

ЛИТЕРАТУРА

Ботвақ, h. 1983. Евапорација са слободне водене површине као основа заливног режима и њен однос према ЕТР кукуруза и соје. Архив за пољопривредне науке 44, 155, 323-344.
Бошвак, В. 1984. Евапорациа у зависности од типа евапориметра као основа за обрачун ЕТР у Бојводини Водопривреда, 16,87, 3-6.
отшьақ, Б.1985. Могућност примене неких формула за обрачун ЕТР у агроеколошким условима Војводине Водопривреда, 17, 93, 13-16.
Бошњак, D. 1991. Заливни режим луцерке у агроеколошким условима Војводине. Зборник Института за ратарство и повртарство, Нови Сад, 19, 235-245.
 повртарство, Нови Сад 21, 85-95
Бошшак, Ђ., Пејић, Б. 1995. Заливни режим кромпира у климатским условима Војводине. Савремена повоприврела, 1-2, 119-125
Вучић, Н, Јоцић, Б. 1970. Прилог одређивању времена заливања кукуруза на основу свакодневног утрошка воде на евапотранспирацију. Архив за пољопривредне науке, Београд, Св 20 .
1976. Навод

Вучић, Н., Бошњак, Ћ. 1980. Потенцијална евапотранспирација соје у климатским условима Војводине Савремена пољопривреда, 28, 7-8, 327-335.
Вучић, Н., Бошњақ Ћ. 1989. Водни биланс земљишта реалан приступ оцени појаве суше њеног трајања и интензитета. Савремена пољопривреда, $1-2,63-70$
драговић, С. 1973. Наводњавање шећерне репе у условима различитог нивоа исхране на чернозему. Докторска дисертација, Пољопривредни факултет, Нови Сад.
драговић, С., Верешбарањи, И., Максимовић Ливија, Лабат Ана. 1991. Одређивање заливног режима анализом водног биланса. Зборник Института за ратарство и повртарство, Нови Сад 83-97.
Драговић, С. Максимовић Ливија. 1996. Computer-Operated Soil Water Balance for Scheduling Irrigation Proceedings of the International Conference "Evapotranspiration and Irrigation Scheduling", San Antonio, Texas, 485-490
Драговић, С., Станојевић, Д., Алексић Валентина, Карагић, Ђ. 1997. The intensity of drought in Eastern Serbia and its effect on crop production. Proceedings of the International Symposium on Drought and plant production, Beograd, Vol. 1, 71-83.
Кишгеци, Ј. 1974. Водни режим биљака хмеља у различитим условима наводњавања и минералне исхране Докторска дисертација, Пољопривредни факултет, Нови Сад.
Миливојевић, J. 1980. Иригациони водни режим чернозема у околини Бачког Градишта. Магистарски рад Пољопривредни факултет, Београд.

ПРОСТОРНА РАСПОДЕЛА НЕКИХ ЕЛЕМЕНАТА КЛИМЕ ПОДРУЧЈА СЛИВА РЕКЕ КАМЕНИЦЕ

Гордана IIекуларач
Аг̄рономски факулӣей, Цара Дуиана 34, 32000 Чачак, Јуӣославија Драгича Сйојиьковин
Пољойривредни факулииеей, Инсииииичуй за уређенье вода, трйДосийеја Обрадовића 8, 21000 Нови Сад, Југ̈ославија

Abstarct

Distribution of the average annual precipitations and the average annual air temperatures are presented for the whole region of the Kamenica river basin, for every marked geomorfological unit of the area. The indicated parameters are natural constituents of the erosion process. These parameters are in the function of the average altitudes, so their values have been estabished depending on this function. By applying specific methodology aiming at defining their values, we enable to come up to diagnosis of the erosion process in the area of study
Key words: basin, precipitations, air temperatures
Абсйиракйи
За целокуйно йодручје слива реке Каменице, за сваку издвојену г̄еоморфолошку јединицу йо-
 ваздуха. Назначени йарамеӣри, йриродни су чиниоци йроцеса ерозије. У функцији су средних
надморских висина, иа су у зависносии од не и одређене вихове вредносиии Применом иосебне надморских висина, иа су у зависносии од ве и одређене нихове вредносии. Применом иосебне цирану йроцеса ерозије на йроучаваном йодручју. Кључне речи: слив, йадавине, йемйерайчре ваздуха

1. УВОД

Метеоролошке појаве и елементи, којима поред осталих припадају падавине и температура ваздуха, природни су чиниоци процеса ерозије земљишта.

Процесу ерозије изложена су сва земљишта на подручјима са израженим рељефом. Изражен рељеф са фактором климе, доприноси појави процеса ерозије.

Слив реке Каменице, део је подручја западне Србије са израженим процесом ерозије. Обухвата површину (F) od $212,17 \mathrm{~km}^{2}$. To је хидрографсика целина коју чине мање јединице са свим геоморфолошким одликама, подсливови, њихови непосредни делови, микро сливови и непосредни део слива Каменице.

На сваком издвојеном делу површине слива Каменице, изражен је процес ерозије, који је изазван водом падавина. Температура ваздуха доприноси појави процеса ерозије земљишта водом. То је разлог да се применом посебних метода, одреде падавине и температура ваздуха на свакој издвојеној јединици површине слива.

2. МАТЕРИЈАЛ И МЕТОД

За дефинисање висине падавина које падну на подручје слива Каменице, послужила је метода интерполације вредности висине падавина помоћу кишног градијента (Bonacci, 1984).

На основу средњих годишњих падавина, падавинских станица Чачак, Каменица, Дивчибаре (Републички хидроме теоролошки завод, 1930-1961), интерполацијом на ниво средњих надморских висина (N_{sr}), дефинисане су средње годишње падавине за сваки подслив, непосредне делове њихових површина, микрослив, непосредни део површине слива Каменице, као и за целокупан њен слив.

Температура ваздуха свих геоморфолошких делова површине подручја слива реке Каменице, израчуната је на основу температуре ваздуха ниже метеоролошке станице (Центар за истраживање у пољопривреди, 1949-1995) применом вертикалног температурног градијента (Дукић, 1984). У поступку таквог рачунања, висинска разлика се односи на разлику између средње надморске висине $\left(\mathrm{N}_{\mathrm{ss}}\right)$ сваке мање јединице у оквиру подручја слива реке Каменице и надморске висине Чачка

3. РЕЗУЛТАТИ И ДИСКУСИЈА

У поступку проучавања процеса ерозије земљишта одређеног подручја, најзначајније су кише јаких интензитета. Пре него што би се приступило таквом анализирању, неопходно је сагледати средње месечне, сезонске годишње падавине. Такви подаци, за падавинске станице подручја слива Каменице, приказани су у Табели 1.

Подаци из Табеле 1, обавештавају да се висина падавина повећава са повећањем надморске висине.

Одлика подручја западне Србије, а и наведених падавинских станица са подручја проучавања је, да највише талога падне за време летњих месеци, просечно око 30%, затим у пролеће око 26%, онда у јесен око 25% и најмање зими, просечно око 19% укупних годишњих падавина.

На планинском подручју Дивчибара, у току лета и пролећа падне око 60% укупних годишњих падавина. Овакав податак је значајан за процес ерозије падина, који је на подручју Дивчибара изражен. Највсће количине падавина су у току маја, јуна и јула месеца, а најмање у фебруару и јануару.

Табра 1 Средне месечне сезонске и йодишне висине йадавина йидавинских сӣаница Чачак, Каменица Дивчибаре, мм (1930-1961)

	Падавинске станице		
	Чачак	Каменица	Дивчибаре
Надмор. висина, м	242	450	950
I	48.6	48.7	33.0
II	41.0	44.8	39.6
III	43.7	50.8	50.9
M IV	58.3	57.2	78.9
v	82.9	84.8	107.7
VI	88.2	77.8	93.3
e VII	66.0	80.6	96.4
c VIII	50.4	60.5	81.8
IX	57.1	53.4	59.2
X	65.1	61.0	85.3
XI	63.5	61.8	71.1
XII	53.7	63.7	55.7
Пролеће	184.9	192.8	237.5
Лето	204.6	218.9	271.5
Јесен	186.7	176.2	215.6
Зима	143.3	157.2	128.3
Годишње	718.5	745.1	852.9

У даљем поступку обраде киша, дефинисане су висине падавина које падну на сваки издвојени део површине подручја слива Каменице.

То је учињено методом интерполације вредности висине падавина помоћу кишног градијента.

Кишни градијент се повећава са порастом надморске висине падавинске станице. Назива се још и вертикални градијент падавина, а приказује разлику у висини падавина између две падавинске станице на сваких 100 m надморске висине, $\Delta \mathrm{h} \times 100 \mathrm{~m}^{-1}$ (Милосављевић, 1988)

Тако су на основу средњих годишњих падавина, падавинских станица Чачак, Каменица и Дивчибаре, интерполацијом на ниво средњих надморских висина $\left(\mathrm{N}_{\mathrm{ss}}\right)$, дефинисане средње годишње падавине за сваки подслив, непосредни његов део, микрослив, као и за непосредан део површине слива Каменице и за целокупан њен слив.

Кишни градијент измедју падавинских станица Каменице и Чачка (Δx) на сваких 100 м надморске висине износи $12,8 \mathrm{~mm}$. Његова вредност између падавинских станица Дивчибаре и Чачак, је 19,0 мм, док између Дивчибара и

Каменице износи 21,6 мм на сваких 100 м надморске висине.

Наведени подаци обавештавају, да је значајан утицај планине Дивчибара на повећање годишње суме падавина са порастом надморске висине.

Средње годишње падавине подручја слива реке Каменице ($\mathrm{N}_{\mathrm{st}}=638,32 \mathrm{~m}$), износе $793,6 \mathrm{~mm}$.

За сваки издвојени део површине слива Каменице, средње годишње падавине у директној су корелацији са средњим надморским висинама. Тако, од свих издвојених подсливова, подслив Ћурила река ($\mathrm{N}_{\mathrm{sr}}=396,87 \mathrm{~m}$) има најмању средњу годишњу висину падавина $(738,3 \mathrm{~mm})$, а Црна Каменица ($\mathrm{N}_{\mathrm{st}}=795,36 \mathrm{~m}$), највећу ($819,4 \mathrm{~mm}$).

Одлика подсливова: Грабовац, Раковица, Турски поток, Јововац, Паљевински поток, Рујевац, Буковац, Ловница, Дугачки поток, Трнавски поток, Ћуверак, Перилиште, Перило, Васовића река, Бабовића поток, Селски поток, Љутореч, Тиња, Козлица и Бела Каменица је да, у просеку, на њих падне воденог талога у висини између претходне две назначене величине.

Непосредни део подслива, Ћурила река $\left(\mathrm{N}_{\mathrm{sr}}=406,51 \mathrm{~m}\right)$, са најмањом је средњом годишњом количином падавина ($739,5 \mathrm{~mm}$), док је Бела Каменица ($\mathrm{N}_{\mathrm{sr}}=827,19 \mathrm{~m}$) са највећом средњом количином падавина (826,3 mm).

Непосредни делови подсливова Ловнице, Љутореча и Тиње, имају средње годишње висине падавина од $765,7 \mathrm{~mm}, 789,8 \mathrm{~mm}$ і 802,4 mm .

Од свих издвојених микросливова, микрослив Бјелоушки поток ($\mathrm{N}_{\mathrm{st}}=349,11 \mathrm{~m}$) са најнижом је средњом годишњом висином падавина (732,2 mm), а Чалачки поток ($\mathrm{N}_{\mathrm{sr}}=1020,97 \mathrm{~m}$), са највишом је средњом висином падавина (868,2 mm)

Подручја свих осталих издвојених микросливова: Дмитров поток, Беглук, Дивнића поток, Бајића поток, Добра вода, Караулски поток, Чанчаров поток, Паљевински поток, Трумбу-

лов поток, Матијевића поток, Томин поток, Чоловића поток, Бели поток, одликују се средњим годишњим падавинама чија је висина измедју назначене претходне две.

Непосредни слив Каменице ($\mathrm{N}_{\mathrm{st}}=476,67 \mathrm{~m}$) има средњу годишњу висину падавина $763,0 \mathrm{~mm}$.

Температура ваздуха, други агресивни чинилаи процеса ерозије земљишта, опада са порастом надморске висине. Опадање температуре ваздуха са повећањем висине, у планинским ваздуха са повећањем висине, у планинским
подучјима просечно износи $0,56^{\circ} \mathrm{C}$ на сваких 100 m висинске разлике (Милосављевић, 1988)

Вредност вертикалног температурног гради јента од $0,56{ }^{\circ} \mathrm{C}$ на сваких 100 m висинске разлике, примењена је у поступку прорачуна температуре ваздуха за сваки издвојени геоморфолошки део површине слива Каменице.

Висинска разлика се односи на разлику између средње надморске висине (N_{sc}) тако издвојених делова површине слива Каменице и надморске висине Чачка (242 m)

Средње месечне и средња годишња темпера тура ваздуха за Чачак, приказана је у Табели 2 , и основа је за прорачун средње годишње температуре ваздуха за слив реке Каменице.

Средња годишња температура ваздуха слива реке Каменице, износи $8.5^{\circ} \mathrm{C}$

Табела 2. Средне месечне и средна годиинь ииемйерайира ваздуа за Чачак, ${ }^{\circ} \mathrm{C}$ (1949-1995)

		Чачак, ${ }^{\circ} \mathrm{C}$
	I	-0.7
	II	1.3
M	III	5.9
e	V	10.9
c	VI	15.8
e	VII	19.2
ц	VIII	20.8
и	IX	20.5
	X	16.8
	XI	11.1
	XII	5.6
Годишња	1.3	

Најнижу средњу годишњу температуру ваздуха има подслив Црна Каменица ($7,6^{\circ} \mathrm{C}$), а највишу Ћурила река ($9,8^{\circ} \mathrm{C}$).

Непосредни део подслива Бела Каменица има најнижу средњу годишњу температуру ваздуха $\left(7,4^{\circ} \mathrm{C}\right)$, а Ћурила река, највишу $\left(9,8^{\circ} \mathrm{C}\right)$.

Микрослив Чалачки поток, са најнижом је средњом годишњом температуром ваздуха (6,3
${ }^{\circ} \mathrm{C}$), док је Бјелоушки поток, са највишом (10,1
${ }^{\circ} \mathrm{C}$).
4. ЗАКЉУУЧА

За сваку издвојену геоморфолоошку јединицу падавине се повећавају те омогућавају да се слива Каменице, одредјени су климатскии чиниоци процеса ерозије, падавине и температуре ваздуха.

Оба климатска параметра, у функицији су средњих надморских висина делова подручја слива. Са порастом надморске висине, где рељеф омогућује да се процес ерозије испољи,

5. ЛИТЕРАТУРА

Вопассі, О., 1984. Метеоролошке и хидролошке подлоге. Поглавље Приручника за хидротехничке мелиорације. И коло, књига 2, 39-30, Загреб.

Центар за истраживање у пољопривреди, 1949-1995. Подаци о температурама ваздуха, Чачак.

Дукић, Д., 1984. Хидрологија копна. Београд.
Милосављевић, М., 1988. Климатологија, Београд
Милосављевић, М., 1988. Метеорологија, Београд.
Републички хидрометеоролошки завод, 1930-1961. Подаци о падавинама, Београд.

УЛОГА И ЗНАЧАЈ МЕТЕОРОЛОГИЈЕ У ШУМАРСТВУ

Др Милун Крстй
култет у веограду, Киеза Виинслава
11030 Београд, Југославија

Abstract

This paper emphasizes the significance of climate for forest and the effect of forest on climate - the significance for the survival of forest ecosystems as natural resources in a region, for the occurrence and survival of individ ual plant species, for the beginning, length and the end of the growing season, etc., as well as the global influ-
ence on the climate and the changes of climatic factors in the forest and its immediate surroundings. The paper ence on the climate and the changes of climatic factors in the forest and its immediate surroundings. The paper
emphasizes the forest as the stabilizing factor of the balance between the tendency of increasing environmental pollution and normal function of natural environment. Special reference is made to the significance of climatic data for planning and performing silvicultural operations in forest management practice

Абстракт

у раду је указано на значај кпиме за иуму и упицај шуме на ктиму - значај за постојаъе шумских екосистема као природних ресурса на одређеном подручуу, за појаву и опстанак појединих биъних врста, за почетак, оужину трајања и завриетак вегетачионог периода итд., као и глобалан утичај иуме на киму и промене климатских фактора у шуми и неној непосредној околини. Истакнута је улога пине обезбеђ̆вања нормалног функчионисања природне средине. Посебно је указано на значај климатских података за планирағе и извођење одређених иумско-узгојних радова у газдоваъу иумама.

1. УВОД

Познато је да је интензивном индустријализацијом природна (животна) средина је угрожена контаминацијом разним полутантима у виду аерозагађења гасовитим агенсима, минералном прашином, тешким металима, чађ̆и, димом и др. Ако је нарушавање животне средине цена коју сашттита животне средине се не може сматрати никаквим чином доброчинства према природи већ одразом нужности, и после индустриіске револушије као потреба се намеће "екопошка револуција" у циљу очувава услова људске револуција" у циљу очувања услова људске улога шуме, као стабилизирајућег фактора равнотеже између тенденције повећаға загађена равнотеже измеиу тенденције пованања загмаења функционисања природне средине. Потреба за мултифункционалним коришћењем шума је све израженхја и због тога ће у будућности све мање површнна под шумом имати приоритетну функцију производње дрвета, док ће све више добијати на значауу тзв. општекорисне функщије: заштитнорегулаторне, санитарно-хигијенске, рекреативно-здравствено-туристичке, естетско-декоративне и др.

Према истраживанима већег броја научника широм света предвиђено је више сценарија (претпоставки) промене глобалне и регионалне климе. Радна група II WMO и UNEP-a Међувладиног панела о климатским променама (199), на основу поданана сстјо сору мтературе, дма јо убудућност: климатских промена у будућности

1. Двоструко ефективно повећање угљен диоксида $\left(\mathrm{CO}_{2}\right)$ у атмосфери до $2025-2050$ године
2. Глобално повећање средње температуре за 1,5 до $4-5^{\circ} \mathrm{C}$
3. Неједнака глобална дистрибуција овот повећања температуре - мало повећање у тропским областима (до половине датих глобалних вредности) а веће повећање у поларним областима - двоструко повећање датих вредности
4. Ниво мора ће се подићи око $0,3-0,5$ м до 2050 годнне и 1 м до 2100 год, а температур површине океана ће се повећати између 0,2 и $2,5^{\circ} \mathrm{C}$.

Наведене глобалне и регионалне климатске промене би се манифестовале на следећи начин: Повећање имисије би се дуплирало, а еколошки услови би се променили, што би резултирало рвета шуме би се теже алаттрале и повећало би
 бројних врста фпоре и фауне посебно у најосетъивијим подручјима (семиаридним) где су многе врсте које затворене у свој биолошки лимит многе животне заједнице адаттиране на одређене услове биле би угрожене и у стресној ситуацији (терестрични екосистеми, планинске, поларне, острвске заједнице); релативно мале климатске промене би направиле велики проблем са водним ресурсима на многим подручјима, посебно у аридним и семиаридним областима, а повећање падавина и влажности земљишта се одразило на коришћење воде.

Климатски чиниоци спадају у услове средине од којих у извесним траницама зависи појава и опстанак шуме и осталих биъних формација на одређеном подручју и њихов распоред. Климатски чиниоци се појављууу у животу щуме и као посредни чиниоци. Учествууу у педогенетским процесима - стварање посебних типова щумских
 велике промене основних клшматских чинитаца
 раздушни маса велини утвша на митрогтму шиматске уснове у шуми и неној шепосредној околини, юоји су настали као последича утишаја шуме на околину. (Бунушевац, 1951).

2. УТИІІЈ КЛИМЕ НА ШУМУ

Без обзира на чињенкцу да распрострањење билног света уопште, а самим тим и шуме, не зависи искьучиво од једне групе еколошких фактора, климатски фактори имају најзначајнију улогу. На основу тога, према Бунушевцу (1951), Мајер је све шуме на северној эемьииној полулопти поделио на 5 шумских климатских подручја. У сваком од њих налазе се шуме одређених врста којима климатски услови тих крајева одговарају, или тачније речено које су се прилагодиле (аклиматизовале) на климатске услове тог подручја. Мајерове шумске климатске зоне ил региони се од екватора према северу, односно од ноном а име су доияе трема врсти дрена ноі за них најарактериссичније:

1. Површине под којима се налазе тропске шуме зову се по палми palmetum
2. Ловорове шуме - lauretum
3. Површине под којима се налазе листопадне шуме подељене су на топлије и иазване по кестену castanetum и хладнији део по букви - fagetum
4. Површине под четинарским шумам назване су picetum по смрчи, abietum по јели и laricetum по аришу.
5. Површине које се налазе изнад горюв висинске границе распрострањења шума назване у alpinetum а оне кој

По Мајеру најзначајнији климатски фактори који словљавају појаву наведених "типова" щума су: количина атмосферких падавина и релативене влаге ваздуха у вегетационом периоду, температура ваздуха - средња годишња и у вегетационом периоду, најниже температуре у току године, време појаве првог јесењег последњег пролећног мраза. Поред појаве одређених шумских типова, од климатских фактора зависи и појава и олстанак одрено иььних врста. У сваком наведеном тну постии
 уа се захвавууук специ шума разликуіу по саставу структури, прирасту фенолошким појавама (чретанс листање, подоношење и др.) Фактор саме надморске висине и изражене ррографије терена шумског подручја су значајни фактори формирања различитих микроклиматских карактеристика. Истакнути висови и гребени су алтернатива обиљу микродепресија и уских долина нотока. Исто тако и нагле и честе промене експозиције и нагиба терена у оквиру мицролокалитета условљава појаву читавог спектра различитих микроклиматских услова. Те промене климатских карактеристика условљавауу одређене промене у шуми. Са променом географске ширине и надморске висине мена се дужина вегетационо периода. Са повепањем надморске висине скраиује вегетациони период, (на Гочу за 6-8 дана). Према Илијанићу et al., (1979), потпуно олиставање храста китьака на доњој граници ареала у западним деловима Балканског полуострва је почетком маја а на горњој средином маја. Са повећањем надморске висине за 100 м листање је касније за 3,2 дана, ддносно за један дан олистају стабла просечно висинском појасу од 31 м

Познато је да под утцајем експозиције терена, а у вези са наведеном променом микроклиматских фактора, долази до појаве одређених типова щума и састава шуме. На топлијим - јужним и југозападним експозицијама јављају се шуме храстова, борова, црној јасена и др. а на хладнијим - северным експозиција терена утиче и на висинско

распрострањене разних врста дрвећа, па се на јужним експозищијама све врсте дрвећ̆а распростиру до већих надморских висина него на северним.

Утицај температуре као климатског фактора на шуму манифестује се тако што се под утицајем касних пролейних или раних јесењих мразева неодрвењени надземни делови смрзавају, а на мразопушина (уздужних пукотина) на стаблу. При екстремно високом температурама ваздуха долази до појаве спржсвања младих биљних делова (при температури површине земљишта веп̆ој од $54^{\circ} \mathrm{C}$ већина биљака угине) или до сушења и опадаюа коре (упала коре).

Познавање микроклиме у шуми значајно је и за предузимање одређених пумско-узгојних радова. у нашим условима за успешно природно обнављање шума храста китњака, у зависности од експозиције терена потребно $20-33 \%$ пуне дневне светлости, а за обнављање буково-јелових пума 4 14%. Извођењем одређених узгојних захвата (сеча) регулише се склоп састојине, и тиме дозира одређени неопходни интензитет светлости, топлоте, влаге и др. фактора значајних за обнављьање шума, што је у шумарству веома значајно за планирање и извођење одређених шумско-узгојних радова у газдовању шумама

3. УТИЦАЈ ШУМЕ НА КЛИМУ

Познато је да је шума као најкомплекснији екосистем снажан нлобални модификатор климе, са нарочито великим утицајем на своју ближу околину, тако да је веома значајна за животне услове и других екоситема као целине.

у данашње време, у условима све израженије еколошке кризе светских размера шуме са својим познатим еколошким својствима има посебну улогу у регулисању природне (животне) средине својом заштитно-регулаторном и санитарно-хигијенском функцијом и грубо речено представъају "плућа земльине кугле".

Од заштитно-регулаторних функција шуме посебно су значајне: утицај на климу подручја, на режим вода, образовање земљишта, спречавање ерозионих процеса, заштиту насельа, саобраћајница и других објеката од затрпавања наносом и др.
Шума као најразвијенији тип вегетације пресудно утиче на климу ширег подручја и микроклиму свот посредан еколошки чинилац под чијим утичајем настају велике промене основних ктиматских еколошкких чиншташа На макрокливу одрейено подручіа не може значано да се утиче јер је ои

одреуена географском ширином, надморском иисином, релефом и др., тј. шума не може значајно да мења укупну годишњу количину падавина, влаге, температуре и др. Али зато се могу регулисати непосредној околини, односно, микроклима Пошто су пуме састављене од разпичитих врста дрвећа оне на различит начин утичу на микрокпиму C друге стране, човек својим деловањем у пуми, применом различитих сеча обнављаға и неге може у значајној мери да регулише микроклиму у шуми.

Досадашња бројна истраживања су показала да се тицај шуме "климатске природе" манифестује кро3 ублажавање температурних екстрема снижавање температуре у односу на отворен простор за неколико степени, повећање влаге ваздуха. Такође утиче на количину, структуру и расподелу падавина, на формирање поља ветра заздушна струјања у самој пуми и њеној околини птд., а локалитети у пуми, где се појављују отвори у склопу, имају знатан утицај на загревање земъишта или веће расхлађивање ваздуха и формирање тзв мразних јама:
a) Глобално сунчево зрачење на висини 1 м изнад земљишта у густој храстовој пуми износи само 9% од зрачења на горњој површини крошања ноже лети бити $4-5^{\circ} \mathrm{C}$ ножа а температура површин емљишта $15-25^{\circ} \mathrm{C}$ ножа него на отоворенои тостору а директно абасјано шите на $8-10^{\circ} \mathrm{C}$ ришу теитературу од околног ватдуха на исто⿱ висини (Пензар, 1989)
б) Хидролошка и водозаштитна функција је свакако једна од веома важних функција пума, а њн утицај шуме на водни режим је разноврстан:

Шума остварује позитиван утицај на повећање падавина за 4-5 \% а пумско земъиште упија и привремено или трајно задржава - акумулира знатне количине воде, утиче на укупну количину падавина које допру до земљишта у шуми и њихову прерасподелу. Услед интерцепције и испаравања са површине асимилационих органа шума задржава, у зависности од врсте дрвећа, и до 30% течних падавина, а дебљина снега у густој четинарској шуми је мања за око 25%, који се спорије и равномерније топи. Релативна влага ваздуха је у пуми већа за $3-5 \%$.

- Регулише отицање воде и тако спречава или потпуно отклања нагло отицање и формирање токова и ерозионих процса а самим тим и штите насеља саобраћајнице, акумулациона језер поьопривредне површине и доуги објекти од оштеһивава и затрпавања наносом
ц) Шума утиче на формирање поља ветр и смањује његову брзину на наветреној и на аветреној страни. Представља ветрозаштитн појас иза шуме на одстојану сабала.

Утицаји шуме "неклиматске природе", познатији као санитарно-хигијенска функција шуме, посебно у значајни у индустријски развијеним подручіим, ау землиште, вода атмосфера, вепетачмја будска популација изложени повећаној контаминацији разним полутантима и агенсима у чврстом и гасовитом стању. Због тога се каже да све зелене површине и вегетација уопште имају улогу плућа насева". Важност, улога и ефекат утицај билнно света уопште, посебно шуме ка стабилизирајућег фактора свих компонент биосфере, може се запазити из навода Јовановића е l.. (1984), Ђукановић (1991), Томанића et al. (1995), Колића (1995):

Шуме производе око $1 / 2$ укупне колжчин кисеоника на Земљи,

- Један хектар шуме везује годишње око 15 тона угљендиоксида и ослобађа 11 тона кисеоника дносно, један ха "растиња" апсорбује 8 к ггъендиоксида у току једног сата,
- Шума на површини од 1 ха може да филтрира из ваздуха $50-70$ тона прашине годишње у зависности од врсте, дрвсће апсорбује прашин , есчинавану ваздха а соличнна пранинеу уариу граду мана је $7-8$ пута у односу на коничнну индустриіској зони града Ефекат "ишчешьавава" твстих честица из ваздуха је вепики - за шум букве око 68 тона/ха. Њихова количина је у шуми мања и до 1000 пута него у загађеним деловим великих градова или индустријских капацитета Просечан ефекат филтрације аеросола у зависности д врсте дрвећа, густине и висине шуме износи 60 70%,

Један хектар шуме балзамне тополе може ериоду а ситнолисне липе до 50 кт сумпора,

Четинарска шума на површини од 1 ха ппусти у атмосферу у току дана и ноћи $5-10 \mathrm{kr}$, ишћарска шума око 3 кг испарљивих органских материја са фитонцидним дејством, које делууу бактерицидно и фунгицидно. У $1 \mathrm{~m}^{3}$ ваздуха у шум ма 200-300 пута мање бактерија него у граду

Освежавајући ефекат једног одрасло табла липе једнак је ефекту 10 собних слимауређаја,

Шумски појасеви ширине $50-200$ пригушууу (смањууу) буку за $15-45 \mathrm{~dB}$,

У шуми је радиоактивност и до 15 пута мања него у граду, на наветреној страни шуме $2-3$ покривачу испред нуме до 5 пута већа

Запажа се да су "благотворни" утицаји щуме на шшиу околину су многобројни и разноврсни. Производња кисеоника је један од најважнијих процеса у природи, који настаје нормалним функционисањем биосфере - физиолошким процесом фотосинтезе у зеленим биљкама, уз истовремени "утрошак" велике количине угьендиоксида. То је веома значајно за сма 42% атмосфека стаклене баште, јер шы топлоту и сматра се главним узрочником повећања радијационог зрачења (Оторепец, 1991). Посебно је такођ̆е значајан утишај шуме на заштиту од имисија гасова и чврстих честица од којих и сама щума може бити угрожена. Шума врши филтрацију ваздуха тзв. "ишчешљавањем чврстих честица. Оне и разни аеросоли, који падауу према земљи, задржавауу се на лишћу, гранама, стаблима и ту лепе, касније их киша спере и одводи у земљиште. Филтрација вазддда заснива се на уоме да јо шума ефикасна препрела хоризнналом соруаву ваздуха, јер

Неке биъке имају способност да излучивањем фитонцида дезинфикууу ваздух, односно испољавају биохемијски ефекат редукције загађивача (смањују број микроба) и способност апсорпције отровних супстанци. Значајна је и улога шуме у неутрализацији неугодних мириса који се шире од енергетских постројења, саобраћаја, депонија смепа, канализације ит

4. УТИЦАЈ КЛИМАТСКИХ ПРОМЕНА НА пІІММ

Како је наведено, заступљеност и распоред одређених типова пумске вегетације углавном је прилагођена постојећим климатским условима. Предпостављене промене климе сигурно ће се одразити и на шуму, а то се нарочито односи на предвиђене промене температуре (високе температуре у току лета, топимје зиме, учесталији пролећни и јесењи мразеви), промену количинне падавина (учесталост и дужина трајања суше или прощес фотосинтезе троше велике ножиине атмосфесско CO_{2} сманене површине под шумом као снажног апсорбента, може имати веом негативне поспедиие за појачаване тзв "ефекта стаклене баште"

Наведене предвиђене ктиматске промене сумарно израже

- Нови температурни режим и смањивање новавина - шумски екосистеми ће бити осетљивији, посебно у аридним и семаридним подручјима
- Шумско земљиште ће бити топлије и бити лимитиране за развој и опстанак

Карактеристике шуме - угрожена стабилност, пореметиће се сатав шуме, а смањење влаге критично би било за развој подмлатка и кореновог система, па не он у тој фази доживети стресну ситуацију

Биће потребни израдити нове студије (вршити нова истраживања) односа између биљака и станишта, биоеколошких особина врста

Интеракција између климатских промена и Интеракција између климатских промена и деловала на довеће (шуму) у виду: повейања оштећења од инсеката и гљива; редуковања генетског диверзитета у шумама; повећања опасности и штета од шумских пожара; смањења виталности стабала; сушења (изумирања) неки врста дрвећа. Услед тога би се мере газдовањ пумама морале прилагођавати измењеним условима средине - биће потребна нова сазнања стратегија у газдовању шумама; формирање нови климатских зона утицало би на формирање нових шумских екосистема (значајне промене састав шуме) и биће потребно дефинисати нове ареале др.

У.УTHMA ЗАГАТЕНOCTK ATMOCTEPE HA

 uIymyу савременим условима појачана је загаңеност атмосфере сумпордиоксидом, амонијаком, азотним оксидима, једивешима фосфора, минералном прашином, тешким металима и др., што се веома веповолно одражава на читаву биосферу. Познато е да је негативан утицај загађуууһих материја из тмосфере на шуму врло сложен Интензите отпорности и виталности врсте, зависи од концентрадије, токсичности и дужине трајања деловава полутаната, као и од општих услова средине у којима се налазе. Непосредно деловање састоји се у оште申ивању асимилационих органа услед чега они почињу да се суше, што доводи до

смавеша виталности, прираста а крајњем слуауу до изумирања стабла. У неким индустријск развијеним земљама загађеност ваздух полутантима се сматра примарним фактором сушења шума.

Деловање различитих штетних материја н ианифестује се подједнако на биљке. Према Оторепец (1991) Mukammal наводи да су главн аагаһ̆ивачи ваздуха који највише оштгећуу
 зона охсдд, сунорирети етиен и други хемијска средства Мање штетни састојши су мдрекаро мороводонинна киселина, амонијаи модоис сушфд и др. Полутанти чије се дејство водоник-сулфид негативно одражава на вегетацију су:

Просечна годишшьа концентрациыа сумпор диоксида (SO_{2}), као познатог фитотоксичног полутанта, сматра се основним индикатором индустркјског загађења ваздуха. Роред директног, његово негатизно дејство манифестује и индиректно, у виду киселих падавина, које садрже велику концентрацију киселих јона. Ризик оштећења шума постоји при следећим концентрацијама SO_{2} : просечна годишша 0,02 ррт (милионити део по единннии затремине, односно, број молекула гаса или гасовитог једињења на милион молекула ваздуха); просечна вредност за 4 сата $0,35 \mathrm{ppm}$, или 322 cara 0,55 ppm. (Mukammal)

- Озон $\left(\mathrm{O}_{3}\right)$ је у Европи најзначајнији фотохемијски оксидант и са заједно SO_{2} се сматра најопаснкјкм полутантом. Биљке под утицајем озона вмају смањену фо су вотреметај раста и
 приноса. Транојег вегетамиа није угрожена је 50 3ону, (0,025 ($\mu \mathrm{g} / \mathrm{m}^{3}$ (0,025 p) (Gıd.in). егетачиони период (Guderian).

Азотни оксиди (NO_{x}) су полутанти који могу да изазову некрозе у виду хроничних и могу да изазову некрозе етацие и промене у фотосиятези. Азот диоксид $\left(\mathrm{NO}_{2}\right)$ је еколошки најважнији оксид азота, јер се појављууе у највейим концентрацијама. Критични ниво $\mathrm{NO}_{2}{ }_{3}$ биљне екосистеме при дужем излагању је 60 $\mu \mathrm{g} / \mathrm{m}^{3}(0,03 \mathrm{ppm})$ за вегетациони период, а комбинацији са SO_{2} и $\mathrm{O}_{3} 20 \mu \mathrm{~g} / \mathrm{m}^{3}(0,01 \mathrm{ppm})$ као годиишьа средьа вредност (Guderian)

$$
\text { - Амонијак }\left(\mathrm{NH}_{3}\right) \text { и амонијум }\left(\mathrm{NH}_{4}\right) \text { могу }
$$ да и изазову разарање ћелијске мембране проузрокууу мекрозу делова лишћа и повеһавај опасност од мраза. Симптоми њиховог деловањ су жуте, црввене, мрке или црне пеге на лишћу, које временом увене.

- У земљишту је услед индустријског и пољопривредног загађивања (употребом разних хемијских препарата) знатно повећана штетни за биљке (олово, кадмијум, жива, бакар цинк, радиоактивни елементи)
. HEOIXOДНЕ ПУМСКО-УЗГОЛHE MEPE УСЛОВИМА ПРОМЕНЕНЕ КЛИМЕ

У време све израженије еколошке кризе на нашој нланети, све је израженија и потреоа за вишефункционалним коришћењем шума, па се стога у шумској политици Србије даје све већи занача сеази са - твеном могућности шуумског фонда за нези са оцређивање животне средине могу се поставити итања:

Да ли је стање шумског фонда задовољавајуће ?

- Да ли је однос између обрасле и необрасле юовршине у шуми задововавајући?
 - Да ли садашьи степен шумовитости

 довољан да обезбеди позитиван утицај шуме на испуњење еколошке улоге - защтиту и унапређење животне средине?Према наводима WMO и UNEP-а (1990), - подаци из 1980 год., шуме заузимају око 31% површине копна, односно око 10% површине Планете Земъе Развијени и неразвијени региони имају приближно исту просечну шумовитост - око $1 / 3$ укупне површине. У оквиру развијених региона бивши СССР и Јапан имају значајно већу шумовитост од светског просека, док група осталих развијених земаља (Аустралија, Израел, Нови Зеланд, Јужна Африка) су значајно испод просека са свега око 13% шумовитости. У оквиру региона у развоју Блиски исток и Кина имају шумовитост значајно испод светског просека, док латинска Америка има знатно већу шумовитост од просека. Региони са посебно великим учешћем површина под шумом су Северна Америка - посебно Канада, Сибир у Русији, Екваторијална Африка и тропска Латинска Америка

Укупна површина шума у Србији износи 23.604 км 2, а степен шумовитости $26,7 \%$. У оквиру тога шумовитост центрамне Србије је $32,0 \%$, Вовводине Србиіи изнси 111% од ушуне површне шума и Сроног земиишта од чега повриине шогодна иа оиуставане ушне 55% од нихове укутне

површине. У оба сектора власништва заједно (државно и приватно) високе шшуме - семеног порекла, заступљене су са 45%, изданачке са 46% а шикаре и шибљаци 9% (Јовић ет al., 1992) Лишћарске шуме учествууу са $90,7 \%$, четинари са 6% а мешовите шуме четинара и лишйара са $3,3 \%$ у укупној површини шума. По дрвној залихи на лишћаре долази 90% а на четинаре 10%. Најзаступљенија врста дрвећа је буква са $52,3 \%$, затим храстови са $25,8 \%$ а остали тврди лишћари $10,8 \%$ (Стојановић и Крстић, 1996)

Из анализе садашшег стања шумског фонда Србије (Крстић, 1998) произилази следеће:

1. Опште стање шумског фонда, прем производном фонду, старосној структурии и састојинском и здравственом стању тренутно ниј задовољавајуће, али се применом одговарајућих узгојних мера може побољшати.
2. Садашшьи степен щумовитости од $26,7 \%$ такође није задовољавајући за задовољавајући утцај на животну и радну средину, што указује да им објективних потреба за пошумљавањем на већһо површини. Просторним планом републике Србије планирани су обимни радови на пошумьавањ необрасле површине шумског земљишта, голети пољьопривредних површшнна захвапених ерозијом подизању приградских шума, рекултивациј повећање шумовитости на $31,7 \%$, а до 2050 год. н $41,4 \%$, (процењена оптималша шумовитост за Србију).

При одређивању неопходних мера газдовања нумама уопште, увек се мора поки од општи циъева газдовања шумама да се шуме морај одржавам, обнављам и корискни да дай обезбеди трајност и повећање приноса и производње, очува и повећа вихова вредност уз истовремено развијање и интензивирање општекорисних фуннциа. Предлог газдинских (узгојних) мера за оптимализацију стања ових щума мора се базирати на основу њиховог садашње стања, значаја за пспуњеве навсдени оченвани функција шума и угрожености од абиотчкх
 орршине под шумом и от обраслих површина.

Приказано стање пума, као и неравномерна заступьеност састојина одређених категорија са узгојног аспекта, намеће потребу да се за сваку конкретну ситуациіу дефинише одговарајући узгојни захват који проистиче из њене узгојне потребе. Полазећи од приказаног стања шумско фонда, а на основу анализе шумског фонда (Крстић, 1998), неопходно је спровести следећ

узгојне мере: Повећање површине под щумом, јер одговарајуиих потребних узгојних интервенција актуелна шумовитост није задовољавајућа; постојеће шуме треба довести у оптимално стање промена узгојног облика шуме - изданачке шуме чиме ће се обезбедити нихова стабилност и треба превести у високе и знатно поправити виталност а тиме истовремено на најбољи начи
садашшьи однос у корист високих ппум; обзбедити и испуњење свих очекиваних функција садашши однос у корист високих шума; мелиорацијом деградираних изданачких шума и
шикара побољшти стање ових шума. Спровођешем

7. ЛИТЕРАТУРА

Бунушевац, Т. (1951): Гајење иума. Научна књига, Београд
Ђукановић, М. (1991): Еколошки изазов. Елит, Београд.
Илијаний, Љ., Топий, Ј., Шегуља, Н. (1979) Неке фенолоике кара Загребачкој гори. Зборник II конгреса еколога, књ. ІІ, Задар-Плитвице.
Јовановић, Б., Вукићевић, Е. (1984): Поливалентна функција зеленила и карте природне потенчијалне вегетације урбанизованих средина. Шумарство бр. 5-6, Београд
Јовић, Д., Томанић, Л., Банковић, С. (1992) Шумски фонд. Монографија "Шумарство и прерада дрвета у Србији кроз векове". СИТ шумарства Србије, Београд, 10-22.
Колић, Б. (1995) Утицај иуме и вегетације на климу и микроклиму бања и климатских места Монографија "Бањска и климатска места Југославије" Београд, 172-181.
Крстић, М. (1997) ІІумски фонд источне Србије (борског подручја) у функиији унапређеъа животн средине. Зборник радова са научног скупа "Природа Брестовачке бање", Бор, 77-95.
Крстић, М. (1998) Стање шумског фонда Србије. Гласник Српског географског друштва бр. 1, Београд, 23-34.
Крстић, М., Стојановић, љ. (1993): Стање букових и храстових шума североисточне Србије са аспекта узгоја и коришћења дрвне масе. Шумарство бр. 3-5, Београд, 89-96.
Милин, Ж. (1988): Групимично газдоваъе. Посебно издање, Шумарски факултет, Београд.
Милин, Ж., Стојановић, Љ. (1989): Шумски фонд региона Зајечар у функиији унапређиваъь животне средине са предлогом мера за његову санаиију. Човек и животна средина бр. 2-3, веоград, 82-87
Стојановић. Љ., Крстић, М. (1996) Узгоји захвати у функцији унапреусьа иумског фонда Србије
 Томанић, Л., Стојановић, Љ, Маринковић, П. (1995): Еколоика и амбијентална улога и заначај иума за
бањска и климатска места Југославије. Монографија "Бањска и климатска места Југославије" Београд, банска $и$
$159-171$.
Оторепец, С. (1991) Агрометеорологија. Научна књига, Београд.
Пензар И., Пензар Б. (1989) Агроклиматологија. Школска књига, Загреб
WMO UNEP (1990) Potential Impacts of Climate change. Intergovermental panel on Climate change. Report for Working Group II to IPCC

БИЛАНС НАДИЗДАНСКЕ ЗОНЕ
НА ПОДРУЧЈУ М.С. ВРІІІАЦ

Др Драг̄ича Сйојиљковиһ, Мр Јован Табаков
Пољойривредни факулийей, Инсйийуй за уређеъе вода,
Трг̄ Д. Обрадовића 8. Нови Сад
Др Гордана ІІекуларач
Адррономски факулйе, Чачак

Abstract
The ballance of the saturated zone in the area of Vrsac metheorologic station was analysed for the average hidrological year (the period from 1961-1990), for the ariest year (1961) and for the most rainy year (1970) The results of the analysis: the water sufficits last from october to march. The rain falls' defficit is compensed by the water supplies from the earth, from april to june, or by irrigation, depenainig on the agriculture, and its requirements for water. The defficit in the vegetation period is typical for the average and rainy year. In the most rainy 1970 there is no water defficit, in the ballance equation during the whole year.

Абсиираки

Биланс надизданске зоне анализиран је за йодручје м.с. Вриацц за йросечну хидролошку годин (йериод 1961-1990), најсушнију (1961) и најкииовиииију (1970) годину. Резулйайи анализе винкови воде су од окйобра до марйиа. Дефиций йадавина надокнађује се из резерви влагее у землишиу (од аирила до јуна) или наводњаваъем, у зависносии од иољойривредне кулйуре и
 суину годину. У најкииовийијој 1970. г̀. нема дефицииа воде у билансној једначини.

1. УВОД

Потребне количине воде за развој пољопривредних култура у току вегетационог периода одговарају вредностима евапотранспирације (ЕТР), која представља збирно испаравање воде са површине земљишта и биљке. Вредности ЕTP се могу експериментално одредити преко лизиметра или индиректно, прорачуном на основу метода заснованих на познавању климатских фактора у зони мелиорационог система

Најчешке се користе методе Thornthwaita, Turca, Blaney-a i Criddle-a i Penmana. У раду је дат пример прорачуна потенцијалне евапотранспирације по методи Thornthwaite, која даје најбоље резултате у условима субхумидне климе.
2. ПРОРАУН ПОТЕНЦИЈАЛНЕ ЕВАПОТРАНСПИРАЦИЈЕПО METOДИ THORNTHWAITEA.

Ова метода заснована је на изналажењу евапотранспирације у зависности од температуре ваздуха:

$$
\operatorname{PET}=1,6\left(\frac{10 \mathrm{t}}{\mathrm{I}}\right)^{\mathrm{a}} \mathrm{k}
$$

где је:
ETP- месечна потенцијална
евапотраспирација (cm)
t - средња месечна температура ваздуха $\left({ }^{\circ} \mathrm{C}\right)$
I -годишњи калорични индекс који се добија сабирањем месечних вредности
a - вредност која се изводи из годишње топлотног индекса
k - корекциони коефицијент за географску ширину

Ради лакшег и бржег одређивања појединих елемената неопходних за одређивање ЕTP користе се одређене табеле и номограми. У раду је дат пример одређивања биланса надизданске зоне (вертикални параметри биланса) са учепћем месечне ЕТР по методи Thornthwaite-a.

3. ОПНІТИ ВОДНИ БИЛАНС НАДИЗДАНСКЕ ЗОНЕ

На основу података метеоролошких фактора на м.с. Вршац, режима површинских и подземних вода, може се израдити општи водни биланс за анализирани период од (n) година изражен општом билансном једначином средних врадности:

$$
\mathrm{P}=\mathrm{ETR}+\mathrm{O}_{\mathrm{p}+\mathrm{pod}}+\mathrm{H}+\mathrm{R} \pm \mathrm{W}
$$

где је:
P-cp. вишегодишња вредност атмосверских падавина
ETR-cp. вишегодишња вредност сумарног испаравања
$\mathrm{O}_{\mathrm{p} \text { tood }}-\mathrm{cp}$. вишегодишња вредност подземног, површинског отицаја у завршном профилу
Н- ср. промена залиха подземних вода у басену R - cp. вишегодишњи садржај лакоприступачне воде у зони аерације (усвојено 100 мм)
W - члан који представља средње вишегодишње одступање биланса и у себи садржи и чланове биланса који не зависе од падавина, а садржи и грешке при одређивању свих осталих елемената

У сваком случају, у овој формули са смањеним бројем чланова билансне једначине, грешке су могуће. Евидентно је, да су мерења на хидролошким станицама на нашој територији неравномерна у времену и непоуздана, због честе промене дна речног корита у мерном профилу и нетачног мерења екстремних протицаја Нере и успора после изградње хидрочвора вКајтасовог и Х.Е. вЂердапг у долини Караша. С обзиром да у мањем делу слива, у непосредној алувијалној равни Нере и Караша, делууу и хоризонтални и вертикални чиниоци, а на већој површини, изнад коте 80,00 м.н.м., преовлађууу вертикални чиниоци биланса, у општој билансној једначина хоризон-

тални чиниоци (површински и подземни доти цај) су заменарени, тако да су анализиране само падавине (P), резерве лакоприступачне воде у земљишту (R) и потенцијална евапотранспирација (ETP):

$$
\Delta \mathrm{W}=\mathrm{P}-(\mathrm{ETP} \pm \mathrm{R})
$$

за прорачун је усвојена резерва од 100 мм
Са аспекта пољопривреде, прорачун биланса надизданске зоне на подручју м.с. Вршац увек у вегетационом периоду изказује мањак воде, односно евапотранспирација је већа од месечних висина падавина без обзира да ли се ради о просечној, сушној или влажној години Пошто је тема овог рада примена мете Ношто је тема овог рада примена мете оролошких података у пољопривреди, у табе лама број 1, 2 и 3 приказан је билан надизданске зоне са вертикалним елементим биланса (види сл. 1, 2 и 3) (ЕТП одређена по методи Thornthwaite-a,) за просечну, сушну и кишну годину. Биланс обухвата пољо привредне површине изнад коте терена об 80 м.h.m.

3.1 БИЛАНС ЗА ПРОСЕЧНУ ГОДИНУ

 (НЕРИОД 29 ГОДИНА) НА М.С. ВРНАМУ нашим условима август је месец у коме нема више резерви воде у тлу, тако да је с обрачуном биланса почето од септембра, када су падавине износиле $46 \mathrm{mм}$, а потенцијална евапотранспирација 85 мм. Резерве влаге у тлу су 0 мм, реална евапотранспирација је 46 мм, док је мањак воде (ETP - ETR) 39 мм (види та белу 1)

Од новембра до јануара падавине су веће од реалне евапотранспирације и тло ствара резерве до $\mathrm{R}=100 \mathrm{mм}$, а јавља се и вишак воде који одлази на попуну резерви подземних вода. У фебруару и марту падавине су још увек веће од потенцијалне евпотранспирације (ETP=ETR), резерве су попуњене до мак симума ($\mathrm{R}=100$ мм) и јавља се вишак воде кој но због нитолошког састава и лоних филтра ционих карактеристика неможе да прими. Са порастом температуре расте и евапотранспирација, тако да се од априла до јуна реална евапотранспирација попуњава из резерви (ETP $=\mathrm{ETR}=\mathrm{P}+\mathrm{R})$. . уулу су потрошене резерве воде из тла и први пут се јавља мањак воде ($-\Delta \mathrm{W}$)

који недостаје биљкама у вегетационом периоду и који се надокнађује наводњавањем. Мањак воде од јула до октобра износи 131 мм, односно за вегетациони период 125 мм

Слика 1. Водни биланс по Thornthwaite-у за просечн годину, период 1961-1990

3.2 БИЛАНС ЗА НАЈСУШНИЈУ ГОДИНУ НА М.С. ВРШАЦ

У анализираном периоду најсушнија је 1961.г. са просечном висином падавина од $471 \mathrm{mм}$. Обрачун биланса почео је од септембра месеца када су падавине износиле $P=1$ мм, а потенцијална евапотранспирација ЕТР $=86$ мм, док је мањак воде $\pm \triangle 85$ мм

Исти односи важе и за октобар. y току новембра падавине су веће од евапотранспирације и попуњавају се резерве лакоприступачрхе воде у земљишту, а вишак воде одлази на поршински отицај и попуну резерви подземних вода.Са повећањем температуре у марту повећава се и евапотранспирација и почињу да се троше резерве воде у тлу. Међутим у мају месецу са просечно највећом сумом падавина у тој години попуњавају се потрошене резерве, а вишак воде површински отиче. Сушни период траје до крај вегетације од јуна до октобра, резерве воде из тла су

отрошене и јавља се мањак воде од јула до октобра у висини 340 мм (види табелу 2 и слик 2), односно од 284 мм у вегетационом периоду

Слика 2. Водни биланс по Thornthwaite-у за најсушнију 1961 годину

3.3 हИЛАНС ЗА НАЈКИПIOBUTИIУ ТОДИНУ НА М.С. ВРРІІАІІ

За анализирани период најкишовитија је 1970.г. са просечном годишњом висином надавина од 923 мм. Обрачун водног биланса такође је почео од септембра месеца када су резерве влаге у тлу $R=0$. У октобру, новембру и децембру попуњене су резерве, а од јануара до маја јављају се вишкови воде који се инфилтрирају или површински отичу у укупној суми од 221 мм. У току целе ове године нема дефицита воде (табела 3 и слик 3).

4. УСЛОВИ МЕЛИОРАЦИOHOR

 УРЕВЕНА JУГОИСТОЧHOL БAHATAНа основу до сада обрађених података о кли матско-хидрографским условима, недвосмислено је доказано да је основни ограничавајући фактор пољопривредне производње вишак (јануар, фебруар, март) и мањак воде (јули, август, септембар) у годишњем билансу, који

се огледа у више негативних утицај превлаживања земљиста, у ванвегетационом периоду када је потребно одводњавање, и недостатка влаге у тлу у вегетационом периоду, када је потребно наводњавање. Ова неравномерност расподеле воде у току хидролошке године нарочито је изражена у најнижим деловима терена: Вршачкоалибунарском риту и алувијалним равнима Нере и Караша.

Слика 3. Водни биланс по Thornthwaite-у за најкишовитију 1970 годину

Главни узроци превлаживања могу се сврстати у четири групе:

1. зимско-пролећне падавине у сливу комбиноване са специфичностима микрорељефа, ли-

5. ЗАКЛУАK

Као пример примене метеоролошких података у пољопривреди, прорачуната је потенцијална евапотранспирација једном од метода (Thorn-thwaite-a) и одређен биланс надизданске зоне за просечну (период 1961-1990) најсушнију и најкишовитију годину у Југоисточном Банату за пољопривредне површине изнад коте 80 м.н.м.

толошким саставом водно-физичким константама земљишта,
2. површинске воде које долазе за време поплавног таласа Нере и Караша у пролеће и јесен као последица режима падавина у горњим деловима слива, на подручју Румуније и површинске воде које долазе са вишљих геоморфолошких јединица где је површински отицај већи од инфилтрације,
3. периодично издизање нивоа подземних вода изнад критичне ($2,50 \mathrm{~m}$) или толерантне дубине (1,50 м) на нижим деловима терена, као последица режима водостаја површинских водотока или услед подземног дотицаја из вишљих делова терена ван површине слива,
4. константно повишени нивои подзениних вода у зонама утицаја успора X.E. "Ђердап" и Х.Ч. вКајтасовог удружени са свим предходним негативним утицајима.

Према обрађеним подацима климатских чинилаца (падавиине, температура, влажност, ваздушна струјања) и водно-ваздушних константи земљишта, наводњавање се намеће као примарна мера у вегетационом периоду за повећање пољопривредних приноса. Међутим у постојећим условима једино су черноземи (сви варијетети) и антропогенизовани песак погодни за наводњавање. Смонице на терцијарним глинама, ритске црнице, гајњаче и алувијално земљиште, због великог садржаја глиновитих фракција, слабе дренираности и лоших водно-физичких својстава, у садашњим условимо нису погодна за наводњавање. Тек после примене различитих мера одводњавања може се прићи наводњавању.
\qquad

За анализирани период у просечној и најсушнијој години изражен је суфицит влаге од 72-83 мм у ванвегетационом периоду. Дефицит влаге од 131-340 мм у вегетационом периоду делимично се надокнађује из резерви у земљишту од априла до јуна, а од јула до окто бра неопходно је новодњавање у зависности од

пољопривредне културе и њених захтева за је само вишак воде у билансној једначини од водом. У најкишовитијој (1970) години исказан 232 мм.
*Прилог:
Табела 1: Водни биланс (мм) йа просечну годину (период 1961-1989) на подручју м.с. Вршац

Месеци	$\begin{gathered} \text { Падави } \\ \text { не } \\ \text { P(мм) } \end{gathered}$	Потенцијална евапотранспирација ETP	$\begin{gathered} \text { Резерва } \\ R \\ \text { (до } 100 \mathrm{mм} \text {) } \end{gathered}$	Реална евапотранспирација ETR	Мањак воде - W	Вишак воде + W
X	46	46	0	40	6	0
XI	49	18	31	18	0	0
XII	55	4	- 82	4	0	0
I	43	2	100	2	0	23
II	39	6	100	6	0	33
III	40	24	100	24	0	16
IV	52	56	96	56	0	0
V	80	99	77	99	0	0
VI	93	120	50	120	0	0
VII	69	133	0	119	14	0
VIII	53	125	0	53	72	0
IX	46	85	0	46	39	0
CyMA	665	718		587	131	72

Табела 2: Водни биланс (мм) йа најсушнију 1961. годину 3на подручју м.с. Вршац

Месеци	Падави не Р (мм)	Потенцијална евапотран- спирација ЕТР	Резерва R (до 100 мм)	Реална евапо- транспирација ЕTR	Мањак воде - W	Вишак воде + W
X	3	59	0	3	56	0
XI	35	21	14	21	0	0
XII	99	0	100	0	0	13
I	31	1	100	1	0	30
II	15	2	100	2	0	13
III	13	21	92	21	0	0
IV	37	68	61	68	0	0
V	145	79	100	79	0	27
VI	50	131	19	131	0	0
VII	32	132	0	51	81	0
VII	10	128	0	10	118	0
IX	1	86	0	1	85	0
CYMA	471	728		388	340	83

Табела 3: Водни биланс (мм) йа најкишовитију 1970. годину на подручју м.с. Вршац

Месеци	Падави не ((мм)	Потенцијална евапотран- спирација ETP	Резерва R (до 100 мм)	Реална евапо- транспирација ETR	Мањак воде - W	Вишак воде +W
X	58	42	16	42	0	0
XI	57	24	49	24	0	0
XII	44	4	89	4	0	0
I	37	2	100	2	0	35
II	103	6	100	6	0	97
III	56	24	100	24	0	32
IV	65	59	100	59	0	6
V	145	83	100	83	0	62
VI	110	127	83	127	0	0
VII	144	134	93	134	0	0
VIII	78	123	48	123	0	0
IX	26	74	0	74	0	0
CYMA	923	702		702	0	232

ЛИTEPATYРА

Стојиљковић Д: деХидрогеологоја терена од Вршца до Беле Цркве и режим издани (слив Нере и Караша)ее , Магистарски рад, Рударско-геолошко металушки факултет, Београд, 1993.

Стојшић М., Белић С., Табаков Ј.: деЕвапотранспирација, влажност земљишта надизданске зоне и дубина нивоа прве издани у диригованим и природним условимаее, Воде Војводине број 19, страна 63-70, 1990.

Шекуларац Г., Стојиљковић Д.: деНаводњавање у аграрној политициее, Чачак, Ревитализација села, страна 599-602, 1995.

ЛЕТЊА СУША У 1998. ГОДИНИ НА ТЕРИТОРИЈИ СР ЈУГОСЛАВИЈЕ

Зоран Крајиновић, Смияа Ђорђевић

 Савезни хидромейеоролошки завод , Веоград
Abstract

Specific aspects of drought in FR of Yugoslavia in July and August 1998 have been analyzed. The research comprised identification of thermic and precipitational features of the observed summer months, of drought period duration and land drought analysis based on water balance calculation. This drought is characteristic for its duration and impacts varying considerably from one area to another. Although not significantly long-lasting, it caused great damage in agriculture. The drought period was followed by extremely high air temperature, disturbing the development of physiological processes of plants. Due to intensive evapotranspiration the water state of soil deteriorated abruptly. Inconvenient water and heat conditions occurring in the course of development period caused decrease in corn and other crops yield, especially in southern and southeast parts of the country.

Абсиирракй

Анализирани су йоједини асйекии суие која је ни ииериииорији СР Југославије забележена йоком іула и авг̄усииа 1998. годдне. Исйраживање је обукваииило одређивање ииермичких и йадавинскик
 земвиине суше засновану на йрорачуну водног биланса. Каракииерисииично за ову суиуу било је ио шиио се йо свом иирајану и йоследицама значајно разликовала од йодручја до иодручаа Нио је
 йооцеса бивака Услед инииензивне евайоииррансииирације, доино је до найлой йогороиана водной
 йроузроковали су умањене йриноса кукуруза и друйих райарских куайура, иосебно у ружним и југоисйочнин деловина земье.

1. Увод

Суша спада у најопасније временске појаве и у презентирају неке од најзначајни многим деловима света наноси велике шттете и угрожава егзистенцију зєуди. У нашој земљи се суша може јавити у свим деловима године, али највеће су штете које ъетье суше проузрокују у пољопривреди.

2. Циљ истраживањ

Током јула и августа 1998. године забележена је суша, за коју је било карактеристично да се по трајању и интензитету разликовала од подручја до подручја. Посматрано у целини, проузроковала је значауне штете
 да се квантитативно одреде, цроанализирају и

каратеристика летње суше у 1998. години.

3. Материјал и методе рада

Материјал на основу којег је извршена анализа обухвата метеоролошке податке са 38 климатолошких станица на територији СР Југославије. Коришћени су подаци о температури ваздуха и количини и распореду падавина за јули и август. За 12 станица рирема сотребих за израчушаваре девних
 рриод 1 ашри -31 август 1998. гоине.

Истраживања су обухватила: анализ одступања средњих месечних температура ваздуха и месечних количина падавина за јули нросторне расюодеше количине падавнна ва цросторне расли - 19 август утрриваюе период 18. јули - 19. авуст, уврииана проценивање трајана земљишне суше засновано на прорачуну водног биннса и поређење степена задовољена потреба за водом усева кукуруза добијеног прорачуном и водом усева кукуруза добијеног прорачуном и културе.

При анализи одступања средњих месечних температура ваздуха и месечних количина падавина од вишегодишшег просека референтни период био је 1961-1990. година.

Посебно је анализиран период 18. јули - 19 . август, кога су карактерисали екстремно позитивно одступање температуре ваздуха и мале количине падавина.

Почетак и завршетак сушвог дерпода одређивани су на основу дневних количшна падавина коришћењем следећих крите-ријума за сушни период:
$>$ петнаест или више узастопних дана без падавина, или са падавинама у траговима;

- дани са количином падавина мањом од 3 mm не представљају прекид сушног периода уколико се не наслањају на неки кишни пе риод;
> узастопни дани у току којих је укупна количина падавина мања од 5 mm не представљају прекид сушног периода, уколи се не наслањају на неки кишни период; суседни сушни периоди, одвојени са једним количнна падавина била мана од 10 mm количина падавина била мања од

Трајање земльишне суше анализирано је преко вредности залиха иродуктивне влаге земэишту нод кукурузом, најзастушвенијом пролећном ратарском културом. За одабраве станице извршен је прорачуи водног биланса за вегетациони период кукуруза на основу дневних вредности метеоролошких елемената. Потенцијална евапотранспирација је одређивана применом Анталове формуле (Antal, 1980), оптимална евапотранспирақија усева кукуруза коришћењем одговарајућих коефии цијената културе, а промене у стању залиха продуктивне влаге у земљишту на основу разлике између израчунате евапотранспирације и количине падавина. При прорачуну, који је извршен за период 15. април

- 31. август, за залиху продуктивне влаге у земыьшшту до дубине од један метар, која одговара нољском водном капацитету, узето је залиха продуктивне влаге у време сетве кукуруза проденена јо 100 mm Ова вренност је нешто мана ол просечних вишегодишњих вредности у пролећном периоду у првим месепима 1998. године забележен је дефицит количине падавкна. За период земљнине суше узет је период током којег су вредности залихе продуктивне влаге у земљишту под кукурузом бпие мање од петине (20\%) залихе продуктивне влаге која одговара пољском водном кашацитету (јака земљншна суша). у дижу аצализе просторне расподеле трајања земљвише суше на територији наше земље, трајање суше је орқјентационо процењено за јопи 18 станида. Продена је извршена на основу количине и распореда падавина на тим станицама у периоду април-септембар и номенутих резултата прорачуна водног биланса.

За станице за које је извршен прорачун водног биланса одређен је и однос између укупне еванотоашспирапије и укупне оптималве евапотраиспирапије у вегетапионом периоду кукуруза. Однос је показатељ степена задово јења потреба усева за водом. При овом щрорачуну, потенцијална евапотранспирапија одреуџивана је методом Пенмана (Frere, M. 1979). Добијеке вредности упоређене су са приносима кукуруза оствареним у појединим по-
дручјима у 1998. години. дручјима у 1998. години.
4. Резултатии ии дискусија
4.1. Oпстушаже средв темнература ваздуха средњ месечних темнература ваздуха количина
годдпе од просечмах вредностй

Ананиза одступања средњих месечних тем Анамиза одстукања средвих месечних тем вредности й односа између забележених и вредности односа измеуу забележених и
мросечних количина падавина извриева је у циљу утврђивања општих карактеристика топнотних и водних услова у којима су се одввјали раст и развиће пожопривредних култура током јула и августа 1998. године на теріторжји СР Југославшје.

у оба месеща, забележена су значајна позитивна, али не и екстремно велика одступања температуре ваздуха од просечних вредности (од $+0,7^{\circ}$ до $+2,5^{\circ} \mathrm{C}$). Посматрано у делина, одступања за месед агуст имају нешто веће вредности од оних за јул. Међутим,

просторне расподеле одступања су међусобно доста сличне, вредности расту ка југозападу и југу земље

августу је у веһем делу земље количина падавина била блиска просечним вредностима. На северу Војводине је у оба месеца забележен суфицит количине падавина.
Топлотни услови у подручјима на северу, где су одступања била најмања, могу се окарактерисати као нормални.

Просторне расподеле месечних сума падавина за јули и август карактерише велика количине падавина на територији наше земље забележен је само у іулу, и то не у свим нодручјима. Највећи дефицит регистрован је у централној Србији, где је износио око 50% у

Увидом у расположиве податке, запажене су велике разлике у вредностима температуре ваздуха измеюу појединих делова периода јул падавина унутар вега. Заклучено је, стога да анализа заснована само на месечним вредностима не може да шружи потребне информације о водним и топлотни условим током ових летьих месеци

Дани
Слика1. Ход средње дневне температуре ваздуха (израчунате за дванаест одабраних станица) на територији СР Југославије током јула и августа 1998. године.
4.2. Количина падавина и температура ваздуха у периоду 18. јул - 19. август 1998. године

На основу анализе целокупног расположивог материјала, издвојен је период од 18. јула до 19. августа, који се одликовао веома високим температурама ваздуха у целој земљи, при чему су на већем делу територије СР Југославије забележене мале количине падавина.

За потребе испитивања топлотних услова у посматраном периоду, одабрано је дванаест станица из различитих области које су истовремено и значајна пољопривредна подручја: Сомбор, Сремска Митровица, Београд, Смедеревска Паланка, Ћуприја, Неготин, Пожега, Крушевац, Ниш, Приштина, Димитровград и

Подгорица. За ове станице утврђене су просечпе вредности температуре ваздуха за посматрани период. Пошто се није располагало одговарајућим вишегодишњим вредностима добијени резултати упоређени су са просечним температурама ваздуха за приближан временски интервал 21. јули - 20. август (период 1961 1990. година).

Средње температуре ваздуха у периоду 18. јули19. август 1998. године на свим одабраним станицама биле су знатно веће од просечних вишегодишњих вредности. Вредности одступања темшературе ваздуха налазе се у интер валу од $+3,2^{\circ}$ до $+4,9^{\circ}$. Највеће вредности од ступања забележене су у Београду ($+4,9^{\circ} \mathrm{C}$) Нишу ($+4,7^{\circ} \mathrm{C}$) и Крушевцу ($+4,6^{\circ} \mathrm{C}$), а пајмање

у Пожеги ($+3,2^{\circ} \mathrm{C}$), Срем. Митровици и Подгорици $\left(+3,3^{\circ} \mathrm{C}\right)$. Сва ова одступања, имајући у виду да се ради о временском периоду дужем од месец дана, су екстремно велика.

Ради илустрације основних карактеристика хода средње дневне температуре ваздуха током јула и августа на територији СР Југославије,
 пература ваздуха за одабрану групу станица које су представлене на слиц 1 . На сини је
 риод и одговарајућа просечна вредност температуре ваздуха.

Слика 2. Количина йдавина забележена од 18. јула до 19. авд̄усйиа 1998. їодине у милимейрима и иироценйу й
носйи (у низу 1961-1990. година).

Са слике 1. може се видети да је у посматраном периоду температура ваздуха данима била много већа од вишегодишњег просека, а да се просечној вредности сасвим приближила у само једодавина је било мало. Просторна расподела количине падавина представљена је на слици 2 . Најмање кише било је на југу Србије и Црне Горе, до 20 процената просечних вредности утврђених за период 1961-1990. година. У неким местима на југоистоку Србије падавине су забележене само у траговима. Већи дефицит

количине падавина није регистрован само у делу Војводине.
У јулу ии августу 1998. године постојао је дужи период током којег су услови били неповољни за раст и развиће пољопривредних култура Најнеповољнији услови били су на југу земље, као п у деловима исто пе пенола Србије
 биљака Такође, услеп интензивве евапотранспирације и нелостатка падавина дошло је до брзог испрниивана заниха бинкама достуште а залиха биљкама достушне земљишне влаге.
4.3. Трајаве сушног периода

Трајање сушшог периода у јулу и августу 1998 године одређено је за свих 38 станида према критеријумима који су наведепи у поглављу о материјалу и методама. Резултати добијени овом анализом представљени су на слици 3 .

Слика 3. Трајаше у данима и датум почетка сушног першода у јулу и августу 1998. године на територији СР Југославије.
Анализа је показала да постоје велике разлике у датумима почетка, завршетка и трајању сушног периода између појединих подручја Трајање сушног периода износило је од 15 дапа на североистоку земље до 43 дана на југу Србије (Призрен, Врање). Према датим критеријумима, сушни период током јула августа није идентификован само на једно

станици (Вршац, са најдужим бескишним 4.4. Земљишна суша периодом од 12 дана). Сушни период је на југу земље трајао више од месец дана, и то већином од 17. јула до краја друге декаде августа. На крајњем југу и југоистоку Србије сушни период је окончан тек пред крај августа. У осталим одручима су посиодје трајао око 20 дана, аррим данима августа Међутим, у делу Воіводине Западне Србије и Шумадије,
 баеежен и други сушни шериои у трајашу од двадесетак дана.

На основу резултата овог испитивања и На основу резултата овог испитивања и максималног трајања, заснованог на максималног трајања, заснованог на (Јовановић О., 1995.), може се закључити да појава сушних периода какви су се јавили током јула и августа 1998. године не представља носебно редак догађај у климатским условима наше земље. Чак и најдужим сушним периодима који су забележени на југу земље у трајању од око 40 дана одговарају релативно мали повратни периоди, измефу пет и десет година. капацитету.

Прорачуном водног биданса који је извршен за дванаест станица, утврђене су дневне вред
 мродуктивне втаге у земљишту током веге тационог периода кукуруза. За све анализиране станице карактеристично је нагло погоршање водног стања земљишта почев од средине јула проузроковано интензивном евапотранспирацијом. Само је на северу земље погоршање водног стања земљишта за краће време заустављено падавинама у последьим данима јула.

У условима високе температуре ваздуха и од суства падавина, у већем делу земље јака земљишна суша наступила је у првим данима августа. У појединим местима, углавном на југу земље, залихе продуктивне влаге у земљишту под кукурузом спустиле су се испод прага од 20% још у трећој декади јула. На слици 4. представљен је пример промене залиха продуктивпе влаге током јула и августа 1998. године. Залихе продуктивне влаге изражене су као проценат вредности која одговара пољском водном

Слика 4. Залихе продуктивне влаге у земљишту под кукурузом (\%), средња дневна темпера тура ваздуха (${ }^{\circ} \mathrm{C}$) и дпевне количине шадавина (mm) у јупу п августу 1998. годипе за станицу Нйा.

Релативно повољно стање влажности земљишта задржало се током щелог вегетационог периода кукуруза само у деловима Војводине и западне Србије. Стање влажности земљишта побољшано је у трећој декади августа, са

изузетком неких подручја на југу и истоку Србије, где се земљишша суша продужила до обилније падавине.

Анализа трајања землишне суше извршена за станице у производним подручјима кукуруза показала је да се оно значајно разликовало од подручја до подручја. Док је на северу и западу земље изразита земљишна суша трајала кратко или је није ии било, на југу и истоку Србије и на југу Црне Горе трајала је више од месец дана. Уколико се упореде просторне расподеле трајања сушшог периода и земљишне суше на територији наше земле, може се закьучити да постоји међусобна слитност, али и одређене

разлике. у већем делу земље, земљишна суша је наступила 10 -20 дана након почетка сушног периода и трајала је нентт краће. Међутим, у појединим подручјима земљишна суша је била дуготрајнија од сушног периода. Најупадљивији је прнмер Неготинске Крајине, где је земљишна суша трајала двоструко дуже од
сушног периода. У овој области су падавине сушног периода. У овој области су падавине током јула и августа биле добро расориене дово внтензивну евапотранспирадију.

Табела 1. Трајање земвитне суше, количшна пащавина и нрора чунате
вредности укунне еванотранспирацвје иу укунне оитималне
евапотранспирапије током вегетадноног периода кукуруза
(15.VV-31.VIII) у 1998. नоमиनй

Станица	Земљишна суша			R(mma)	Евапотрансиирација (mm)		
	ноч.	зав.	Tp.		ET	ETont	\%
Сомбор	16.VIII	21.VIII	6	331	388	428	91
Срем.Митровица			0	308	399	419	95
Београд	31.VII	28.VIII	29	211	297	422	70
Смед. Паланка	7.VIII	19.VIII	13	326	346	424	82
Пожега	9.VIII	20.VIII	12	339	328	370	89
Неготин	4.VIII	3.18	31	216	311	418	74
Ћуприја	2.VIII	5.IX	35	324	357	449	80
Крушевац	3.VIII	28.VIII	26	176	281	411	68
Ниш	26.VII	28.VIII	34	183	252	433	58
Приштина	1.VIII	28.VIII	28	233	299	408	73
Димитровград	5.VIII	28.VIII	24	222	297	424	70
Подгорица	24.VII	28.VIII	36	411	374	521	72

Резултати добијени прорачунима водног биланса за дванаест станиша дати су у табели 1. у виду рекапитулације. Може се видети да процењене потребе усева кукуруза за водом током вегетационог периода 1998. године углавном износе $400-450 \mathrm{~mm}$. Међутим, укупне количине падавина у вегетационом периоду кукуруза значајно су се разликовале. У јужној, источној и деловима централие Србије забележено је свега $180-220 \mathrm{~mm}$ воденог талога. При овим количинама падавина, упркос постојању залиха земљишне влаге накупљених у зимском периоду, повећане потребе кукуруза за водом остале су великим делом незадовољене. Израчунати односи укунне евапотранспирације и укупне оптималне еванотранспирације усева кукуруза током вегетадионог периода налазе се у доста широком интервалу вредности. У подручјима на југу и истоку земље овај однос износи $60-70 \%$, а у Војводини и западној Србији, где су водни и топлотни услови били најповољнији, око 90%
4.5. Последияе немовољних водних и топлот них услова на оствареним цриносима кукуруза

Вредности односа укупне евапотранспи-рације и укупне оптималне евапотранспирације усева кукуруза током вегетадионог периода 1998. године упоређепе су са оствареним приносима. Поређење је извршено за десет општина Републике Србије у којима се налазе климатолонке сташице за које је извешен прорачун водног билаиса. Приноси кукуруза у 1998. години били су мањи од одговарајућих просечних ириноса одређених за период 19911997. година. Смањење приноса у појединим подручјима било је велико и достизало око
50%. На слии 5 шредставьена је линеара ре 50%. На слици 5 представљена је линеарна регресиона зависност између остварених приноса кукуруза изражених као цроценат просечне вредности и израчунатог односа измену укупне
 транспирақме. Иако при прора ио водног

гионалне спедифичности, као што су разлике у изнете ставове (Спасов П. и сар., 1992) да се преовлађууућим типовима земљишта, фе- оперативне агрометеоролошке методе за нолошким карактеристикама развића кукуруза, јена зависност је индикативна Указује на то је умањење приноса већим делом бино послееица нешовољних водних и топлотних услова Може се peћи да су резултати потврили ве култура, цримењене у овом истраживању, могу нољоириреде суше у клшатския условиа матским условима наше земље.

Слика 5. Регресиона зависност између остварених приноса кукуруза у 1998. години (у процентима просечних приноса) и односа између евапотрапспирације и оптималне евапотранспирације (\%)

5. Закључци

у раду су представљени резултати ис- земљиште под кукурузом процењено на око траживања неких од најзначајнијих аспеката суше која је у јулу и августу 1998. године забележена на територији СР Југославије:
-За јули и август карактеристични су позитивно одступање средње месечне температуре ваздуха и неравномеран распоред падавина. Іериод од 18. јула до 19. авнста одликовао се веома високом температуром ваздуха и малом количином падавина

Сушни период је трајао различито, од око две недеље на североистоку до око 40 дана на југу Шумадије забележена суе, Западме Србпе и мибижно јепнаке дужине два сушна периода
-У већем делу земље земљишна суша настушила е крајем јула или у првим данима августа. На угу и истоку Србије и на југу Црне Горе земљишна суша била је најдужа трајање је за
-Потребе усева кукуруза за водом током вегетационог периода биле су повећане, а укупне количине падавина у јужној, источној и делу централне Србије биле су мање од просечних вредности за исти период. Тако, потребе кукуруза за водом остале су значајним делом незадовољене. Однос евапотра ппирације и оптималне евапотранспирације з ва поруча продежеп је на 60-70\%. У венем

-Анализирани сушни период, по својој дужини, не спада у посебно ретке догађаје. Међутим, био је праћен екстремно високом температу ром ваздуха која је ометала одвијање физиолошких процеса биљака. Такође, услед исцршљивања залиха землишше влаге Залих

су у већем делу земље већ биле смањене због - Неповољни водни и топлотни услови током дефицита падавина у зимском и пролећном критичног периода у развићу, проузро-ковали периоду. су значајно умањење приноса кукуруза и дру гих ратарских култура, посебно на југу и југоистоку земље

6. Литература

Antal, E., Kozmane T.E., 1980: Climatological method for estimation of areal evaporation, Idojaras, Vol. 84, No 2, Budapest.
Frere, M., Popov G.F., 1979: Agrometeorological Crop Monitoring and
, Forecasting, FAO plant and Protection Papers No. 17, Rome
Јовановић О. ,Узелац Ј.,1995: Разлика у трајању сушних периода при анализи вегетационог периода и пеле године, ЈДХ, Саветовање "Жене, воде и водопривреда Југославије" - Сремски Карловци, стр. 73-76, Београд.

spasov., Zonditions of vegetative period and yeld forecast. Zbornik radova RHMZ Srbije, str. 243-258, Beograd.

МЕТЕОРОЛОШКИ ПОДАЦИ У ВАЗДУХОПЛОВСТВУ

Љияана Савић, дийл. мейеоролог̆

Југ̈ословенски аероирансиорй, Булевар умейносиии 16,
11070 Нови Беог̄рад

Meteorological data have the important influence on flight operations safety and cost effectiveness. This study offers the information on what aviation meteorological data are used in specific phases of operations in Airline practice. It also offers the information on how often these data are used as well as on the nature of their importance and influence on the air operations.

Мейеоролоики йодаци имају значајан уйицај на безбедносыи и економичносий лейеа. У овом раду је йриказано који се ваздухойовни мейеоролошки иодаци у којим фазама рада корисйе у једној ваздухойловној комйанији. Такође је йриказано колико чесйо се $\overline{\text { ии йодаци корисйе и }}$ какав је нихов значај и уииицај на извриене лейена.

1. Увод

Према неким статистикама у свету постоји око пола милиона \qquad дивилно ваздухопловству. Више од 80% ове флоте су авиони са једним мотором. За већину ових малих летилица неопходни су довољно добри тзв. визуелни метеоролошки услови за лет а веома су осетљиви и на залеђивање, турбуленцију и јаке ветрове. Међутим, цивилни авиотранспорт углавном зависи од млазних и елисно-млазних мотора. Ови авиони могу летети у нешто горим метеоролошким условима јер лете по инструментима, односно по тзв. инструменталним правилиа лель
 моторима у тутвичким вазнухопловнии компанијаха шритада 95% свих шрених компнијах километара. Дакле, највећи бро маериша изрше бан ови авиони налазени се најдуже у вазуху и носећи највише путнша.

Занимљиво је имати на уму и следећу статистику. Од укупног броја авио удеса 20% се деси на рути а осталих 80% у околини или на аеродрому. Ово је разумљиво јер с најосетљивије операције у ваздухопловству управо полетање и слетање. Разматрајући 35% случајева постоји посредан или непосредан утицај метеоролошких услова н несреће. У око 15% случајева чист

метеоролошки фактор је узрок несреће. Последње две године, 1996. и 1997. биле су неславне са својих 57 односно 51 удесом у којима је погинуло укупно око 3500 људи. Само последња несрећа у 1997. години однела је 104 људска живота када је пао SILKAIR-ов Боипт 737-300 на линији Џакатра-Сингапур наишавши на област јаке турбуленције облацима

Усавршени аеропрофили, нова технологија материјала као и нови електронски системи могућавају све боље перформансе све веђи. Конкурениија на тржишту доприноси максимални коришћену повених максићности и ресурса авиона у товенаним могућности и ресурса авиона. у таквим условима неопходно је што оптималније користити метеоролошке информације пре иу одржавање и побољшање безбедности и економичности летења.

Употреба метеоролошких података ваздухопловству почиње много пре него пшто један аеродром настане (Слика 1.). Добро поставити и изградити један аеродром зависи од помно проучених податка о надморској

висини, температури, ветру, опасним појавама итд. за једну локацију. Промена надморске висине $3 а 300 \mathrm{~m}$, због промене густине ваздуха, ахтева 7% дужу писту а за сваки ${ }^{\circ} \mathrm{C}$ виш просече температуре од стандардне желияо аеродром са задатом употреблиюошу Ако орографија локашије допушта сам праваи
 писте ъе искључиво зависити од праваца

3. Стратегијска припрема лета

едном постављен и изграђен аеродром имаће различити ниво искоришћености зависно од сезоне и доба дана. При стратешком планирању реда летена потербно је знати, на основу климатологије аеродрома, када ланирати време полетања и слетања за ддређени аеродром како би се избегли периоди а учесталим опасним и рестриктивних авама (ппр. магла, јаки пљускови кише итд) ред летења компаније.

Формирање нове линије осим доброг ред етења, захтева и упознавање оперативно особља и носада са климанологијом аеродрома, посебно оних који су са другачијим климатолошким карактери- стикама од области седишта компаније. Детаљне статистике и описи климе аеродрома су од изузетне користи у том послу. На жалост, ни за нашу земљу не располажемо климатографијама за све аеродроме а често не постоје или су недостунне и за многе еродроме у свегу. Страгегиска прирема еродрома подразумева и упознаване с вима-тологијом виших слоји атмосере
 екваторске и др.

4. Тактичка припрема лета

За разлику од једном извршене стратегијске мрипреме лета тзв. тактичка припрема лета је припрема сваког конкретног, појединачног ета и врши се на земљи пред свако
извршавање тога лета. У овој фази рада ористе се скоро све врсте ваздухопловних метео података.

4. 1. Припрема лета

Припрема лета подразумева, између осталог, рипрему и израду плана лета. План лет Слика 2.) укључује дефинисање руте и лета, брзине, количине горива и времена

потреоног за лет као и тежине авиона на полетању и слетању. За добро и реално дефинисање ових параметара неопходно је, осим миопих других података имати
 аолешианая, слемана и моуупим
 вриии нежонико сати пре дочета смог дета вейина података који су нешходни су, у ствари, венй ирогиностиячкия меійео йодаии

Слика 1. Фазе коришћења метеоролошких података

Добро дефоннсаюе руйе захтева увид у ойасне
 избегавање. С тога је неопходно располагати
 СИПМЕТТ-вмна (ако су издати) за област кроз коју се намерава летети, уйозорењима свих орсіша која се односе на изузетино ойасне йојаве могуће у тим областима (тропски цикложи, ерупције вулкана, облаци вулканског
пепела итд.).

JAT FLIGHT DISPATCH		OPERATIONAL FLIGHT PLAN		09:31 25MAY98	
25MAY98	JAT 350	BEG-FRA	STD 1025	STA 1220	D93JK
ATD	ATA			T/O FUEL	

ETOW 43625 ELW 38886 EZFW 35641 TAS 437 MN LRC WC M19

POS	FL	ZT/TT	AWY	DST	TRK	TAS	WIND	TTL
LYBE	CLB	20/0:20	\cdots	SID	115	VAR			
KEL	CLB	00/0:20	…	UA4	1	003			6477
TOC	330	04/0:24	\ldots	UA4	30	003	431	P23	6323
BUG	330	07/0:31	\ldots	UA4	50	346	437	P 02	6041
TPS	330	11/0:42	\ldots	UG1	71	275	437	M 56	5613
GYR	330	04/0:46	\ldots	UG1	28	299	438	M 35	5454
KEL	350	04/0:50	\ldots	UG1	24	298	437	M 32	5319
FMD	350	04/0:54	\ldots	UG17	31	305	437	M25	5148
STO	350	04/0:58	UA15	32	328	438	M 08	4978
FIR	350	01/0:59	UA15	5	329	438	M08	4952
OKF	350	06/1:05	UA15	43	321	437	M 13	4722
VOZ	350	06/1:11	UA15	41	324	437	M 12	4504
OKL	350	03/1:14	\ldots	UA152	22	269	436	M23	4384
RAK	350	07/1:21	\ldots	UR11	46	267	436	M21	4136
TOD	DES	01/1:22	\ldots	UR11	4	267		M 12	
OKG	DES	27/1:49	OKG1	160	VAR		M 12	3245

MIN TO ALT 2745
FIR/UIR: LHCC 0:20 LOWW 0:46 LKAA 0:59 EDUU 1:22

	FUEL	TIME	DIST		
TRIP	4739	1:49	703		
ALT	1545	0:30	140		
HOLD	1200	0:30			
R.RES	500	0:12			
TAXI	150				
REQ	8134	3:01		PAX	77
EXTR	0			CARGO	16 KG
REC	8134	3:01		CORR FUEL/WEIGHT	$87 \mathrm{KG} / \mathrm{T}$

AUIN: DUS (EDDL) AMTRK 318 WIND COMP M18
METEO OBSERVED: $25 M A Y 98$ Oी UTC
LIMII ILIPLAN 25 MAY 981325
PREPARED BY
ADHONAL FUEL AT
CAPETAIN'S DISCRETION
CAPTAIN
REASON

Слика 2. План лета (делимичан приказ)

Када се према очекиваној метео ситуацији изабере рута долази фаза рачунања свих потребних параметара за лет. За добар морачун потребног и резервног горива за едан лет неопходно је имати птто је могуће бољу йройнозу веиира, млазне сийрује, ииемйерайире и висине йройойаузе на захйеваној руиии и за зихииевано време. Обзиром да је и у средње развијеној компанији број летова у једном дану велики, да се руте висине летова често мењају и да покривају најчешће широке географске области, неопходно је из одређених прогностички модела аутоматски добијати ииройноз нведених ийдайика за велике обласиии. Ти подаци побијени у дигиталном облику улаз су за тзв. Flight planning компјутерске системе кој затим, према добијеним прогностичким параметрима аутоматски израчунавају остал неопходне параметре за лет. На плану леп осенчена поља) се приказује просечна компонента ветра за целу руту, компонент ветра за сваки сегмент руте и компоне нано ветра за руту до алтсрнације. Обавезно осдеву којих је израђена прогноза.

Током припреме лета проверава се какво је стварно и прогнозирано време на дестинацији ззимањем најсвезсије METAR и TAF йоруке. Зависно од тога одлучује се да ли ће лет бити изведен или не. Битан сегмент припреме је и бирање могућих алтернација за слетање. То се ради на основу TAF йройнозе времена за ародроме који су стратегијски одабрани алтернације за одређени лет и тип авиона.

Без обзира на то какво се време очекује на дестинацији, процедура бирања алтернација је обавезна и потребно гориво за претпостављене алтернације се мора понети. За овај део посла користе се METAR извеииаји о времену и јои ин"иереса.

Служба у којој се ови послови одвијају у компанијама најчешће се зове Flight Dispatch. Дакле, у Flight Dispatch-y се морају правовремено наћи на располагању сви ови метеоролошки подаци како би се припрема извршила квалитетно. Већ поменути обим операција у цивилном ваздухопловсту и велика гужва у ваздушном простору, посебно у Европи, не допуштају произвољност и импровизације у овом послу. Сваки од корака у припреми лета мора се оптимално одрадити тако да је сваки прорачууі ин избор на странин безбедног летена Одмах затим се мора које намећу високе цене горива и конкуренција

на тржишту. Дакле, баланс изме立у нзбегавава опсния пиодвва пи корншіења повољних времепгких услова је мера доброг планирања уепиио пета.

4.2. Брифинг и материјал за ле

Даља припрема лета се састоји у припреми досаде која ће радити конкретан лет. Да би то посада урадила долази у Flight Dispatch по све потребне податке. Та фаза припреме зове се Брифивг. Добивши припремљени план лета посада разматра изабрану руту и све њене карактеристике, као и разлоге због којих је диспечер одабрао баш ту руту и алтернације Образлажући свој избор, диспечер даје на увид све кеииео ийдаииике (наравно и остале) које је
кррисииио. Да би брифинт био потпун, посада кяррисиини. Да би брифинг био потпун, посада добија нови сей свих мейсо иодашак иошрребних за лей уколико су се они у мефуғремелу иром јим, шј. иза ми мрии Ово је неопходно јер се прирема лепа врм неколако саки у у авион Зато се посада дмалак носоде јовия ажурнјим подачима У кодико се па осову нових података утврди да је дошшо до било које значајније промене метео успова или прогнозе тих услова, а који утичу на лет, постоји могућност накнадне израде новог штана лета и избора нових алтернација па чак и руте.

Дакле, за метео брифинг, као део целокупно брифинга у компанији, неопходни су потпуно исти подаши као и за припрему лета али ажурирани за тај моменат. Овако ажурни подаци сачињавају и потребну документацију коју посада носи са собом на лет.

После добре припреме и брифинга посада је спремна да започне свој задатак извршавања лета. У време припреме посаде за лет врши се паралелно и дрипрема самог авиона за лет. То изме方у осталог значи добро спољашње прањ и одлеђивање летилице као би аеродинамика авиона остала ненарушена. Начин одлеђивања (de-icing) и заштита (anti-icing) од даље залеђивања на полетању зависиће од температуре, влаге и метеоролошких појава у тренутку припреме авиона за лет као и о очекиваних услова у периоду који непосредно следи, све до полетања авиона.
5. Тиврриене лета

Сваки лет се састоји из четири основне фазе: полетање и пењање, крстарење, понирање и рилаз и слетање. За разлику од припреме, само извршење лета, а посебно полетање и

слетање, захтевају што је могуће ажурније директно утичу на безбедно извршење ових сйиварне ийј. осмойрене меӣо о йодайке који

5.1. Полетање и пењање

Полетање је врло осетљива операција која захтева актуелне податке о видљьивосииии, RVR, садаињем времену, ниској облачносиии, шемйерайури, "иемйерайири пииачке росе, двоминуинном иросечном йриземном вейру й
 висиномер. Осим ових подай нидииосии,
 облачноши, златв ринот добија у ееир

добија у лором лета а у тренутку
мотора.

5. 2. Крстарење

Обавивши успешно полетање и пењање и нашавши се на нивоу лета, пилот долази у додир са нешто другачијом средином. Сада га занимају метео појаве у вишим слојевима йройски чиклони, линије несйабилносйии, дррад, залеђивање и пуурбуленцја у облачима и ведром времену, йланински шаласш и друг̆е ойасне йојаве на које их упозоравају SIGMET-и које су добили на брифингу или које добијају у току лета од котрола летења са којима су контакту. Осим тога, и сам авион је опремэе инструментима који му дају податке о ииренуиином сииољаињем вейру ииемйерайури. Меииео радаром у авиону који скенира облачне слојеве испред авиона могу се уочити зоне ииурбулениие и арада које ваљ избећи.
Посматрајући и бринући углавном о појавама на рути испред себе пилот не занемарује ни време на аеродромима који су у близини његове тренутне позиције, тзв. рутн алтернације. Слушајући VOLMET сниниену емисију са METAR извешйајика за околн
 на тим аер. Када дође у домет VOL MET емисиі слетањем. Када дође у дот моти време на своје дестинацј, нииіалиим алтернацијама ес би ша рреме могао утвряити да ли ће имати бине услове за слетане на дестинацију или бти неопходно да се одмах упути на неку о предвиђених алтернација

5. 3. Понирање и прилаз

Утврдивши да је време на аеродрому дестинације добро, или определивши се за неки од алтернативних аеродрома, пилот са крстарења прелази у фазу навигационо тачно дефинисаног прилаза изабраном аеродрому Тада су му потеребни сви они йодачи и TREND йройнозе йарамейара као и за фазу лейана како би подесио инструмеве рипремио се за неопходне маневре безбедно слетање.

5. 4. Слетање

Прилаз се завршава самом операцијом слетања када пилот који командује авионом добија од контролора ииекуће вредмосіии йриземно вейра на йрагу ииисійе на који слеће као и иодайке о видливосйии йисйе у йравиу у који слеће и то најчешће за сваку трећину писте.

6. Меторолошки нодаци у Припреми лета

Када је већ на изабраној рути, посада има могућности да у сарадњи са контролом лета и по њеном одобрењу промени руту или нво лета. Ипак ове могућности су ограничене местом и временом догаиаја. у слчау гужвих
 промена сме доћи само сороко коности оп или уопыте не сме да би се овакве шромене судара у ваздуху. да би б са тет успешшо максимално избеле и да ина леба добро остварио, све д доржати свим потребним мриремма у травом трнутку Део посла у коме подацимау аз аја долази метеоролошка до ника јеног дета и у коме се најбоље могу искористити предности познавања метеорологије је припрема лета. Зато је избор руте, нивоа лета, алтернација, одлагање полетања авиона или потпуно укидање лета врло важан део припреме у коме је слобода одлучивања много већа и значајнија. Ту долази до изражаја квалитет метеоролошких података који су на располагању у датом моменту, знање метеорологије као и бројни други неметеоролошки фактори.

Слика 3. Припрема летова и фреквенција захтева за метео подацима

Како тече припрема једног лета у компанији најбоље се може видети на Слици 3. Посматрајући једну од временских оса (I - IV) на слци види се да набавка к кори 3 сье по ррена полетана зависно од врсте лета који се шритрема (кратко и средње линијски лет, ннтерконтинентални лет) Затим се израђује лан лета и пришемају сви други потребни одачи за брифинг и дет како је већ описано. Уколико је све регуларно у собраћају дотичног дана, посао се понавља по овој шеми за сваки лет по реду летења као што се види на Слици 3. При овоме треба имати у виду да су обично времена полетања концентрисана у одређен сате дана и да се често због тога вршы припреме више летова одједном. Тада се са припремом почиње много раније па се збо тога подаци морају тражити у више наврата. У случајевима када је лоше време на аеродром полетања и/или аеродрому слетања, збо техничких разлога у компанији, кашњењ авиона са претходног лета идр. може доћи до значајног померања времена полетања. Тада се припрема једног лета може понављати једном

или више пута. Дакле, фреквениија захтева за разним врстама метео података у компанији је изузетно велика што се види на посебној временској оси на дну слике. Уз то треба имати у виду да је на слици приказана ситуација са само четири полетања за три сата што је значајно мање од броја полетања у часовима вршног саобраћаја у већим компанијама.

7. Значај метеоролошких података у ваздухопловству

Из претходног се види да је добијање употреба метеоролошких података тога у компанијским оперативним

службама мора постојати поуздан главни резервни нвор свия врсла метеоролошких података. Подаци се морауу добијати на време брзо, редовно и комплетно на сваки захтев Квалитет и читљивост материјала мора бити на високом нивоу. Материјал мора бити сагласности са светским ваздухопловним прописима и стандардима и по квалитету и по

форми. Побољшање квалитета и друге промене података не смеју утицати на форму материјала јер се он употребжава оперативно до стране људи који нису експерти за
 иатеријала могу изазвати нежељсне хр директно утицати на безбедност летења

Слика 4. Мейеоролоики факйори који уйичу на ойераииивне йроикове ле"иена

Обзиром да је метеоролошка припрема само један од аспеката целокупне припреме лета пожељно је да сви подаци буду на једном квору писа оријентисаи Поскатрајући Дакле ночевши ол понияе шисте коia je на располагању а која је одређена, како смо већ рекли на осову познавана неких метеоролошких фактора, преко тренутних података на шисти и стану њене површине до дданакана авиона и загревања горива, сви ови фактори утичу на тежину авиона на полетању Зависно од тежине авиона, висине и режима лета и зависно од температурних услова у околној атмосфери зависиће потрошња горива $(\mathrm{kg} / \mathrm{h})$. Температура и режим лета утичу и на стварну (ваздушну) брзину авиона. Стварна брзина авиона и правац и брзина ветра одредиће брзину у односу на земљу. Потрошња горива и брзина у односу на земљ одредиће специфични домет авиона ту. бро километара које је могуће досени по свако иилограму горива. Узевши у обзир дисташ коју треба пре末и, специфични домет који је могуће постићи и брзину у односу на земшу оја се у условима реално встра мож ностићи, добијамо тачно време лета и гориво потребно за тај лет а ти параметри одређују, уз неке друге, дирекже оперативне трошков нета и количину плаћеног терета (путниц роба, пошта идр.) који авион може понети.

Како су приказане везе добро познате лако је после изврненог лета израчунати оперативн рошкове лета и остале параметре. Пробле астаје када се лех прирема, т.. када мрогозиране рредности метеоролонки
 коники је значај метеоролошких података који су шотребих да би се што реалније орецим сви потребии параметри мета Об́зиром да смо рекди да је сврха свих порачуна шре свега припремити довољно безбедан лет у условима који се могу наћи на рути и дестинацији, значај расположивости и квалитета података којима се оперише много је очигледнији компанијама као корисницима него ито је то даваоцима информација тј. метеоролозима. Осим тога, како су авио компаније комерцијалне фирме мора се имати на уму да се употреба свих ових података мора извести што оптималније без непотребних трошкова због недостатка мето информација или

њихово лошег квалитета и неадекватности. Баш̈ због оваквих услова метео информације на располагању морају бити максимално могуће квалитетне и испуњавати већ наведене услове.

Слика 5. Осматрања на авионима (30. 06 1997. 00 UTC, асимилирано 20650 осматрања типа AIREP AMDAR и ACARS; ECMWF, Reading)

Такође, метеоролози треба да буду што боље упознати са начином и сврхом коришћења њихових продуката у савременом ваздухопловссву Тако у мри норади продуката за ваздухопловство уложил макситетијим Обзиром на шрироду поста и квалияниа у вазухопновству није посла ино хначајно шовећавати постојећи број метеоролошких продуката већ је неопходно метеоролошких продуката већ је неопходно радити на томе да квалитет тих продуката буде
на што је могуће вишем нивоу јер се једна на што је могуће вишем нивоу јер се једна
веома осетљива област људске делатности веома осетњива обласл льудске делатности
ослања на њих. у том послу ваздухопловство помаже метеоролозима. Осматрања са авиона (Слика 5.) су по међународним прописима

бавезна за одређене летове. Обзиром на све бржи напредак технике очекује се да ће сви авиони нове генерашијс бити опремљени неким од система аутоматског осматрања метеролоиких параметара на висини Тако добијени подаши ће тим истим системима (ACARS, AMDAR) такође бити ефикасно аутоматски послати у неки од колективних центара. Тиме ће се густина података добијених са авиона значајно повећати и бита слична већ сада постојећој у Сједињеним Америчким Државама где је број авиона опремљен овом опремом већ значајно велики и где је прикупљање тих податак обавезно.

МЕТЕОРОЛОГИЈА У СЛУЖБИ ВОДОПРИВРЕДЕ

АНАЛИЗА ХИДРОЛОІІКИХ И МЕТЕОРОЛОІІКИХ УСЛОВА

НА СЛИВУ РЕКЕ КОЛУБАРЕ У ЈУНУ 1996. ГОДИНЕ

Анг̈елина Д. Вукмировић, дийл. инж., Бранислава Л. Кайор, дийл. инж

Рейублички хидромейеоролошки завод Србије, Кнеза Вишеслава 66 .
11030 Беог̄pad, Jуи̃ocлавuја

As a conseqvence of the sinoptic conditions, on June 13,1996 , the rainfall of high intesity over the catchment of the river Kolubara caused high water and tributary flooding and at some hyarological station the water leve psolute values were recored. The characteristics of observed rainfall and ischarge were analysed as well as their effectcause relations. The study includes also the statistcal analysis of these values in previous long term observations.

Абсииракй

Као йоследица развоја синойиичке сийуације13.јуна 1996.године на сливу реке Колубаре кише јако̄̄ инйиезийиейа изазвале су йојаву великих вода, изливање йри"̄ока, а на йојединим хидролошким сйаницама йревазиђени су до шада забележени айсолушнно максимални водосиай Анализиране су каракииерисӣике осмойрених йадавина и йройицаја и вихове узрочно иос ве. У анализу је уклучен ииейодиињем йериоду осмайрањю

Увод

иша, веома јаког интензитета, која је пала поподневним часовима 13. 06. 1996. године словила је појаву великих вода у сливу Колу аре. Највеће количине падавина пале су на есној страни средњег и доњег тока реке Колу аре што је проузроковало изливање на при окама и проглашавање ванредне одбране од оплава на реци Лукавици.

На хидролошким станицама: Бели Брод на реци Колубари, Боговађа на реци Љигу и Таштрић на реци Рибници забележени су нови апсолутно максимални водостаји. На хидролошкој станици Бели Брод водостај је прешао ниво за пр хс. Дражевац ниво редовн дбране од поплава.

Десне притоке реке Колубаре нису обухваћене оперативии шланом одбране од ношава, али се из месечних извештаја са падавинских таница из напомена осматрача види да ј киша падала у облику пљуска (п.с. Брежђе 136 mm) и да је изазвала велике штете. У горњем

сливу реке Рибнице, њене саставнице излиле су се и причиниле велике штете на подручју села Осечина и Брежђе (река Манастирица) и села Горњи Лајковац (река Пакљешница). У коментару осматрача са п.с. Брежђе каже се да ни најстарији мештани не памте такву кишу у крају. Са п.с. Степања (средњи ток Колубаре, код х.с. Словац) у месечном извештају осматрач наводи да је у том крају била права провала облака (регистровано 51.0 mm) у поподневним часовима 13. -ог јуна.

На сливу реке Љига на п.с. Белановица регис трована је киша (67.1 mm) у времену од 14^{0} до $14{ }^{30}$ и од 16^{00} до 19^{00} часова, а као после дица излила се речица Качер.

Са п.с. Дудовица (на сливу реке Љиг, код х.с Боговађа) у месечном извештају осматрач наводи да је јака провала облака у неколико наврата као и јака киша која је почела око 14^{30} трајала до 19^{30} часова (код п.с. Дудовица рег истрована је киша од 91 mm) проузроковала нагли пораст водостаја на Црној реци, Оњегу и

на реци Љигу, велике поплаве у селима Барзи- изазвале велике материјалне штете, људских ловица, Брајковац и Дудовица. Поплаве су жртава није било, али је дошло до загађења

Слика 1. Прег̄ледна карииа слива реке Колубаре

вода у бунарима, нестанка струје и великих оштећења локалних путева због великих бујица.

Ове поплава су настале после сушног периода, изазване су пљусковима јаког интензитета, а просторни распоред киша био је неравномеран (занемарљиве падавине у сливу Тамнаве, изузетни екстреми код Лазаревца).

Намера је аутора да прикаже метеоролошке и хидролошке услове са инжењерског аспекта. Ова анализа као и будућа истраживања на овом доста проучаваном подручју (Д. Јанковић, С. Прохаска, Т. Петковић, М. Савић, и други) треба да послужи за планирање мера и акција при решавању одбране од поплава у сливу реке Колубаре.
. Осматрачка мрежа
У сливу реке Колубаре и њених десних притока постоји 15 кишомерних станица на којима ее осматрају дневне падавине. Висински положај падавинских станица, у сливу Колубаре, варира од 450 mnm у горњем сливу (п.c Поћута) до 125 mnm у доњем делу слива (п.с Степојевац). Падавине се континуално региструуу помоћу плувиографа у реалном времен само на главној метеоролошкој станици Ваљево у горњем сливу Колубаре.

Непосредно изван слива реке Пештан, десне притоке Колубаре налази се м.с Букуља опремљена плувиографом. Најближе метеоролошке станице, ван слива Колубаре, на којима се врши осматрање плувиографом су Кошутњак, Лозница и Ужичка Пожега

аика 2. Простыорни расйоред йадавина Србији 13-ог̄ јуна1996.йод.

За анализу пљускова у сливу реке Колубаре могу да послуже и радарска осматрања на радарским щентрима Ваљево и Букуља, који су део система одбране од града.

Републички хидрометеоролошки завод Србије врши редовна осматрања на хидролошким станицама на саставницама реке Колубаре на реци Обници код хидролошке станице Бело Поље, на реци Јабланици код х.с. Седларе, на реци Колубари код х.с. Ваљево, х.с. Словац с. Бели Брод и х.с. Дражевац и на десним ритокама на реци Градац код хс. Дегурић, н реци Рибници код х.с. Паштрић, на реци ЈЬигу код х.с. Боговађа и на реци Пештану код х.с Зеоке.

На реци Колубари хидролошке станиц Ваъево, Словац, Бели Брод, Дражевац и на притоци Јьиг х.с. Боговађа укључене су у извештајну мрежу и са истих се располаже по ацима у реалном времену. На хидролошкии станицама Паштрић и Зеоке, Завод врши ре довна осматрања водостаја, али те хидролошке санице нису укъучене у извештајну мрежу и истих се не располаже подашим у реално ремену. На реци Лукавшии Завод не врши ос
 са сливних подручја река Јабланице, Градца

Лепенице, Рибнице Љига Лукавице Пештана и Турије у извештајну мрежу укључена је Главна метеоролошка станица Ваљево.

3. Метеоролошкки подац Развој синоптичке ситуације

Према прогнози времена 13. 06. 1996. године се очекивао утицај фронта који би у већини места дао слабе падавине, локално од 20 до 30 mm . С обзиром на претходни сушни период и временску прогнозу није било основа за издавање упозорења о порастима водостаја на сливу Колубаре.

У току целог периода од 13. -ог до 17. -ог јуна 1996. године над Балканским полуострвом је у приземљу слабо градијентно антициклонално поље. На свим висинама се одржавала долина са осом преко источних делова Балкана, тако да је у подручју западне Србије, нарочито у Колубарском региону, било слабо северозападно струјање.

Само је првог дана периода, 13.06.1996., на време у Колубарском крају утицао хладни фронт са северозапада који је у већини места био изражен само у погледу умерене облачности и пада температура. Облачност је била конвективна, а на свим висинама је било слабо струјање. У Колубарском крају на појединим локалитетима дошло је до формирања кумулонимбуса који су се ту стационирали, ре генерисали и 13. 06. у времену од 14 до 20 часова изазвали локално јаке падавине.

Конвективне ћелије које су 13. 06. 1996. године праћене на Радарским центрима изнад територије слива реке Колубаре кретале су се са сев ера према југу, прелазећи прво територију Pa дарског центра "Букуља", да би затим захватиле и територију Радарског центра "Ваљево" Конвективне ћелије су се споро премештале узводно уз реку Колубару. Средњи интензитет максималне радарске рефлексивности праћених облачних ћелија кретао се од 37 до 48 dB. Средни ичтензитет ранарске ренли ност сести се од 24 да 47 до падавина од до $101 \mathrm{~mm} / \mathrm{h}$. Брзина премештања конвективних ћелија износила је од 10 до $30 \mathrm{~km} / \mathrm{h}$. Правац кретања је од Београда (м.с. Кошутњак 107.2 mm) долином

4. Подаци о падавинама

Са слике 2. види се да је подручје јаких падавина обухватило сливно подручје реке Колубаре, а посебно десних притока реке Колубаре: реку Рибниқу са притоком Лепеницом, реку Топлицу, реку Лукавицу и реку Пештан.

Висине падавина на дан 12 -ог и 13 -ог јуна 1996.године на падавинским станицама у сливу реке Колубаре приказане су у Табели 1.

На основу ових података одређене су висине падавина за сливна подручја река до хидролошких станица. Са карте се види да су се у подручју десних притока реке Колубаре падавине кретале од 67.1 mm на п.с Белановица до 173.6 mm на п.с Лазаревац. Падавине преко 100 mm регистроване су на п.с Лајковац 170.4 mm , на п.с Брежђе 136.1 mm и на п.с Мратишићи 145.5 mm у горњем току реке Рибнице и њене леве притоке Лепенице као и на п.с. Богатић 115.0 mm у сливу реке Градац.

Трајање кише је оцењено на бази плувиографских записа на п.с Ваљево, Кошутњак и Букуља. На п.с Лозница није било падавина. За горњи део слива Колубаре (реке Обница Јабланица, Градац, Рибница) репрезентативна је станица Ваљево. Трајање кише је износило 120 минута (од 16^{50} до 18^{50}). При томе је занемарена претходна киша од 2.9 mm у периоду од 14^{40} до 15^{00} и киша 2.1 mm од 16^{10} до 16^{40}, пошто та киша не изазива отицање

Подаци са плувиографске станице Кошутњак указууу да се фронт падавина кретао са севера ка југу-југозападу, што потврђууу и радарска осматрања. Плувиограф на Кошутњаку је рег истровао падавине од 107.2 mm у периоду од 11^{00} до 18^{00} часова. Падавине из периода од 11^{30} до 12^{10} биле су локалне и нису се простирале на југ. Киша која је падала од 14^{00} до 14^{35} висине 19.5 mm простирала се на југ и регистрована је на п.с. Ваљево у траговима. Исто се може рећи за наредни талас од 15^{15} до 15^{30} часова. Ударни пљусак трајао је од 15^{50} до 18^{00} са висином падавина од $56,8 \mathrm{~mm}$ од чега 28 mm у првих десет минута (15^{50} до 16^{00}), а за

Падавинске станице у сливу		Падавине		$\sum_{(\mathrm{mm})}^{\sum \mathrm{P}}$
		ДАТУМ		
		12.06	13.06	
ОБНИЦА				
Мајиновић	400		60.1	60.1
ЈАБЛАНИЦ A				
Поћута	450	20.3	30.1	50.4
ГРАДАЦ				
Богатй	400		115.0	115.0
РИБНИЦА				
Мратишићи	400		145.5	145.5
Брежђе	340		136.1	136.1
Мионица	170		87.2	87.2
КОЛУБАРА				
Ваљево	174		85.6	85.6
Степања	230	1.0	51.1	52.1
Лајковац	120	2.3	170.4	172.7
ЂИГ				
Штавица	225		78.2	78.2
Белановица	270		67.1	67.1
Дудовица	135		91.0	91.0
ЛУКОВИЦА				
Лазаревац	140		173.6	173.6
ПЕШТАН				
Рудовци	160	5.4	74.8	80.2
TУРИЈА				
Степојевац	125	6.5	75.3	81.8
TAMHABA				
Коцељева	130			
Памбуковица	140			

Табела 2. Плувиоа̄рафски зайис йале кише

13.06.19	Кошутњак		Ваљево	
час	$\begin{gathered} \Delta \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \Delta \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}$
$11^{30}-11^{40}$	12.2	12.2		
$11^{40}-12^{10}$	2.9	15.1		
$14^{00}-14^{25}$	18.2	33.3		
$14^{25}-14^{35}$	1.3	34.6		
$14^{35}-15^{00}$	0	34.6	2.9	2.9
$15^{15}-15^{30}$	15.9	50.5	0	2.9
$15^{30}-15^{50}$	0.8	51.3	0	2.9
$15^{50}-16^{00}$	28.3	79.6	0	2.9
$16^{00}-16^{15}$	9.6	89.2	0	2.9
$16^{15}-16^{30}$	7.2	96.4	0.2	3.1
$16^{30}-16^{40}$	0.4	96.8	1.9	5.0
$16^{50}-17^{00}$	3.6	100.4	15.0	20.0
$17^{00}-17^{25}$	3.5	103.9	24.6	44.6
$17^{25}-17^{45}$	1.9	105.8	18.0	62.6
$17^{45}-18^{00}$	0.5	106.3	6.8	69.4
$18^{00}-18^{20}$	0.2	106.8	7.7	77.1
$18^{20}-18^{50}$	0		7.5	83.6
$18^{50}-19^{00}$	0		0.6	84.2
$20^{30}-21^{00}$			1.2	85.6

првих чедрдесет минута ($15{ }^{50}$ до 16^{30}) пало је

Слика 3. Сумарна крива кише у $\overline{\text { иоку }}$
13-о̄̄ јуна

укупно 45.1 mm . Сличне карактеристике ударног пљуска запажене су и код Ваљева где је за десет минута (16^{50} до 17^{00}) регистровано 15 mm , а за тридесет минута (16^{50} до 17^{20}) 39.4 mm . Ови подаци са плувиографских станица Ваљево и Кошутњак приказани су табеларно (Табела 2.) и графички (Слика 3.)

На м.с. Букуља плувиограф је регистровао 19.8 mm и то од 15^{10} до 19^{10} часова, а у траговима 1.2 mm од 22^{10} до 23^{30} часова. На основу хието-

грама ова се киша може апроксимирати трочасовном кишом (од 16 до 19 часова) константног интезитета.

4. Хидролошки подаци

4.1 Карактеристични водостаји

До 13. -ог јуна 1996. године водостаји на свим хидролошким станицама били су у стагнацији и налазили су се у домену малих вода. Падавине на дан 13.-ог јуна, чије је трајање било од 2 до 3 часа, које су захватиле горњи и средишњи ток Колубаре, условиле су нагли пораст водостаја у сливу реке Колубаре на свим хидролошким станицама, формирање таласа великих вода који је на неким станицама имао карактер

Табела 3. Максимални водосӣаји у сливу реке Колубаре

	Нmax х.с. до јуна 1996.	Hmax (cm) jун 1996.	$\Delta \mathrm{H}$ (cm) јун 1996.
Бело Поље	$358 ; 1987$.	212	166
Седларе	$384 ; 1987$.	250	176
Ваљево	$229 ; 1987$.	107	81
Дегурић	$256 ; 1965$.	200	160
Паштрић	$351 ; 1959$.	479	460
Словац	$500 ; 1965$.	438	453
Боговађа	$535 ; 1987$.	564	471
Б. Брод	$484 ; 1985$.	606	555
Зеоке	$459 ; 1969$.	451	496
Дражевац	$758 ; 1981$.	740	664

поплавног таласа. Изузетак је лева притока Колубаре, река Тамнава, на чијем подручју није било падавина. У Табели 3. дат је прегле максималних вредности водостаја до јуна 1996. године и у јуну 1996. године.
истој табели приказане су и амплитуде пораста водостаја $\Delta \mathrm{H}$ у јуну 1996. године на хидролошким станицама у сливу реке Колубаре. Апсолутни максимални водостаји за бележени су на хидролошким станицама Бели Брод на реци Колубари, Паштрић на реци Риб ници и Боговађа на реци Љигу, док су на хидролошким станицама Дражевац на Колу бари и х.с. Зеоке на реци Пештану регистро-

вани максимални водостаји незнатно нижи од сливу реке Колубаре и приказане графички апсолутно максималних водостаја у периоду осматрања.

На х.c. Бели Брод на реци Колубари забележени максимални водостај од 606 cm је за 76 cm виши од нивоа за проглашавање ванредне одбране од поплава који је према Оперативном плану одбране од поплава износио 530 cm .

На х.с. Дражевац на реци Колубари забележени максимални водостај од 740 cm је за 100 cm виши од нивоа за проглашавање ванредне одбране од поплава који према Оперативном плану одбране од поплава износио 640 cm .
4.2 Хидрометријска мерења

На реци Колубари и њеним притокама лимниграфи су регистровали талас великих вода у јуну 1996.године. На неким хидролошким станицама, где је време појаве и трајања великих вода то дозвољавало извршена су хидрометријска мерења (Боговађа, Бели Брод, Дражевац), а на оним станицама где је врх таласа прошао ноћу извршено је накнадно снимање трагова велике воде (Зеоке, Словац, Паштрић).
4.3 Карактеристике забележених хидрограма

На бази забележених нивограма на лимниграфским тракама и кривих протока конструисани су хидрограми за хидролошке станице на сливу реке Колубаре и приказане графички (Слика 4.).

На х.c. Паштрић на реци Рибници извршена је екстраполација криве протока при чему су коришћени подаци о снимању пада нивоа при максималном протицају и снимљени попречни профил.

За контролну анализу хидрограма урађен је биланс запремина палих и отеклих вода до појединих хидролошких станица на реци Колубари и десним притокама. Резултати ове анализе приказани су у Табели 4.

На бази забележених нивограма на лимниграфским тракама и кривих протока конструисани су хидрограми за хидролошке станице на

(Слика 4.)

Табела 4. Биланс зайремина йалих и опееклих вода

x.c.	$\begin{aligned} & \hline F \\ & \left(\mathrm{~km}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{0} \\ & 10^{6}\left(\mathrm{~m}^{3}\right) \end{aligned}$	K_{0}
Б. Поље	185	53	2.38	0.24
Седларе	140	57	1.81	0.23
Ваљево	340	55	4.20	0.23
Дегурић	159	103	6.47	0.40
Рибница	104	115	5.59	0.47
Словац	995	95	23.90	0.28
Боговађа	679	78	10.60	0.20
Б. Брод	1896	83	42.70	0.27
Пештан	125	86	2.64	0.26

Слика 4. Хидройрами йойлавной $\overline{\text { й }}$ ласа из јуна 1996.г̄од
5. Анализа података о падавинама
5.1Статистичка анализа максималних дневних падавина

Према подацима мерења на падавинским станицама на територији Србије за период од
1925. по 1996.године, падавине на п.с. Лазаревац на дан 13.06.1996.године су највеће забележене дневне падавине у сливу Колубаре, а четврте по реду на територији Србије.

Раков Дол 26. 06. 1988. измерено 220 mm (слив реке Власине)

Неготин 10. 10. 1955. измерено 211 mm (слив реке Тимока)

Букуровац 22.05. 1967. измерено 200 mm (слив реке Тимока)

Лазаревац 13.06. 1996. измерено 173.6 mm (слив реке Колубаре)

Слика 5. Уйоредни дијайрам емйиријских расйодела за Лазаревац Каленић и Уб.

На основу претходне чињенице као и на основу анализе вероватноћа појаве максималних дневних падавина за п.с Лазаревац закључено је да падавине од 173.6 mm у Лазаревцу представљају историјски максимум односно да податак за бенен 13 ог јуна 1996. годие одсупак за-
 талих података и да припада статистичком узорку са дужим периодом осматрања. Да би се ова чињеница потврдила и објективизирала и
да би се овај податак могао користити у даљој анализи вероватноће појаве примењена је ме-

тода "година-станица" у којој се користе и подаци са суседних аналогних станица. За аналогне станице одабране су п.с Лазаревац, Уб и Каленић (Слика 5.)

Наведеном методом добијен је број "независних станица-година" Nnz = 108. За аналогне станице издвојен је низ максималних дневних падавина обима Nnz. За овако формиран низ максималних дневних падавина, извршен је прорачун вероватноћа применом теоријске расподеле \log Pearson III типа и приказан у Табели 5.
На слици 6. теоријска расподела приказана је пуном линијом, а горњи интервал поверења са 95% поузданости испрекиданом линијом. На основу добијених вредности може се са ризиком од 5% тврдити да повратни период падавине од 173.6 mm измерене у Лазаревцу 13. 06. 1996. године није мањи од 300 година.

Слика 6. Дијайрам расйодела максималних годишъих йддвина за обједињен низ

5.2 Анализа краткотрајних јаких падавина

Из претходног приказа резултата осматрања на станицама опремљеним плувиографима као и из записа осматрача, може да се закључи

да су пљускови на дан 13. -ог јуна 1996. године у сливу реке Колубаре трајали око три часа. За анализу вероватноћа појаве максималних трочасовних падавина у сливу Колубаре на располагању су подаци са плувиографске станице Ваљево. Примењена је метода годинастаница са аналогним станицама Буковичка бања и Лозница па је добијен низ са $\mathrm{Nnz}=66$ година-станица. Резултати ове анализе обављени су помоћу \log-Pearson III (LP III) расподеле. Вредности максималних падавина за одређене вероватноће приказане су у Табели 5.

Табела 5. Веровайноћа иојаве максималних дневних и атрочасовних йадавина у сливу реке Колубаре

P\%	Дневне падавине		Трочасовне падавин	
	LP III	IP 95\%	LP III	IP 95\%
0.01	258	331	156	215
0.1	175	214	110	143
0.3	147	175	92.0	117
0.5	131	157	83.9	106
1	114	132	73.4	89.9
2	99.2	113	64.1	77.0
5	81.3	90.5	52.4	61.0

За трочасовне падавине у горњем сливу са ризиком од 5% може се тврдити за падавине на п.с. Мратишићи (145.5 mm) повратни период није мањи од 1000 година, за падавине на п.с. Брежђе (136.5 mm) није мањи од 700 година, а на п.с. Богатић (115.0 mm) није мањи од 300 година.

6. Анализа таласа великих вода

6.1 Вероватноћа појаве максималних протицаја Вероватноћа појаве максималних годишњих протицаја на хидролошким станицама у сливу реке Колубаре обављена је помоћу статистичке анализе расположивих низова максималних протицаја у периоду 1955-1995 године методом годишњих екстрема. Основни резул тати прорачуна приказани су у Табели 6

Табела 6. Веровайноћа йојаве максиналних годииних йройицаја на хидролошким сйиани

x.c.	$\begin{aligned} & \mathrm{Q}_{0.1} \\ & \% \\ & \left.\%^{3}{ }^{3} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{1 \%} \\ & \left(\mathrm{~m}^{3} \mathrm{~s}\right) \end{aligned}$	$\begin{gathered} \mathrm{Q}_{2 \%} \\ \hline \end{gathered}$ $(\mathrm{m} / \mathrm{s})$	$\begin{aligned} & \mathrm{Q}_{10} \\ & \%{ }_{3} \\ & \mathrm{~m}^{3 / s \mathrm{~s}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{50} \\ & \%^{3}{ }^{3} \mathrm{~s} \end{aligned}$	$\begin{gathered} \mathrm{Q}_{\text {ivn }} \\ (\mathrm{m} / \mathrm{s}) \end{gathered}$
Б. Поље	359	214	178	107	47.2	58.8
Седларе	268	186	161	100	34.1	52.2
Дегурић	230	155	134	87.4	41.4	75.5
Паштрић	380	199	159	81.5	26.8	385
Словац	398	340	318	262	175	292
Боговађа	185	160	150	125	86.0	158
Бели Брод	674	532	477	371	224	638
Зеоке	167	138	126	95.8	45.0	111

У табели 6. у последњој колони уписане су вредности вероватноће појаве максимално протицаја на појединим хидролошким стани цама у јуну 1996 .године. Из ове табеле види се да за максимални протицај од $385 \mathrm{~m}^{3} / \mathrm{s}$ на х.c. Паштрић на реци Рибници повратни период није мањи од 1000 година. Ову чињеницу потврђује и специфични отицај од $3.15 \mathrm{l} / \mathrm{s} / \mathrm{km}^{2}$ за максимуме повратног периода 1000 година добијен преко зависности за анвелопу хиљадугодишњих великих вода за подручје Србије (Д. Јанковић, Д. Малошевић, 1986)

7. Закључак

Слив реке Колубаре 13 -ог јуна 1996. године нод дејством изузетних метеоролошких услова био је захваћен пљусковитим падавинама. На јинтезивније падавине захватиле су сливна по дручја десних притока реке Колубаре: реку Лукавицу, Рибницу, Топлицу, Љиг и Пештан Киша је трајала 3 часа. Повратни период трочасовних регистрованих падавина на поединим станицама износио је хиљаду година.

Ове падавине су изазвале таласе ведиких вода на реци Колубари и десним притокама са апсона реци Колубари и десним притокама са апсо станице. Карактеристике ове кишне епизоде и таласа великих вода у сливу реке Колубаре су:

* Мљусак је настао после периода од 25 дана без падавина.
- Талас великих вода изазван је трочасовним

пљуском па хидрограми великих вода имају правилно дефинисан облик са израженом растућом и опадајућом граном односно једним максимумом за разлику од претходног вишегодишњег периода осматрања када су по правилу хидрограми великих вода настајали као последица вишедневних киша и по облику били сложени.

- Умањена претходна влажност у сливу реке Колубаре ублажила је талас великих вода. Ово се доказује продуженим трајањем опадајуће гране хидрограма и високим процентом запре-

иине базног отицања

- Регистровани подаци о падавинама и протицајима у сливу реке Колубаре при великим водама у јуну 1996.године пружају могућности за верификацију метода одређивања великих вода на неизученим сливовима. Ради тог циља неопходна је израда посебне студије која би обухватила анализу и осталих карактеристичних епизода великих вода на станицама у сливу реке Колубаре.

8. Литература:

Јанковић Д. (1971): Прорачун великих вода за неизучене токове у сливу реке Колубаре, Водо привреда бр. 13-14 стр. 796-799.

Петковић Т. (1976): Прорачун мақссималних протицаја воде помоћу редукционих кривих киша, Зборник радова са Саветовања о хидрологији малих сливова, Врњачка Бања, Књига I стр. 202 215.

Петковић Т., Прохаска С., Симоновић С. 1976): Прорачун вероватноће појава хидролошких величина по методи "година-станица", Зборник радова са Саветовања о хидрологији малих сливова, Врњачка Бања, Књига I стр. 231-248.
Јанковић Д. (1985): Хидролошка студија реке Рибнице за профил х.с. Паштрић, РХМЗ Србије
Прохаска С., Матовић Ж., Спасова Д., (1986): Хидролошка анализа поплавног таласа у сливу Топчидерске реке из периода 28-30.VIII. 1985.год., Водопривреда бр. 105-106 стр 29-42.

Јанковић Д., Малошевић Д. (1989): Анвелопе специфичног отицања великих вода за територију Србије, Водопривреда бр. 21 стр. 1-2.

Ковачевић Н., Вукмировић А., Броћовић Д., Нађ Ј. (1996.): Анализа метеоролошких и хидролошких услова на сливу реке Колубаре у току 13. и 14. јуна 1996. године, РХМЗ Србије.

ПРИМЕНА С.С.А.Р.Р. МОДЕЛА ЗА ПРОГНОЗУ ОТИЦАЈА СА СЛИВА РЕКЕ КОЛУБАРЕ ДО ХИДРОЛОШКЕ СТАНИЦЕ БЕЛИ ГРОД

Самир Ћайовиһ, дийл.инж
Рейублички хидромейеоролошки завод Србије, Кнеза Вишеслава 66
11030 Беои̃рад, Jуі̄ославија

SAR model applied in runoff forecast for the river Koluhara is concerned in this paper. The SAR model he tongs to the group of non-linear conceptual models and is used for hasin runoff simulation. It is hased on water balunce conditions in a hydrological cycle part, following the occurrence of rainfall as the input values to the model, takes into consideration water delay in the ground bs infiltration and the occurrence of evapotranspiration losses, makes the classification of effective runoff into surface, sub-surface and deep component, simu-
lates the passage of these components through the ground and lates the passage of these components through the ground and gives the summary runoff at the basin outlet. On
the basis of input hydrological data (daily and hourlv, discharge values and ietorolug he hasis of input hydrological data (daily and hourly discharge values) and meteorological data (daily and hourly rainfall values, air temperature, evaporation), the model parameters for two discrete periods ($\Delta t=2 t h$ and $\Delta t=6 h$) were determined.

Абсйракйт

Разиайра се иримена SSARR (САР) моде.ла у ирогннози оиицаја са с.ива реке Колубаре до кироиоике сиинице Бе.и Брод. САР. нодел сйда ' груиу не.инеарних концейиуаиних моде.ла и

 из.изном ирофи.ту с.ива. На основу уазних хидролоиких оневне и часовне вредносии иройи

 $\Delta t=\sigma h$).

1. Увод

пидролошко прогнозирање. као област ромоприредним хидологије. има важну функцију хироенергије. наводњавање водоснабдевању итд. Хидролонке прогнозе омогућуіу оптимално управљање активностима везаним за воде и представљају најважнију и најефикас mыу меру у одбрани и смањењу шттта од поплава.

2. Ірроцес падавине - отицај и модел слива

Нознаване физичких пропеса у слив омогуһава да се за одређене падавине оцени отицај на пзлазном профилу слива. Грво се мора формирати модел слива и одредити

параметри у моделу који карактеришу физичке процесе у сливу. За краткорочно хидролонко прогнозирање је карактеристично да се користе детерминистички. дннамички. нелинеарни. дискретни математички модели. Оперативни прогностички модели су концептуални модели код којих се успоставља емпиријска веза измеһу параметара модела и хидрогеолонких карактеристика слива. Потпун математички модел слива подразумева следеће моделе:

- модел за оцену укупног воденог талога(кнна и снег)
- модел за процес падавине - отица
- модел за пропагациуу тока у кориту
- модел акумулације(-а)

Под претноставком да су мерења тачна и да су параметри модела одређени, проблем хидролошког прогнозирања се своди на то да мерења улазно - излазних променљивих у временском интервалу који претходи прогностичком и на основу прогнозираних вреп ности спољних улаза и изабране стратегије управљања (акумулашијом или хицротехничким објектима) у прогностичком периоду одреди излаз из модеша (водостаји или протицаји).

Методологија хидролошког прогнозирања се састоји из два дела и то су: (1) обезбеђење хидролошког модела слива (избор физичко математичке концепције при моделирању и калибрацији модела помоһу историјских хидрометеоролошких података) и (2) оперативни поступци где се осим издавања прогноза врши ажурирање базе података и по нотреби подешавање параметара модела и почетних услова.

Систем за хидролошко прогнозирање се састои из математичких модела и поступака за хидролошко прогнозирање и техничког система за мерење, пренос и обраду података.

3. SSARR (CAP) MOДЕЛ

Streamfiow Synthesis and Reservoir Regulation
ССАРР (САР) модел спада у групу нелиеарних концептуалних модела и служи за имулацију отицаја са речног слива, а основна намена је коришћење у хидролошком прог нозирању и у САД је у употреби од 1956 одине.

САР модел се заснива на условима биланс воде у делу хидролонког циклуса, прати појаву адавина као улазних величина у моделу, узима у обзир задржавање воде у земљишту путем инфилтрације и појаву евапотранспира ционих губитака, врши поделу ефективног тицаја на површинску, нодповршинску и ду иинску компоненту, симулира ток ових компо енти кроз земљиште и врши њихово саби рање у сумарни опцај на излазном профилу слива. Структурни дијаграм модела је дат на
4. Математички модел $\mathbf{C A P}$-а

Основне компоненте овог математичко модела су:

- израчунавање укупних падавина

израчунаване отанаиа снега

симулација влажности земљиштта представљање инфилтрационих губитака

израчунавање евапотранспирационих губитака
. израчунаване дубинских губитака

- израчунавање површинске и

подповршинске компоненте отицаја

- симулација тока у земљишту за површинску, подповршинску и дубинску компоненту отицаја
- калибрација модела

Слика 1. С̄йрукӣирни дијаӣрама САР модела

5. Израчунавање укупних падавина

Падавине на сливу се одређују на основу података о падавинама са мерних станица и одређууу се из следећег израза

WPD $=\Sigma W T(\mathrm{j}) * \operatorname{PPTN}(\mathrm{j}, \mathrm{k}) \quad(\mathrm{l})$ где је: WPD - средње падавине y k - том интервалу (cm), WT (j) - тежински фактор j-те падавинске станице, PPTN (j, k) - падавине регистроване у k - том интервалу у j - тој кишомерној станици (cm). Тежински фактори

се одређују на основу неке од познатих метод као шrто је THIESSEN - ова метода или на ос нову нормалних падавина измерених на станицама и нормалних падавина на сливу

6. Израчунавање отапања снег

Израчунавају се количине нападаног и отопљеног снега. Количина отопљеног снега се обично усваја да је сразмерна температурној разлици:

$$
\mathrm{RM}=\mathrm{R} *(\mathrm{TA}(\mathrm{~K})-\mathrm{TB})
$$

где је: RM - топљење снега ($\mathrm{cm} /$ дан), $\mathrm{TA}(\mathrm{k})$ температура ваздуха k - тог дана у (${ }^{\circ} \mathrm{C}$), R коефицијент топльња, ТВ - температур опљења снега у $\left({ }^{\circ} \mathrm{C}\right)$.

Утврђивање облика падавина (киша или снег) $_{\text {т }}$ зрши се поређењем температуре ваздуха са редношћу $\mathrm{TB}+1$ (обично $2^{\circ} \mathrm{C}$). Ако је тем за отапање снежног пояривача постоје услов пература ваздуха мана оп $2^{\circ} \mathrm{C}$, падавине су у ииуу снега y јепначини биланса снежног пои рирача отопъени снег се одузима, а котичина тападаног снега додаје шостојећем снежном кокривачу. Укупан водени талог се добија саб рањем талога услед падавина и услеи отанан снега, а затим се одревује просечна вреднос ад сливном површином у сваком временском ад сливном површином у сваком временском интервалу
7. Симулација влажности земљишта и пред-

стављање инфилтрационих губитака
Водени талог се умањује услед евапотранспирационих губитака и инфилтрације земљишту. Проценат воденог талога који се претвара у отицај сразмеран је укупном воде ног талогу WPD.
$\mathrm{RGP}=\mathrm{ROP}(\mathrm{SMI}) *$ WPD (3)

Слика 2. Проценай оӣицаја РОП у функцији нндекса влажносйи земльшйиа СМ И
где је RGP укушни отицај, а коефицијент пропорционалности ROP функција индекса

влажности земљишта SMI и има облик приказаш на слици 2.
Индекс влажности земљишта мења се током времена на следеһи начин:

$$
\begin{gathered}
\operatorname{SMI}(\mathrm{k}+1)=\operatorname{SMI}(\mathrm{k})+\mathrm{WPD}(\mathrm{k})- \\
\operatorname{RGP}(\mathrm{k})-\mathrm{E}(\mathrm{k}) \quad(4)
\end{gathered}
$$

где је: SMI ($\mathrm{k}+1$) и SMI (k) - вредности индекса влажности у $(k+1)$, односно (k) - том периоду дискретизације (cm/t), WPD - укупан водени талог $(\mathrm{cm} / \mathrm{t})$, RGP (k) - примарни отицај $(\mathrm{cm} / \mathrm{t})$, Е (k) - евапотранспирациони губици (cm / t)

8. Израчунавање евапотранспирационих

 губитакаСматра се да су евапотранспирациони губици за дати регион одређени за стационарне атмосферске прилике и да су у датим метерражиости (далава) Еваиотраноирациоии гүбици се уманују са повећањем влажности по функпионалном закону приказаном на слини 3. и одређују се из формуле:

$$
\mathrm{E}=(\mathrm{DT} / 24) * \mathrm{KET} * \mathrm{ETI}(\mathrm{M})
$$

где је: $\mathrm{ETI}(\mathrm{M})$ - коефицијент евапотранспирационих губитака у месецу M (узима се да је коефицијент константан током једног календарског месеца и представља улазни податак) (cm/t), DT - период дискретизације (h), KET проценат редукције евапотранспирације (\%).

Спиказ. Зависносй редукције евайойрансийрације КЕТ у функцији шнйензийейо йадавина RINT
9. Израчунавање дубинских губитака

Дубински отицај је функција дубинске инфилтрације BII, а проценат дубинског отицаја BFP

у функцији индекса дубинске инфилтрације приказан је на слици 4.

Слика 4. Зависностй йроценйа дубинско̄ $о \bar{и} и-$ цаја BFP у функцији индекса дубинске инфиаüpauuje BII

Индекс дубинске инфилтрације се мења током времена према једначини:
$\operatorname{BII}(\mathrm{k}+\mathrm{l})=\operatorname{BII}(\mathrm{k})+(24 * \operatorname{RG}-\operatorname{BII}(\mathrm{k})) * \mathrm{DT}$

$$
/(\mathrm{TSB}+0.5 \text { * } \mathrm{DT})
$$

где је: BII ($\mathrm{k}+1$) и BII (k) - вредности индекса дубинске инфилтрације у ($k+1$), односно (k) том периоду дискретизације (cm / t), RG - укупни отицај по рачунском периоду (cm/t), TSB временска константа кашњења у процесу дубинске инфилтрације (h), DT - период дискретизације (h)

10. Израчунавање подповрпинске и шовршинске компоненте отицаја

Преостали, директни отицај, се у моделу дели на површински (SURF) и подповршински (SUB) отицај. Функционална зависност површинског отицаја од директног отицаја (QINT) приказана је на слици 5. Аналитички, ова зависност се може представити на следећи начин: ако је SUB \leq OMAX

$$
\begin{gathered}
\text { SURF }=(0.1+0.2 *(\text { QINT } / \text { OMAX })) * \\
\text { QINT (7) } \\
\text { SUB }=\text { QINT }- \text { SURF }
\end{gathered}
$$

и ако је SUB > OMAX

$$
\mathrm{SUB}=\mathrm{OMAX}
$$

$$
\text { SURF }=\text { QINT }- \text { SUB }
$$

где је: SURF - површински отицај (cm / t), SUB подповршински отицај (cm / t), QINT - директни отицај (cm/t), OMAX површински отицај (cm/t).

Саика 5. Повриински ойицајSURF у функцији дирекйиной ойищаја QINT

Симулирање тока

Симулирање тока представља пропагацију ду инске, подповршинске и површинске компо рие ориц ра до излазног профила кроз низ а закону контвнитета коіи у дие сешшја на закону континуитета који у диференцијалом облику гласи:

$$
I t=O t+d S / d t
$$

де је: It - доток (прилив воде), S - запремин оде у линеарном резервоару, О - отицај й резервоара. Сматра са да је отицај функциј запремине воде у резервоару:

$$
S=T s * O
$$

где je Ts временска константа. Ако се едначина (12) диференцира по времену замени у једначину (11) добија се релација:

$$
\begin{equation*}
\mathrm{dO} / \mathrm{dt}=(\mathrm{It}-\mathrm{Ot}) / \mathrm{Ts} \tag{13}
\end{equation*}
$$

Израз (13) је једначина стања линеарног рез ервоара која представља основни елемент у пропагацији тока. Ток у сливу или у речно оку симулира се низом узастопних резервоара (ћелије или фазе), а параметри линеарних рез ервоара, односно временске константе, одаби рају се тако да представљаау временско кашњење појаве отицаја после падавина или кашњење протока од узводних до низводних профила. После низа трансформација добија се отицај $\mathrm{O}_{\mathrm{k}+1}$ са интервалом дискретизачије t:

$$
\mathrm{O}_{\mathrm{k}+1}=\left(\left(\mathrm{I}_{\left.\left.\Delta \mathrm{t}+\mathrm{O}_{\mathrm{k}}-\mathrm{O}_{\mathrm{k}}\right) /(\mathrm{Ts}+\Delta \mathrm{t} / 2)\right)}^{(14)}\right.\right.
$$

где је: $\mathrm{I}_{\mathrm{m}}=\left(\mathrm{I}_{\mathrm{k}}+\mathrm{I}_{\mathrm{k}+1}\right) / 2-$ средњи доток, O_{k} отицај на почетку временског интервала, $\Delta \mathfrak{t}$ интервал дискретизације, T_{S} - временска константа кашњења тока у резервоару, O_{k+1}

отицај на крају временског интервала. У узастопном низу ћелија за симулацију тока, у истом времије представда дототицај $\mathrm{O}_{\mathrm{k}+1}$ из узводне Сабиранем издазног протицаја из последне ћелије површияског полтовршинстог и дубин ског резервоара добија се сммудрани проток на излазном профилу слива.

Модел садржи две основне врсте елемената: линеарне резервоаре и статичке нелинеарности (раније дефинисане на сликама од 1 до 4). Линеарних резервоара има $2+\mathrm{N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}$ где су $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ број линеарних резервоара у пропагирању дубинске, подповршинске и површинске компоненте. Преостала два линеарна резервоара дефинишу промене индекса влажности земљинта и индекса дубинске инфилтрације

1. Методологија калибрације (идентифи-

кације) и верификације САР модела
САР модел садржи већи број параметара и нелинеарних карактеристика које карактеришу физичке особине слива. Калибрација модела представља подешавање параметара модела на оптималне вредности и врши се упоређивањем одзива модела, који представља реконструисани проток, са измереним протоком на излазном профилу слива. Схема за ка либрацију модела је приказана на слици 6.

Спика б. Схема калибрације модела
При калибрацији САР модела коришћеп је критеријум тоталног одступања између мереног и реконструисаног хидрограма који је изражен збиром квадрата одступања. Верификација модела представља проверу оптималних нараметара на независном скупу података често се период верификације наставља на период калибрације).

Метода примењена мри калибрацији нараметара модела је метода директног претраживања. Промена параметара се врши у задатим корацима, при чему се води рачуна да

не изаве изван датог опсега за сваки параметар. Разликујемо узастопне (локалне или сукцесивне) промене и истовремене (ре ултујуће или симултане) промене параметара За калибрацију су изабрани следећи параметри укупно 10): TSB - временска константа кашњења у процесу дубинске инфилтрације (h ОМАХ - максимални подповршински отица TSURF, TSUB, TBASE - време кашњења з новршинску, подповршинску и дубинску ком поненту отицаја (h), SMI1, BII1 - почетне вре ости за SMI (индекс влажности зеше) QBASE III (индекс дубинске инф QSUB, QSURF - почетне вредности дубинско подповршинског и површинског отицаја ($\mathrm{m}^{3} / \mathrm{s}$).
12. Нримена С.C.A.P.P. (CAP) модела

Рачунарски програм САР модела је написан у програмском језику FORTRAN. Оригинална зерзија програма је модификована и допуњен фази калибрације, а за потребе оперативне римене моделирањем отапања снежног пок ривача.

Модел је примењен за слив Колубаре до хидролошке станице Бели Брод за прорачу еднодневних ($\Delta \mathrm{t}=24 \mathrm{~h}$) и 6 .-то часовних прогноза отицаја ($\Delta t=6$ h). Основне физичкогеографске карактеристике поменутог слив до х.с. Бели Брод су: површина слива је 186 km^{2}, дужина тока такође је 73.8 km , а одстоање од ушћа је 39.2 km . Слив је оивичен са запада планинама Влашићем и Повленом, а н угу са Маљеном и Качерском површи. На ис току су громадне планине Шумадије, док ј еверни део слива отворен према Панонско низијк. Слив припада групи асиметричних сливова са щравцем щружања запад - исток

Хидролошки улазни подаци за слив Колубаре до х.с. Бели Брод који су коришћени у моделу су: дневне вредности протицаји је за х.с. Бели Брод (на основу водостаја измереног у часова) за период 01.01.1975 до 31.12. 1989 одине и часовне вредности протицаја за та ласе од 1979. до 1989. године. Метеоролошки ллазни подаци су: часовне и дневне вредност аадавина за синоптичку станицу Ваљево, дневне количине падавина за падавинске станице Ваљево, Богатй и Брежђе за период 01.01.1975 до 31.12. 1989. године, дневне вред ности температура ваздуха и испаравава з синоптичку станицу Ваљево за период 01.01.1975. до 31.12.1989. године. Падавинска станица Ваљево је опремљена плувиографом, а станице Богатић и Брежђе са кишомерима док је хидролошка станица Бели Брод опрем

љена лимниграфом и изабране су зато што принадају извештајној мрежи, тј. подацима са ових станица располаже се у реалном времену (real time). Период дискретизације може бити од 1 часа до 24 часа уз одговарајуну организацију улазних података. Редослед прорачуна може се приказати у следећим корацима

- одређивање укупног воденог талога
- одређивање процента укупног отицаја (преко зависности SMI - ROP)
- прорачун укупног отицаја
- прорачун евапотранспирационих губитака (преко зависности RINT - KE)
- симулација влажности земљишта
- прорачун дубинских губита̇ка (преко зависности BII - BFP)
- израчунавање базног отицај
- прорачун директог отицаја
- прдела директног отицаја на површинску и подповршинску компоненту (преко зависности QINT - SURF)
- симулација тока (пропагација)

Период разматрања за дневне вредности улазних података су биле хидролошке године. Анализа је спроведена на тај начин што се за дневне вредности протицаја и падавина (период дискретизације је $\Delta t=24 \mathrm{~h}$) период верификације непосредно настављао на период калибрације. За таласе (где су коришнене часовне вредности протицаја и падавина са периодом дискретизације $\Delta t=6 \mathrm{~h}$) коришћен је сличан поступак

На следећа два графикона су приказани резултати из фазе калибрације модела. На слици 7 су приказани упоредни хидрограми рачунских осмотрених протицаја за изабрану $\Delta t=24 \mathrm{~h}) \longrightarrow$ ($\Delta t=24 \mathrm{~h}$),

а на слици 8 такође упоредни хидрограми за $\Delta t=6 \mathrm{~h}$ и један од таласа.
 сика 8. Уйоредни рачунски и оснойрени кидройрани ($\Delta t=6 h$)

Анализом добијених оймималних вредносиии иаарамейара изабрани су

Саика 9. Уйоредни рачунски и осмойрени кидрог̈рами ($\Delta t=24 h$)

коначни параметри (за оба периода дискрети зације) који су коришћени у процесу верифи кације. Резултати верификације за средње дневне вредности протицаја и за изабрану хидролошку годину су дати на слици 9 , а за 6 то часовни протицај и један од таласа на слици 10.

Саика 10. Уйоредни рачуски и оскойрени кидрогррами ($\Delta t=6$)

13. Оперативна примена САР модела

На слици 11 се може видети блок - дијаграм програма за ошеративну примену који је им плементиран у хидролошки-оперативни про грамски систем Одељења за прогпозу вода.

Слика 11. Блок дијайрам йроӣрама за ойера$\overline{\text { ииивну уйойребу }}$

Оперативни програм пружа могућност израде прогноза и до 5 дана унапред, могућност избора дневних или 6 -то часовних прогноза у зависности од временске прогнозе и радарских осматрања. Програм је организован тако да се после учитавања улазних података врши прорачун до ткунег дапума. Слади брок са зашшј. Уколико се однучимо за 24 -часовни зацие дисретизшје сти унос прогнозира период дмчре падарина и прогнозирани сред них дневних темература ваздуха Ако се однучимо за 6 -то часовни период дикретизације слеши унос само шрогнозираних зације следичина јер је калибрачиа и вериколичина падавина, јер је каа период дискретифакије ррена за таласе реристроване летьем периоду

Преостаје повратак на део програма за прорачун као и смештање резултата у посебну датотеку.

На слици 12 дат је приказ упоредних хидрограма из оперативне примене САР модела. Поред осмотреног хидрограма, примозелани су хидрограми добијени на основу измерених и прогнозираних падавина (модел Немачке метеоролошке службе - Офепбах).

Соика 12. Уйоредни рачунски и осмойрени хидрог̈рали ($\Delta t=24 \mathrm{~h})$

14. Закљьучак

Анализом резултата САР модела како у фази калибрације и верификације тако и при оперативној примени закључено је да САР модел даје добре реузлтате и да се може применити у прогнози отицаја са слива реке Колубаре до х.c. Бели Брод.

Тачност хидролошких прогноза зависи од ввалитета и квантитета улазних података

Већа тачност се може остварити мерењима у краћим временским интервалима на оитималном броју и распореду мерних станица (по могућству аутоматских) и радарско - даљинским мерењима као и прогнозом количина падавина на микролокацијама. Развој метода падавина, на којима се ради у Заводу, допринеће бољим улазним подацима. Просторно

Под прецизне прогнозе падавина одразиће се зорења, а тиме и на ефикасност у спровођењу на квалитет хидролошких прогноза и упо- одбране од поплава.

15. ЛИТЕРАТУРА

Преглед методологија, математички модели и светска искуства у краткорочном хидролопком прогнозирању, Институт "Михајло Пупин", Беогад, 1981.
САР програм за симулацију претварања падавина у отицај, Институт "Михајло Пупин", Беогад, 1974.

АСАР програм за симулацију претварања падавина у отицај са могућношћу аутоматског подешавања параметара модела градијентном методом, Институт "Михајло Пупин", Беогад 1983.

Примена SSARR модела за прогнозу отицаја са слива реке Колубаре до хидролоше станице Бели Брод, РХМЗ Србије, Стручни рад, инж. Самир Ћатовић, 1996.

Хидролошка студија реке Колубаре - Карактеристичне воде, РХМЗ Србије, Београд, 1964.
Зборник радова, РХМ Завод Србије, Хидролошки сектор, Радови бр.1, Београд,1993.

ПРОГНОЗА ЛЕДЕНИХ ПОЈАВА НА РЕКАМА У СРБИЈИ

Нена Ковачеви禀дииилиння,
Надежда Јовановић, дийл. иннн.
Рейублички хидромейеоролошки завод Рейублике Србије, Киеза Вишеслава 66, 11030 Беойрад, Jуи̃ославија

Forecasts of first ice events and ice-bridge at the rivers of Serbia has been made in the Water Forecast Division of the RHMS of Serbia since winter 1971/72.
Forecasts of ice events are based on physico-statistical or empirical graphical dependencies between the amount of total heat loss necessary for the ice and ice-bridge occurrence and certain hydrological elements. For the elaboration of forecasts, it is necessary to monitor permanently all the parameters of the waterway winter regime (water level, flow, water temperature, mean daily air temperature and wind speed) and a reliable meterological forecast as well.
Since 1992, monitoring of hydrological and meteorological parameters, forecasting of ice events and dissemination of the users in due time have been automated.

Абсииракии

Пройнозе йрве йојаве леда и ледосииаја на рекама у Србији раде се у Одељењу за йрог̆нозу вода Рейубличкой хидромеиеооролошкой завода Србије од зиие 1971/72. године
Пройноза ледених йојава заснива се на физичко-сыиайисииичким или емйиријским йрафичким зависносииима између величине укуйной губийка ииойлойе неойходног за йојаву ледохода и ледосиааја и одређених хидролонких елеменайа. За израду йогтноза неоиходно је йерманенитно

 йройноза ледених йојава и њихово блайовремено досйиаванье корисницима йуиием рачунарске комуникације.

1. УВОД

азвојем водопривреде све се већа пажња пок лања појавама леда на рекама. Праћење различитих форми ледених појава на рекама прогнозе истих, краткорочне и дугорочне омогућују правовремено предузимање одго марајућих мера за отклањање негативних пос ледица које лед може да проузрокује.

Праһење и прогнозирање леда на рекама од значаја је:

- за безбедност хидротехничких објеката (мостова, брана)
- за одбрану приобаља од ледених поплава до којих долази због нагомилавања леда и загушења критичних профила леденим баријерама,
- за безбедност речне пловидбе,
- код одлучивања о минирању ледених баријера и ангажовања ледоломаца

Прогнозирање ледених појава заснива се на двема методама: топлотног биланса и физичко-статистичких зависности.

Методом топлотног биланса испитује се процес формирања леда за који је најбитнији услов промена температуре водотока, односно промена топлотне енергије. Размена топлоте између водотока и околне средине дешава се у самом кориту и на воденој површини где се апсорбује или емитује топлотна енергија.
До промене температуре долази услед следећих фактора: краткоталасног зрачења које апсорбује или рефлектује вода; дуготаласног зрачења из атмосфере, које рефлектује вода или се емитује из ње; испаравања; кондукције и конвекциее; топљења снега; геотермичког утицаја; топлоте од трења; отицаја или дотицаја подземне воде. Једначину топлот ног биланса чине сумирани набројани фактори
(одређеног предзнака) који у процесу топлотне размене не учествују истом тежином.

С обзиром да је билансна метода сложена и да се у тренутку издавања прогноза формирања ледених појава не располаже свим потребним параметрима, за макар и приближно израчунавање губитка топлоте у водотоку, то се за потребе оперативне примене користи метода физичко-статистичке зависности. За примену ове методе параметри зимско пература ваздуха и воде, брзина ветра и њихове прогнозиране величине расположиве су у реалном времену.

2. Опис применепе методе

Метода физичко-статистичких или емширијских зависности анализира величину укупно губитка топлоте неопходног за појаву леда у зависности од одређених елемената. Одго варајуке зависности се добијају статистичким путем на основу осмотрених хидролошких метеоролошких података на одређеном во домерном црофилу и најближој метеоролошкој станици.
Као приближна карактеристика укупног губитка топлоте воде узима се сума средње дневних негативних температура ваздуха.

За прогнозу прве појаве леда (ледохода) користи се графикон који дефинише зависност, (Σ-T) $\min =\mathrm{f}$ (Tvo), неопходне минималне суме негативних средње дневних температура
ваздуха за појаву леда у зависности од тпераваздуха за појаву леда у зависности од тпературе воде на дан пре преласка средње дневне
t-jpe dway

$$
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
\text { Teмпература воде } & 6 \\
\text { деп пре преласка }
\end{array}
$$

$$
\text { ередве дневне температуре нснод } 0^{\circ} \mathrm{C}
$$

Слика 1. Зависносиии за йро̄̄нозу ледохода на Дунаву

Датум остваривања неопходне негативне суме се одређује на основу прогнозираних температура ваздуха. Међутим, и без прогнозе темсе отрепити и коринћенем граичеда

Слика 2. Одређивање дайима йојаве ледохода
датум појаве ледохода и датум преласка средње дневне температуре ваздуха испод $0^{\circ} \mathrm{C}$, у зависности од суме негативних температура ваздуха потребних за формирање леда (Слика 2.).

За прогнозу појаве ледостаја користе се графикони који дефинишу зависност:

- $(\Sigma-\mathrm{T}) \min =\mathrm{f}(\mathrm{Hpl})$ или $\quad(\Sigma-\mathrm{T}) \min =\mathrm{f}(\mathrm{Qpl})$, неопходна минимална сума негативних средње дневних температура ваздуха (од дан у у ависости од водостаја или нроти цаја на дап шојаве лерохода цаја на даш појаве ледохода
- $\mathrm{Tkr}=\mathrm{f}(\mathrm{Hpl})$ или $\mathrm{Tkr}=\mathrm{f}(\mathrm{Qpl})$, критична средње дневна температура ваздуха у зависности од водостаја или протицаја на дан појаве ледохода.

За прогнозу појаве ледостаја на Великој Морави, у профилу Љубичевског Моста, метод је проширен увођењем брзине ветра који, у том кошавском подручју, има знатајну улогу у процесу размене топлоте.

Првог дана појаве леда (ледохода) приступа се изради прогнозе појаве ледостаја. За прогнозу појаве ледостаја користе се графикони који дефинишу зависност:

Слика 3. Зависностй за йройнозу иооаве ледоcūaja

- (Σ-T)min $=\mathrm{f}$ (Qpl), неопходна минимална сума негативних средње дневних темпера тура ваздуха (од дана појаве ледохода) за формирање ледостаја у зависности од протицаја на дан појаве ледохода (Слика 3.),
- $\mathrm{krr}=\mathrm{f}(v)$, критична средње дневна температура ваздуха која је неопходна за формирање ледостаја у зависности од брзине ветра (Слика 4.)

Слика 4. Зависносй за йрог̈нозу йојаве ледосй̄aja

За прогнозу датума појаве ледостаја није довољно само остваривање минималне суме висност $(\Sigma-\mathrm{T}) \min =\mathrm{f}(\mathrm{Qpl})$ или $(\Sigma-\mathrm{T}) \min =\mathrm{f}(\mathrm{Hpl})$,

појава ледостаја могућа је само у случају када је и средње дневна темшература ваздуха нижа од неке њене критичне вредности (зависнос $\mathrm{Tkr}=\mathrm{f}(\mathrm{Qpl})$ или $\mathrm{Tkr}=\mathrm{f}(\mathrm{v})$).

За прогнозу ледених појава урађене су неопходне графичке зависности за реке Ду нав, Тису, Саву и Велику Мораву

3. Оперативна примена

Описана метода за прогнозу ледених појава на рекама у Србији оперативно се применује од зиме 1971/72. године

Праћење хидролошких и метеоролошких нараметара, шихова обрада, израда прогноза параметара, нихова обрада, израда прогноза
ледених појава и дисеминација информација ледених појава ии дисеминација информација корисницима из области водопривреде је ауто-
матизована и одвија се у оквиру развијеног Хидролошког оперативног програмског система.

За хидролошке станице по избору, почев од 15 новембра текуће године, свакодневно се (из базе података оперативног система) формирају табеле са хидролошким и метеоролошким параметрима у циљу праћења њихових промена и интензитета. Упоредо се детаљно апализирају метеоролошки услови и прате промене температуре ваздуха и воде на Дунаву и Тиси узводно од државне границе.

Од дана када срење дневна температура ваздуха пређе испод $0^{\circ} \mathrm{C}$ приступа се изради краткорочних прогноза појаве ледохода, а кас није и ледостаја на рекама/профилима датим у табели 1. Рачунарским програмом, у који су уграђене све графичке зависности преведене у апалитички облик, одребују се потребне суме негативних средње дневних температура ваздуха за појаве ледохода. Исте се упоређују них температура ваздуха и брзина ветра
 леностаја ша појепинм регама и ииховим ледостаја на појединим рекама и њиховим деоницама.

Прогнозе ледених појава се издају за седам, петнаест и месец дана унапред, при чему се користе краткорочне и дугорочне нумеричке временске щрогнозе.

Оперативни програмски систем омогућује да се на ефикасан и једноставан начин ураде прогнозе, припреме информације и исте проследе корисницима:

- Министарству пољопривреде, шумарства и водопривреде,

Јавном водоприврелном предузећу "Срби јаводе" -ВПЦ "Дунав", "Сава" и "Морава"

- XE Ђердап,
- Републичком центру за осматрање и обавештавање,
- предузећима за водни транспорт

Табела 1.

Река	Профил хидролошка станица	Меродавна метеоролошка станица
Дунав	Бездан	Сомбор
	Нови Сад	Р. Шанчеви
"	Земун	Београд
"	Смедерево	В.Градиптте
Tиса	Сента	Палић
Сава	Сремска	Сремска
Морава	Митровица	Митровица
	Љубичевски Moct	С.Паланка

4. Закључак

Просечна сума средње дневних негативних температура ваздуха неопходних за појаву ледохода на Дунаву износи око $-40^{\circ} \mathrm{C}$, на Тиси око $-28^{\circ} \mathrm{C}$, на Морави $-22^{\circ} \mathrm{C}$ и на Сави око -60 ${ }^{\circ} \mathrm{C}$, са просечним оствари-вањем у року од 7 до 10 дана. За формирање ледостаја на овим рекама непохода сума негативних темшература се креће од $-74^{\circ} \mathrm{C}$ до $-130^{\circ} \mathrm{C}$.
На Сави ледене појаве су веома ретке због знатно споријег процеса хлађења воде од осталих река услед утицаја загревања из Тиси ледене појаве су честе а успорено течеве утиче да шо формирању ледохода убрзо долази до образована деностаја На Дуваву и Морави дедене појаве су уједначене а у зонама неновољних хидрауличко-морфолошких карактеристика (велике речне кривине, мостови, ушћа, исклињавање ђердапског успора) долази до нагомилавања леда и формирања ледених баријера.

Период од када се израђују прогнозе ледених појава одликује се мањом учесталошћу оштрих зима од оних у прошлости. Најозбиљније зиме
биле су 1984/85., 1986/87., 1992/93. и 1995/96. године. Коинциденција повољних хидролошких и метеоролошких услова у току ових зима допринела је нормалном развоју ледених појава на рекама. Благовременим спровођењем мера одбране од леда, ангажовањем флоте ледоломаца и минирањем, избегнуте су критичне ситуације.

Метеоролошке прогнозе и прогнозе ледених појава Републичког хидрометеоролошког завода биле су од значаја за:

- правовремено ангажовање флоте ледоло маца за синхрону међудржавну, југословен ско-мађарску, одбрану од леда на Дунаву и Тиси,
- правовремено ангажовање флоте ледоломаца или обарање нивоа горње воде XE Ђердап за заштиту бране и њену експлоатацију,
- минирање ледене баријере у зони мостов на Морави,
- избегавање непотребног ангажовања ледоломаца, чиме су остварене значајне материјалне уштеде.
Примењена метода се ноказала оправданом, јер је у досадашњој оперативној примени случајева (зима) краткорочнт рате. у 70% лучајева (звма) краткорочне прогнозе леТачиост издатих шрогвоза била је првенствено у зарисности од метеороношних прогноз у зависности од метеоролошких прогноз (оого

Прогноза ледених појава је комплексан задатак који захтева перманентно и студиозно праћење хидрауличко-морфолошких фактора режима леда, периодичну корекцију модела и примену поуздане метеоролошке прогнозе.

5. Литература:

Доклад о ледовом режиме реки Дуная, Дунайская комиссия, Будапешт, 1967 Руководство по гидрологическим прогнозам, Vр 4, Ленинград, 1963.
Іопов Е.Г., 1968.: Основbі гидрологицеских прогнозов, Ленинград
Петковић С. , Варга С., 1990.: Утицај XЕ Ђердап I на режим леда на Дунаву, Водопривреда 1-2, Београд
Іутарић П., 1991.: Прогноза ледених појава на рекама-докторска дисретација, Београд
Власак, Јовановић, Ковачевић, 1994.: Ice forecasting at the Danube applied in the Republic hydrometeorogical institute of Serbia, XVIIth Conference of the Danube Countries, Budapest

ДВА АСПЕКТА ПРИМЕНЕ КОНЦЕПТУАЛНИХ ХИДРОЛОШКИХ МОДЕЛА У ВОДОПРИВРЕДИ

Борјанка Палмар, дийл.инжеграђ.
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66, 11030 Беойрад, Јуĩocлавија

Precipitation can take many forms, but with respect to hydrology only rain and snow are important Modeled runoff and snow pack accumulation give as a result:

1) data quality control considering possible origins of modeling errors, such as input data errors, local extreme rainfall, etc.
modeled discharge that represents inflow to reservoir
2) modeled discharge for the purpose of flood control

Knowing that the optimal design is a system design based on the selection or combination of all pertinent variables so as to maximize some objective function, the model calibration techniques are recommended for the optimal design of the precipitation areal network for hydrotechnic needs.

Абсӣракии

Падавине се мог̄у јавиӣи у разним облицима, али са сйиновишӣа хидролог̄ије су значајни само киша и снег̄. Резулӣайи моделирања ойицаја и залиха снег̄а у сливу је:
. конйрола квалиииеӣа йодайиака узимајући у обзир узроке $\overline{\text { грешака, као шийо су }}$ дирешке у улазним йодацима, локалне ексйремне йадавине и др
2. моделирани йроииицај који йредсйавла дойок у акумулацију
3. моделирани йройицај за йойребе одбране од йоилава

Знајући да је ойиимално йројекйоване сисииемско иројекииовање базирано на избору или комбиновању йоменљивих ради максимизирања циљне функције, йехника калибрације йарамейара се може йрейоручийи за анализу и йројекиововање йадавинске мреже оиииималне са асйекиииа водойривреде.

1. Увод

Под концептуалним хидролошким моделом прогнозираних метеоролошких / климасе подразумева математички модел који је компонован од више елемената који симулирају поједине фазе процеса трансформације падавина с циљем генерисања отицаја у сливу тј. симулирања протицаја у профилу хидролошке станице. Предност концептуалног модела је, у односу на друге класе хидролошких модела, што процес отицања моделира контину-ално те преко претходно калибрисаних и вери фикованих параметара симулира хидролошке серије на основу осмотре-них или

толошких серија.

у основи, хидролошко моделирање је моделирање компоненти хидролошког циклуса који представља физички процес расподеле и кретања воде у природи. У линеарној једначини хидролошког биланса cy:

- падавине са знаком плус, а
- понирање, евапотранспирација и отицај са знаком минус.
$P-F-E T-Q=d s / d t$

Падавине се јављају у разним облицима, али са аспекта хидрологије једино су битни киша и снег. Уколико падавине снабдевају водом тло брзином која је већа него што је инфилтра-циони капацитет тла, вода понире сагласно капацитету, а вишак остаје на тлу или испарава или отиче у реципијент. Отицај се рашчлањује на компоненте, а вредност сваке од компоненти отицаја зависи од врсте падавина, типа тла и карактеристика слива

2. Моделирање отицаја

Потребно је нагласити да се, након фазе идентификације модела, разликују три фазе рада:

1. калибрисање параметара модела
2. верификовање параметара модела
3. моделирање хидролошких низова

Прве две фазе подразумевају постојање свих потребних климатоло-шких података са слива који представљају улаз као и података о протицајима са хидролошке станице за један дужи низ година. У фази калибрације дефинишу се параметри модела на основу улазних величина, уз услов да грешка симулације хидролошког низа буде минимална. Зависно од сврхе примене хидро-лошког модела врши се избор критеријума циљне функције за оптимизацију параметара модела. На пример, ако се модел користи за потребе одбране од поплава бира се критеријум грешке максималних протицаја, а ако се модел користи за симулацију дотока у акумулацију бира се критеријум грешке запремине дотока. Ако је потребно да модел подједнако добро врши симулацију и максималних протицаја и запремине таласа оптимизира се комбинација критеријума. У фази верификације потврђује се стабилност модела на временски независном хидролошком низу.

Трећа фаза подразумева креирање низова протицаја на основу утврђених параметара и осмотрених или прогнозираних података са меродавних метеоролошких станица Уколико се моделирање хидролошких низова користи за потребе прогнозе, грешка

прогнозиране хидролошке варијабле ће зависити од тачности прогнозираних мете оролошких варијабли и од грешке само хидролошког модела.

С обзиром да ниједан модел не може савршено да симулира реални систем, грешке се могу идентификовати (Бекер\&Сербан, 1990) код:

1. репрезентативности улазних података
2. кривих протицаја у домену екстраполације
3. структуре хидролошког модела
4. прекратког периода калибрације параметара
5. промене системских услова у сливу

3. Хидролошки модел и улазни подаци

Значајна позитивна особина концептуалног модела је у чињеници да су све функције - продукциона, дистрибуциона и пропагациона - повезане у јединствену целину што омогућава континуалну симулацију протицаја. Модел регулише тзв хидролошка стања у резервоарима земљишне влаге и резервоарима који ген еришу компоненте отицаја чија суперпозиција даје укупни отицај. Модел се сас тоји од следећих међусобно независних процедура, функција и рутина:

- процедура земљишне влаге
- процедура снега
- функција одзива слива
- рутина трансформације.

Процедура земљишне влаге дефинише садржај влаге у тлу, односно дефинише запремину расположиве воде у земљишној фази. Вредности пара-метара ове процедуре су блиско везани за агрометеоролошке експерименте и педолошке анализе. Елементарни прираштај слоја отицања (нето-киша) у односу на елементарни слој падавина (бруто-киша) се ставља у функци-оналну зависност с параметрима стања земљишне влаге, пољског капацитета и испаравања. Ове величине се одређују мултиваријабилним оптимизационим методама унутар дефинисаних граничних вредности.

у процедури моделирања снежног покривача фактор температурног прага дефинише падавине као снег који се аку мулише, или као кишу. Један од параметара моделира ретензију течне фазе у снегу преко водног капацитета, фактор дан-степен дефинише просечну дневну брзину топљења снега по веге тационим зонама у зависности од прираштаја просечне дневне температуре параметар сублимације снега је понекад занемарљиво мали, а поновно замрзавање воде у снегу моделира параметар који је једнак проценту воде у симулираном истопъеном снегу која ће се поново замрзнути код пада температуре.

Функција одзива слива генерише компоФункција одзива слива генерише компо-
ненте отицаја. То је рутина за формирање компоненти отицаја од суфицита влаге у тлу. Рутина се састоји од више линеарних резервоара који имају тзв. отворе за истицање. Концептуални програмски систем је замишљен тако да што верније одслика стварно стање у реалном природном систему. При високом прираштају земљишне влаге понирање у базни резервоар више није у стању да одржава површинске и потповршинске резервоаре празнима, генерисани отицај добија прираштај и из тих резервоара, па гранични параметар горње зоне дефинише гранични протицај између површинског и потповршинског отицаја Произилази да параметри нису строго математички, већ да имају и јасан физички смисао.

Као улазни подаци о сливу фигуришу ук упна површина слива, хипсографска крива на основу које се врши подела на висинске зоне, вегетационе зоне, број и површина подсливова.
Декомпозиција на подсливове је ограничена бројем мерних профила на сливу, велика језера представљају посебне подсливове, а сваки суб-модел има сопствени сет тежинских коефицијента падавинских и температурних станица.

Уколико је време дискретизације 24 часа од метеоролошких података улаз чине ни зови дневних сума падавина, средњих дневних температура и губици евапотран-

спирације. Пожељно је да се одабране падавинске, климатолошке или главне ме теоролошке станице налазе на делу сливу подслива на коме се формира отицај да би биле репрезентативне. Међутим може се доказати да се моделирање протицаја може успешно извршити и са подацима главних метеоролошких станица лоцира них ван сливног подручја, уколико се пажљиво и правилно проуче уобичајени правци кретања влажних ваздушних маса њихов осредњени однос према орограф ским препрекама - вододелницама.
У фазама калибрације и верификације параметара, улаз чине и временске серије средњих дневних протицаја

4. Примена у хидрологији

У хидрологији, као науци која се бави и проучавањем просторног и временског распореда квантитативних карактеристика водног режима, концептуални модели могу имати примену код

- провере, попуњавања или продужавања хидролошких временских серија на бази климатолошких временских

серија,

- унакрсне контроле осмотрених хидролошких и метеоролошких података у реалном времену, као и при анализама,
- пројектовања мреже метеоролош-ких станица која је оптимална са аспекта хидрологије / водопривреде,
- креирања хидролошких серија на ос-

нову средњерочних и дугорочних мете оролошких прогноза.

Концептуални хидролошки модел се може користити за реконструкцију протицаја на основу познатих падавина и других метеоролошких величина, за симулацију максимално вероватних великих вода на основу максимално вероватних падавина, или симулацију рачунских вода одређеног повратног периода на основу рачунских киша.

[^2]евидентирајући могуће грешке у улазним подацима као и локалне екстремне епизоде (конвективне ћелије) које су заележене на станици а нису репрезента тивне за слив, или обратно.

С обзиром да је оптимално пројектовање системско пројектовање базирано на избору или комбиновању променљивих ради максимизирања циљне функције, техника калибрације параметара може да се користи за утврђивање меродавности постојећих метеоролошких станица за потребе симулирања хидролошких временских серија, и након тога за просторно и висинско пројектовање допунске падавинске мреже у датом сливу за потребе водопривреде

Прогностички модели средњих дневних падавина, температурних поља и евапотранспирације представљају улаз, а протицај представља излаз. Дужина прогнозиране хидролошке временске серије одговара дужини прогностичког периода метеоролошких серија (10 дана или више)

5. Мали сливови

Примена концептуалног модела на малим сливовима који имају време концентрације мање од једног дана, захтева, последично, дискретизацију улаза на интервале краће од једног дана. Смањењем интервала дискретизације, повећавају се варијације које постоје у метеоролошким и хидролошким компонентама процеса који се моделира. Велики слив може лако да изравна неравномерности у распореду падавина својим ретензионим капацитетом, тако да варијације не морају да се одразе у излазу, што није случај код мањих сливова.

Кратак интервал прогнозе које диктира мала површина слива подразумева не само квантитативне прогнозе падавина већ и ефикасан информациони систем за прикупљање података са слива. Претпоставка издавања хидролошке прогнозе за интервале краће од 24 сата је укључење телеметријских станица за осматрање во-

достаја и падавина као и метеоролошких радара у информациони систем који је на располагању прогностичару, ради кориго вања улазних падавина, чиме се мења стање у симулационом систему, а самим тим и моделирани одговор слива.

6. Хидролошки модели у водопривреди = одбрана од поплава

Значај хидролошких информација је ко релисан са вредношћу објеката који се пројектују и граде на обалама река, као и последицама по регионалну економију које настају при појави наглих бујичних поплавних таласа или дуготрајних поплава у долинама великих река.

У хидротехници се захтеваним пројекто ваним степеном предвиђа заштита у приобаљу насеља и инфраструктуре, индустри јских објеката и пољопривредног земљишта. Изградњом одбрамбених насипа дуж водотока, уколико се заштите и искључе ниске обале које су биле при родне ретензије при високим водостајима може се постићи контраефекат на низвод ном подручју. О томе се увек води рачуна при пројектовању код постављања једначине коштања пројектованог одбрамбеног система у односу на могуће штете у приобалним областима. Као што је речено, одбрамбени насипи се пројектују и граде с циљем претходно утврђеног економски рационалног степена пасивне заштите од поплава.

Водопривредна предузећа, у складу са пројектованим степеном заштите и стањем утврђеним на терену (квалитет односно деградација насипа, канала, устава, црпних постројења), дају предлоге планова од бране од поплава у којима дефинишу нивое изнад којих су потребне додатне мере заштите. Објава и спровођење од бране од поплава зависи од максималног прогнозираног водостаја и прогнозираног времена трајања водостаја изнад дефинисаног нивоа, а које служба прогнозе вода израђује и доставља руководиоцима од бране од поплава за водна подручја

7. Хидролошки модели у водопривреди

 пројектовање и управљањеЧесто је за пројектовање капиталних хидротехничких објеката као и за управљање њима, потребно располагати низом хидролошких података на одређеном профилу дужим од хидролошког низа који је добијен осматрањима и мерењима у оквиру наменских хидролошких истраживања. Применом концептуалних модела симулира се хидролошка временска серија потребне дужине. Симулирана серија се даље преко стохастичких хидролошких модела верификује на основу дугих хидролошких серија на хидролошким станицама н околним сливовима

Хидролошким моделом се могу симули рати хидролошке серије за потребе анализе пројектованог водопривредног сис тема на основу усвојеног модела рачунских киша. Варијацијом почетних услова у сливу и избором комбинација

8. Литература

1. Б.Палмар, Примена модела HBV за прогнозу отицаја воде, Зборник радова бр. 1 РХМЗ Србије, Београд, 1993.
2. Б.Палмар, Идентификација, калибрација и верификација детерминистичког концеп туалног модела HBV, РХМЗ Србије, Београд, 1994.
3. Б.Палмар, Примена модела HBV за прогнозу протицаја на сливу реке Ибра, Зборник радова бр. 2, РХМЗ Србије, Београд, 1995.

рачунских киша симулирају се најнепово ьније варијанте протицаја које се усвајају ао меродавне за пројектовање.

Са аспекта рационалног газдовања водама оптимално управљање водопривредним системом је циљ коме се тежи да би се задовољили међусобно супротстављени ахтеви корисника и тиме избегла ко лизија њихових интереса. Вишенаменска акумулација може да буде пројектована з водоснабдевање, производњу електричн енергије, наводњавање, оплемењивањ малих вода и друго. Све захтеве корисника можда није могуће у сваком тренутку ис пунити у потпуности, и зато је потребно планирати управљање на основу поузданих прогноза дотока у акумулацију. Концептуалним моделом могу да се континуалн моделирају залихе снега у сливу, стањ емљишне влаге, потенцијално ис паравање, као и доток у акумулацију од киша и топљења снега.

ПОДЗЕМНЕ ВОДЕ - ЗНАЧАЈАН ДЕО ВОДА КОЈЕ КРУЖЕ У ПРИРОДИ - У НАДЛЕЖНОСТИ РХМЗ СРБИЈЕ

Мр. Зоран Никић, дийл. инж.
Рейублички хидромейеоролошки завод Србије, Кнеза Вишеслава 66
11030 Веог̃рад, Југославија

Abstract

A significant part of the waters circling in nature concerns the ground waters. By the legal regula tions, the Republic Hidrometeorological Service of Serbia is competent for the monitoring of first aq uifer ground water regime. In 1997 the network of ground water stations in alluvial products of major rivers in the competence of the Service, consisted of 356 piezometers. The piezometrs areused to me saure ground water levels and temperatures, as well as the ground water quality. The existing net work of stations in the competence of the Service is not complete and the basical goal should be the establishing of a modern observing network, not only in alluviai arear, bat also in tertiary and car bonate products with significant aquifers.

Абсиирак \bar{u}

Подземне воде ииредсииавлају веома значајан део вода у оквиру хидролошког циклуса. Режим йодземних вода йрве издани ("фреайиске") йозийивним законима у Србији одређен је да йрайи Рейублички хидромейеоролошки завод. У 1997. години мрежу осмаӣрачких сиианииа йодземних вода у алувијалним йворевинама већих река, у

 йреба йежийи формирању савремене осмайрачке мреже, не само у алувијалним, већ и

У вод

Укупно кружење воде у природи, односно хидролошки циклус воде, јединствен је и недељив процес, а вода је основни и незаменљив чинилац за одржавање живог света, за развој прияеде и људкког друнва уоние. Услед се состит у оште шеме лудских денатност и захтевају мултидисциплинарни приступ.

Веома значајан део општег хидролошког веклуса на Земии ду онвене воде (сл. 1). За юовршинске и воде у атмосфери у оквиру хидролошког пиклуса може се рећи да су доступније за праћење и осматрање, па самим тим и боље изучене, за разлику од подземних вода.

Напредком савремене цивилизације подзнмне воде, као део укуних вода, постају један од

битних егзистенцијалних, односно лимити рајућих фактора даљег напредка. Сагле давајући садашњост и забринути за будућност задњих двадесетак година економски јаке ства у изучаване квачтитативно - крамитатив их карактеристика шодземних вода ша своји територијама У свету броіне су државе кој рэемй блага

Србији организација одређена позитивним законима да на генералном нивоу систематски осматра подземне воде прве издани ("фреат ске"), јесте Републички хидрометеоролошки аавод. Овакво опредељење у садашњи словима је најрационалније, чему у прило иду бројни аргументи

Значајни типови издани на територији

Србије

Подземне воде, у зависности од квантитативно - квалитативних карактеристика, користе се за потребе водоснабдевања становништва и индустији, у пољопривреди за
рекреативне сврхе, итд. Билансие количине квалитетних подземних вода са којима

располаже држава, један су од битних еле мента шеног планског развоја.

Водоносне средине на територији Србије у ко има постоје значајне издани (сл.2), т количине подземних вода, према типу издан можемо поделити на:

Збијени тнп издани.

Слика 1. Кружење воде у природи (DeWiest, 1965)

1. падавине; 2. водопропусне стене; 3. слабопропусне стене; 4. непропусне стене; 5 извор; б. правац кретања вода и водених пара
а) у оквиру квартарних алувијалних и терасних наслага са интергрануларном порозношћу, б) у оквиру терцијарних стенских творевина а интергрануларном порозношћу,
Карстни тип издани у оквиру карбонатних стенских творевина са кавернозном и пукотинском порозношћу;
Пукотински тип издани у оквиру различитих чврстих стена са пукотенском порозношћу.

Квартарне алувијалне и терасне творевине ин гергрануларне порозности заступљене су у речним долинама. Захвальуући повољним идрогеолошким карактеристикама алувијал иих творевина и квантитативно - квалитативним параметрима подземних вода, било ј могуће у њима формирати бројна изворишта а потребе водоснабдевања становништва привреде (на пример за градове: Београд,

Шабац, Јагодина, Пожаревац, итд). Ове широке инундационе површине погодне су за интензивну пољопривредну производњу па се подземне воде из ових стенских творевина могу користити и за наводњавање
Стенске творевине терцијарне старости интергрануларне порозности са водама под притиском (артеске и субартеске), значајан су водоносник подземних вода. Највеће пространство ових творевина је у Војводини. Бројна насеља и индустријски погони у Војводини решили су рањем издани формио о оу ова и Саве постоје вемики неогени басени са значајним тоје величиама нодемних вода које се користе за родоснабдеване (ча шример за градове Младеновац, Лесковац, итд)
\qquad

А интепгианvпапна апvвиіална спенина: Б. компшекс сепиментат неогена:

Карстни терени са стенама са кавернозном и пукотинском порознопйу имају значајне водне ресурсе. Подземне воде ових терена јављају се на површини у виду врела чија
 мине неких поврминсках акумулама. Мноа
 - Миоиии, Вадево, Пирот, Пен, Параћия итд).

Стенски комплекси са пукотинском порозношћу на територији Србије имају велико распрострањење али са тренутно скромним резервама подземних вода пошто нису довољно истражени

Треба споменути посебну категорију подземних вода и то веома значајну коју представљају: термалне, минералне и термоминералне воде са преко 300 појава на територији Србије са могућпошку вишенаменског коришћења. Бројне бање у Србији своју егзистенцију заснивају на физичко-хемкјским карактеристикама ових вода и користе их у флаширање, за топлификацију односно загревање објеката и стакленика (на пример: Врњачка бања, Пећка бања, Бујановачка

бана Араньеловачка бања, Куршумлиіска бања, итд.)
$У_{\text {купне количине подземних вода на терито }}$ рији Републике Србије нису прецизно сагле дане. Садашње процене су опречне и крећу се од да подземних вода има "довољно-много" да их има "недовољнно-мало". Значај овакв процене долази до пуног изражаја ако се има виду чињеница да преко 80% становништва инустрије у Србији користи подземше воде з водоснабдевање.

Опште хидрогеолошке карактеристике
алувијона
Алувијални седименти, хидрогеолошки посма трано, представљају двослојевиту средину Нижи слој изграђең је од шљунковито - песковитих седимената, најчешће врло високе пропусности и представља водоносник подземних вода. Повлатни слој чине глиновити седименти и углавном заглињени ситнозрни пескови, који служе и као заштита подземних вода од загађивања са површине терена. Дебљина алувијалних седимената је различита за велике и мале водотоке. За велике река као што су: Ду алувијалних творевина износи претежно од 10

орита Дрине и Велике Мораве где је дебљина око 75 m . Алувијалне творевине средњих и малих водотока имају мању дебљину, најчешће 4 до 7 m , локално до 15 m . Дебљина слабопропусне повлате у овом случају варира од 1 до 3 m , локално може износити и више

Коефицијент филтрације водоносних шљунк ова и пескова је врло висок, реда 10^{-3} до 10^{-4} $\mathrm{m} / \mathrm{sek}$, док је повлатни слој слабопропустап до

Табела 1. Преглед периода успостављања осматрачких станиша подземних вопа ко
су биле у функпији 1997. године.

No	Реон	Број осматрачких станица и процентуална заступљеностформираних у периоду (година)						Укупан бројстаницау 1997 год.
		1948-1959	\%	1960-1979	\%	1980-1991	\%	
1	Велика Морава	0	-	20	65	11	35	31
2	Западна Морава	2	8	0	-	23	92	25
3	Јужна Морава	1	3	0	-	38	97	39
4	Срем	6	22	0	-	21	78	27
5	Банат	0	-	18	20	73	80	91
6	Бачка	4	8	0	-	49	92	53
7	Ветерница	4	57	0	-	3	43	7
8	Колуб. и Посавина	8	23	0	-	27	77	35
9	Млава	5	100	0	-	0	-	5
10	Мачвa	17	65	0	-	9	35	26
11	Панчевачки рит	0	-	4	100	0	-	4
12	Подунавље	0	-	4	100	0	-	4
13	Метохија	5	56	0	-	4	44	9
	Σ	52	15	46	13	258	72	356

Осцилације нивоа подземних вода у алувијалним седиментима претежно су у функцији во достаја реке и удаљености од водотока. Током јалним дувина нивоа подземних вода у алувијвиша је током септембра моседа а пајма односно најближа eceda.

Ипак, мора се имати у виду да је карактер хидрауличке везе речних и подземних вода веома променљив од једног до другог места, те за сагледавање конкретних прилика потребно је извести хидрогеолошке истражне радове

Осматрачка мрежа станида подземних вода
Имајући у виду чињеницу да је битан део укупиих подземних вода на територији Републике Србије, акумулиран у алувијалним сенимеп

Важећим Законима о водама који је доне 1991. године ("Сл. гласник Р. Србије" бр. 46/91) мописано је да стање нивоа и квалитета подземних вода прве издани ("фреатске"), рати Републички хидрометеоролошки завод. Обзиром да Завод осматра површинске и воде у атмосфери, потенцирана је намера да комлетан хидролоши циклус буде заокружен за ериориуу Србије у оквиру једне установе аслии за је посављено рггнизаији треба и може да пема својој изира и даје прогнозу ре да прати, аналзое п даје поонозу режима и биланса и физичком времену дон које су у реалнои рононит и xaze

тима речних токова, од стране Завода управ овим подземним водама, посвећепа је највећ пажња од првог дана деловања

Слика 3. Схемайска карииа осмайрачке мреже сиианица йодземних вода йрве издани " єрела у надлежносйи РХМЗ Србије

Прве осматрачке станице подземних вода са циљем систематског праћења и мерења параметара режима подземних вода у алувијалним творевинама на територији Србије постављене су 1948. године. Од те године осматрачка мрежа станица подземних вода из грађивана је и обнављена у етапама, према бущетским финансијским могућностима.У току
1997. године у надлежности Републичког 1997. године у надлежности Републичког хидрометеоролошког завода Србије у основној осматрачкој мрежи станица подземних вода у оквиру алувијалних творевина радило је 28 станица са 356 осматрачкия објекага- тјезометара (слика 3). Мерева мина по 15 пвје вода вршено је два пута месечно на 15 пијем21, нијезометру Мерене темтературе на 221 пијезометру. Мерење температуре са мерения врвоно је у 104 мпјезометара Кранитет подземних вола у 1997 години Квалкова нем у јеној серији регистрова је ва узоркатрачиу ојјената

Обрађене податке о осматрањима подземних Обрађене податке о осматрањима подземних вода у алувијалним творевинама (од 1991.
године) публикује Завод. Хидролошки године) публикује Завод. Хидролошки годише о пијезометрима, табеларни преглед датке о пијезометрима, табеларни преглед мерења нивоа и температуре подземних вода
са минималним, максималним и средњим месечним вредностима за сваки осматрачки објекат. Обрађени резултати урађених хемијских анализа на узорцима подземних вода публикују се у годишњаку квалитета вода.

Треба истаћи да постојећа мрежа осматрачких станица подземних вода у алувијалним творевинама није комплетна. На територији Србије постоје значајни реони са алувијалним седиментима, као што су Тимочка долина, лева обала Саве, Дунав низводно од Београда и Косово, без иједне осматрачке станиц подземних вода у надлежности Завода. Такође неки значајни реони су са веома малим бројем станица, известан број постојећих станица плитко је постављен, локације неких осма трачких станица су у непосредној близини или у самим насељима па се локални антропогени утицај на промене нивое не може искључити, многе су постављене пре више деценија, итд. У табели 1. приказан је број пијезометара разврстаних према години изградње и процентуалној заступљености по појединим реонима.

У карстнопукотинским стенским формацијама Србије, Стручне службе Завода у 1997. години

вршиле су свакодневна мерења водостаја на следећих 7 врела: Андрића врело, Гостилско врело, врело Вапа, врело Пећина, Великом врелу, врелу Толишница и врелу Млаве. Мерење водостаја на овим врелима врив се од 1995. године, изузев на врелу Млаве где се осматрања врше од 1949. године
Значајан корак са циљем формирања савремене осматрачке мреже подземних вода у Србиије учинеи је од творевина на територији
 деведесети годиа када су ураце Студије вода на територији Војводине дентралне Србије Космета Намера Студија била је израда идејног решења нове савремене, осматрачке мреже полземних вода у алувијалним седиментима Уважавајући геолошке, хидрогеолошке и хияролинамичке услове, као и стање на терену, Студијама предвиђена мрежа станица подземних вода састојала би се од станица подих станипа, станица првог реда ии извесно време другог реда. У зависности од категорије време другог реда. зависности од категорије станице осматрали би се: промена пијеподземних вода у повлатним полупропусним наслагама, инфилтрација од падавина, евапотранспирација и квалитет подземних вода. Динамика формирања савремене осматрачке мреже подземних вода у алувијалним творевинама Србије наведеним Студијама предвиђена је на пет година. Од онога што је предвиђено Студијама урађено је само на подручју Boјводине следеће: 23 главне станице са 90 осматрачких објеката и 7 профила са 48 осматрачких објеката - пијезометара, првог реда.

Собзиром на постојене стање и значај подземних вода само по себи намене се питање ко и када ће организовати комплетну осматрачку мрежу станица подземних вода у алувијалним творевинама, које су у реалном физичком времену под утицајем метеоролошких и хидролошких фактора и представььају битан део општег хидролошког циклуса? Биланс вода једног региона или државе, као битан елемент планског развоја, није потиун без биланса подземних вода. Такође не смеју се испустити из вида и значајни водоносници у оквиру других стенских творевина са значајним квантитативно - квалитативним карактеристикама подземних вода на територији Србије, који нису покривени осматрачком мрежом за систематско праћење

Закључак

Веома значајан део општег хидролошког дик- јала се од 356 пијезометара у алувијалним луса на Земљи, поред површинских и вода у творевинама и 7 врела у карстним теренима. атмосфери, су и подземне воде. Очигледна цеовитост хидролошког циклуса у црироди ииљу што потпунијег изучавања, намеће мултидиспиплинаран приступ проблему, олносно блиску сарадњу стручњака за: воде у атмосфери, воде на површини Земље и воде у нодземљу, тј., метеоролога, хидролога хидрогеолога.

Систематско праћење и проучавање стања и промена режима подземних вода прве издан "фреатске") које су у реалном физичком вре мену под утицајем метеоролошких и хидролошких фактора, законским прописима одређен је да врши Републички хидрометеоролошки завод

Подземне воде са значајним квантитатив ноквалитативним карактеристикама у оквир неогених, карсних и пукотинских стенских творевина систематски се не осматрају.

Прве станице за систематско праћење роучавање режима подземних вода у алуви јалним творевинама у Србији, формиране су 1948. године. У 1997. години мрежа станица нодземних вода у надлежности Завода, састо

Литература:

Фондовска документација Републичког хидрометеоролошког завода Републике Србије, Београд РХМЗС, 1997: Хидролошки годишњак - подземне воде, 1996. год., Београд

Коматина М., 1998: Подземне воде у интергрануларним срединама територије Југославије Југословенско друштво за хидрологију: Светски дан вода, Нови Сад
Драгишић В., 1997.: Општа хидрологија; ПГФ, Београд
Група аутора, 1976.: Геологија Србије, књига VIII -1 Хидрологија; Пос. изд. ПГФ, Универзитета у Београду, Веоград

МЕТЕОРОЛОГИЈА КВАЛИТЕТ ЖИВОТА

ПОВЕЗАНОСТ ГЕОМАГНЕТСКИХ, ЈОНОСФЕРСКИХ

 ПОРЕМЕТАЈА И ДНЕВНОГ ХОДА ТЕМПЕРАТУРЕ ВАЗДУХАСйоменко Ј. Михајловић, Љубича Михајловић, Миодраг̈ Обрадовић, Геомаг̄нейски инсйиииуй Грочка Владимир М. Димийријевић, Александар Ойра, Рейублички хидромейеоролоики завод Србије
is well lnown ABSTRACT
ltra-violet then Sun's activity has great influence on upper atmosphere. This effect is explained by Sun's unate radiation intensity variations, that reach the Earth. Exchange of corpuscular radiation intensity particularly Sun's wind, cause fundamental atmospheric parameters changes. In addition to atmospheric activity
In this paper, by analyzing the air temperature, it has been indicated that in days with intense geomagnetic disturbances it is important to monitor the interchanges of other parameters as well, that define weather conditions, since it is quite possible that changes in slar - geomagnetic activities represent one of the indications or warnings to the weather changes.

PE3HME

Добро је йознайо да сунчева акйивносй знайно уиииче на особине їорье аймосфере. Овај се ефекаіи у основи објаиьава варијачијама јачине сунчевог улииравубичасийой зрачења, које досйева на Земљу. Флукйиуачцје јачине корйускуларной зрачења, нарочийо сунчевой вейра, изазивају бийне йромене аймосферских йарамейара. »

Као дойуна аймосферским варијачијама, које су у вези са йроменама улйраъубичасииой зрачења, унуӣар сунчевой чиклуса, йосйоје и варијачије које су у вези са йеомайнейском акиивношћу.

У овом раду, анализом йемйерайуре ваздуха, указано је на важносй да се у данима инйезивних іеомаг̈нейских йоремећаја, врие йоређена међусобних йромена и друйих йарамейиара који дефинишу временско сииање, јер је мойуће да су йромене у соларно маг̆нейским акииивносйима један од индикайора или најавливача йромена времена.

1. УВОД

Утицај Сунца на временске прилике, соларни физичари објашњавају енергијом која стиже на Земљу. Количина енергије која долази на квадратни метар горње границе атмосфере мале промене вредности соларне константе ммају драматичне поспедице на кдиму Да би се ово могло поуздано утврдити, треба израчунати колико енергије стиже у доње слојеве атмосфере из термосфере (термос фера је разређен слој гасова на висини од 80 400 км од површине Земље). Термосфера се загрева дејством ултралубичастог зрачера се суниа и под нормлия условима има те

ературу од неколико стотина степени. у време максимума сунчеве активности, за време регистрације магнетских бура, до термосфере термосферу до несолико мил која зағры Неки истраживачи сматрају да исте сите које загревау термосферу, имју вени утииај на рременске прииике него флуктуачіа сонарие гонстанте Магиетске буре са огромним енек тричним потеншјалом, могу иничиати таласе топлоте, или шритиска који би стигли до иожих слојева атмосфере (Гермаи, Голдбрра 1981. Иесиоа 1981)
\qquad

у испитивањима утицаја промена соларно геомагнетске активности на структуру и динамику атмосфере, кренуло се од идеје да се манегске буре могу посматрати као прено нижих слојева атмосфере.

Испитивања соларних физичара, показују да се као "допуна" варијацијама атмосферских уптралубичастог зрачена у сунчевом спектру), појављују варијашије које су у вези са променама геомагнетске активности Наводи се да реакщй атмосфере на интензивне гео магнетске поременаје "касни" на средњим гео
 новић, 1991.; Казимировскиј, 1976).

2.ГЕОМАГНЕТСКЕ БУРЕ И ДНЕВНИ ХО

ТЕМПЕРАТУРЕ ВАЗДУХА

На Геомагнетској опсерваторији Гроцка, у неколико последњих година, испитивана је веза између индекса соларно-геомагнетске активности на успостављање и развоја различитих временских стања. Утицај промена соларио геомагнетске активности на развој временских стања, испитиван је на примеру класе 70 ин тензивих магнетских бура, регистрованих на Опсерваторији Гроцка, у периоду 1980 1990.године (Михајловић, 1992).

Промене метеоролошких параметара (који одређују временско стања) су посматране два дана пре почетка регистрације буре, када геомагнетског поља. За све назначене дане, у РХМЗС, урађена је класификација доминант них временских стања. На тај начин, успостављен је упоредни низ магнетских бур и одговарајућих временских стања. Овде је показано само неколико примера расподеле дневних вредности температуре ваздуха у Београду, у време регистрације интензивних магиетских бура.

На слици 1. приказане су средњедневне вред ности температуре ваздуха у всограду и ии ензитета хоризонталне компоненте геомаг етског поља, у време регистрацје интензив них магнетскх бура, на Опсерваторији Гроцка Посебно су назначени дани (испрекидани квадрати) када су регистроване магнетске буре.
У расподели дневних вредности температуре ваздуха у Београду, у децембру 1980. године, у периоду пре регистрације магнетске буре,

доминира тренд нижих температура. У време када је регистрован период поремећене геомагнетске активности (од 18-25. децембра температуре вазнуха, у односу на ведности (зимску) расиоделу температуре на слиши те (зиасти у расодели темшературе ваздуха су

У данима када су регистроване минималне дневне вредности интензитета геомагнетског поља (хоризонтална компонента геомагнетског поља), тада су у децембру забележене максималне дневне вредности температуре ваздуха.

Испитивања показууу да су, у време регистрације интензивних магнетских бура, забележене промене соларно-геомагнетске активности, које су праћене променама расподеле дневних вредности температуре ваздуха у Београду за наведене месеце. Може се рећи да долази до нарушавања сезонске расподеле данима када је регистрована интензивна магнетска бура. Тако да су дневне вредности температуре ваздуха у децембру месецу биле повишене, а у јулу месецу дневне вредности температуре ваздуха су у време буре биле знатно ниже од оних које важе за сезону лета.

Утицаји промена индекса соларногеома гнетске активности на структуру промене температуре ваздуха у Београду, могу се потражити и на нивоу часовних вредности.

На слици 2. приказана је расподела часовних вредности промена интензитета хоризоиталне компоненте геомагнетског поља на Опсерваторији Гроцка и температуре ваздуха у Београду, у време интензивне магнетске буре, регистроване у 0935 UT 11. јула и 1617 UT 13 јула 1982. године и магнетске буре регистроване у 0455 UT 19. децембра 1980. године.

То је варијација геомагнетског поља која је представљена средње часовним вредностима хоризонталне компоненте

у морфологији $\mathrm{D}_{S T}$ варијације геомагнетског поља, доминира "депресија", снижење интензитета хоризонталне компоненте геомагнетског поља. Тада је утицај кружних струјних система из магнетосфере и јоносферских струјних токова на матнегско поље Земље на јвећи. Тада се мењају односи у магнетском пољу Земъе. Еперија соларно-геофиичких процеса у магнетосфери, јоносфери и геомаг нетском пољу "делује" на сложене механизме

кретања, на електрични потенцијал атмос- атмосфере
фере, утичући на "равнотежу" горних слојева \quad TEMPERATURE VAZDUHA U BEOGRADU

Слика 2. Расйодела насовних вредпосииии йромена инйензийейа хоризонйиане комйоненйие гесомайнейской йоља и часовних вредносйии йенийерайчре ваздуха, у време инйензивних майнейиских бура

У овој анализи расподеле средње часовних вредности интензитета геомагнетског поља, у време регистрације магнетске буре, користи се $\mathrm{D}_{S T}$ варијација.

Промене температуре ваздуха, као метеоролошког параметра, у време интензивних геомагнетских поремећаја, указују на могућу повезаност између ових појава. Пример регистрацхје две јулске магнетске буре то показује. Управо је у данима када је регистрована магнетска бура нарушена структура расподеле часовних вредности температуре ваздуха, која важи за ту сезону. У тим данима (11. и 13. јул 1982.) температуре у дневним интервалима су ниже од просечних у односу на дане који
претходили геомагнетском поремећају. у ноћном интервалу који прати депресију интензитета хоризонталне компоненте (од 04 до 08 UT 14. јула 1982.), забележене су ниске часовне вредности температуре ваздуха у Београду. Оваква расподела вредности температуре ваздуха у Београду, у време јулске магнетске буре, праћена је нарушавањем расподеле падавина и интервала осунчавања у том месецу и сезони.

у време регистрације магнетске буре 19. децембра 198о. године забележено је повенање часовних вредности температуре ваздуха у односу на сезонку вредност гемперануре ваздуха у тој години, у околини Београда (слика 2.). У дане регистрације интензивне магнетске буре (19.-25. децембар 1980. године) регистровано је повећање броја сунчаних интервала.

Очигледно је да приказана расподела часовних вредности температуре ваздуха, у време ове интензивне магнетске буре, додатно описује настало временско сатње.

3. ИННТЕНЗИВНЕ МАГНЕТСКЕ БУРЕ, JOHOCФЕРСКИ ПOPEMETAJU И

 СТРУКТУРА АТМОСФЕРЕНа Јоносферској станици Гроцка испитиване су карактеристике јоносферских поремећаја, у периоду од $1964 .-1976$. године (Цандер, 1984), за различите класе магнетских бура. У време регистрације интензивних маг нетских бура, основне карактеристике јонос ферских поремећаја су екстремно високе промене електронске густине ($\mathbf{N}_{\mathrm{m}} \mathbf{F 2}$) по амплитуди и у времену. То указује да су у различитим локалним временима ефекти оваквих бура битно различити. По престанку формирања осцилаторне фазе, у јоносферским поремећајима, формира се фактор позитивних

вредности електронске густине у јутарњим сатима, раним подневним и вечерњим сатима и сектора негативних вредности параметара $\mathbf{N}_{\mathrm{m}} \mathbf{F 2}$, у поподневним и ноћним сатима (Цандер, 1984.)

На Геомагнетској опсерваторији Гроцка, регистроване су две врло интензивне и карактеристичне магнетске буре: једна је почела 06. фебруара 1986. године, у 1312 UT, а друга 13. марта 1989. године, у 0127 UT. На примеру ове две интензивне магнетске буре, биће описана морфологија регистрованих јоносферских поремећаја и биће интерпретирани сложени фреквениие јошосена вредности слоја $\mathbf{~} 2$ (f:F2) и регистроване микроструктуре варијација геомагнетског поља, у време поменутих бура, на опсерваторијама у појасу средњих геомагнетских ширина

На слици 3.а, и 3.б, приказане су промене и одступања вредности критичне фреквеншије, док је трајала мартовска магнетска бура (од 13 до 16. марта 1989. године). Одговарајуће вредности медијана, које су коришћене у анализи, приказууу услове непоремећене јоносфере.

У дану који претходи магнетској бури (12. март 1989. године), регистровано је веома мало одступање часовних вредности критичне фреквенције $\mathrm{f}_{\mathrm{o}} \mathbf{F} 2$ од месечних вредности медијана, па се може рећи да је тога дана била непоремећена јоносфера. Међутим, већ 13. марта 1989. тодине, када је регистрована интензивна магнетска бура, нарушена је мирна, регуларна структура јоносфере. Регистрован је интензиван негативни јоносферски поремећај (сл. 3.a). Одступање часовних вредности критичпе фреквенције $\mathrm{f}_{0} \mathrm{~F} 2$ од месечних вредности медијана иде до 50% (сл. 3.б). Развој негативног јоносферског поремећаја траје и 14. марта 1989. године. Тада је регистрована лавна фаза магнетске буре. Ниво сметњи у јоносфери је повећан до те мере да, у интервалу од 00-05 LT сати, нема регистрације часовних вредности, а у интервалу $06-07$ LT регистровано је одступање вредности критичне фреквенције $\mathrm{f}_{0} \mathrm{~F} 2$ од вредности медијана за 60% (сл. 3.б).

Апериодична варијација геомагнетског поља $\mathrm{D}_{\text {st, }}$ која је регистрована у време мартовске магнетске буре, на опсерваторијама средњих еоматнетских ширина, је типична варијација у класи ових варијација. Одмах након веома кратке почетне фазе, бива успостављена линија смањивања интензитета хоризонталне компоненте геомагнетског поља (максимална

амплитуда промена интензитета \mathbf{H} компоненте Описаном моделу магнетосферско износи око 480 nT). Оваква интензивна и ди- јоносферских процеса и интеракција, може се намична варијација геомагнетског поља, може да се повеже са структуром негативног јоносферског поремећаја. јоносферских процеса и интеракција, може се додати и модел микроструктуре варијација
геомагнетског поља, регистрованих у интенгеомагнетског поља, регистрованих у интен-
зивним бурама, на опсерваторијама у појасу зивним бурама, на опсерваторијама у појасу 1996.).

Слика 3. Промене вредносйи крийичне фреквенчије $f_{0} F 2$ у време марйовске маг̈нейске буре (12.-16.03.1989.)
а) варијације $f_{0} F 2$ у өреме марииовске майнейске буре
б) одсииуйања часовних вредносйии $f_{0} F 2$ од вредносйи медијана у време марйовске майнейске буре

Почетна фаза буре, амплитуде и периоде краткопериодичних варијација, регистрованих у њој, одређене су упадом (наиласком) сунчевог корпускуларног флукса у магнетосферу. У зависности од хелиографских координата извора сунчевог корпускуларног зрачења, интензитета и трајања сунчевог корпускуларног флукса зависиће амплитуда регистрованог SSC импулса и трајање почетне фазе магнетске буре. У случају мартовске магнетске буре (од 13. марта 1989. године), краткотрајна почетна фаза и велика амплитуда SSC импулса, указују на интензивност и експлозивни карактер физичких процеса, који су се десили у магнетосферско-јоносферским областима. Све то је утицало на регистрацију веома интензивног негативног јоносферског пормећаја.

Микроструктура варијација, регистрованих у главној фази ових интензивних бура, указује на постојање дугопериодичних варијација, на које се суперпонирају краткопериодичне варијације геомагнетског поља. Управо се промене спектра дугопериодичних варијација, или промене апериодичне поремећене варијације геомагнетског поља $D_{\text {st }}$ могу довести у везу са структуром промена критичне фреквенције слоја $\mathbf{~} 2$ (for2), у јоносферском поремећају. На примеру магнетске буре од 13. марта 1989. године, показано је да у интервалу регистрације максималне промене интензитета хоризонталне компоненте поља (депресије иитензитета н), биле су регистроване екстремно ниске вредности параметара $\mathbf{f}_{0} \mathbf{F} 2$, у време трајања негативног јоносферског поремећаја.

Дани када су забележени температурни скокови су дани када је регистрована фаза смири вања интензивних магнетских бура. Према моделу микроструктуре варијација геомагнетског поља, регистрованих у интензивним магнетским бурама, на опсерваторијама средњих геомагнетских ширина, у главној фази и фази смиривања доминирају краткопериодичне варијације, са периодама 6 - 60 минута, које се могу довести у везу са сложеним променама електромагнетског поља Земље. У дане када су регистроване промене временских стања и температурни скокови, били су регистровани негативни јоносферски поремећаји, који су одредили потпуно поремећену јоносферу.
Сложени систем промена струјних кретања у магнетосфери и јоносфери, промена магнетског и електромагнетског поља Земље, се кроз јросер и врат пога је актирире једног дишамичжог механэма промена у атмосфери, означеног као електрични потенијал атмос-

фере. Промене електричног потенцијала ат мосфере, инициране променама соларно - геофизичких параметара, могу бити извор промена динамичких карактеристика и структуре атмосфере

4. ЗАКЉУЧАК

Досадашњи резултати упоредне анализе промена дневног хода и средњечасовних вредности температуре ваздуха у Београду, промена соларно-геомагнетске активности від Опсерваторији Гроцка, показују да је однос између ових појава сложен. Очигледно је да промене соларно - геомагнетске активности представљене у интензивним магнетским бурама, изазивају интерактивне процесе у свим слојевима Земље: од матнетосфере и јонос фере, до биосфере. Тада се "осећа" утицај кре тања високоенергетских честица Суичевог ветра кроз магнетосферу и јоносферу.

Кретања високоенергетских честица сунчевог ветра се преносе кроз магнетосферу и јонос феру, до високих слојева атмосфере нарушена расподела енергије у атмосфери, изазива промене електричног потенцијала ат мосфере и динамичких процеса у њој. Позна вање овог механизма било којег параметра омогућава да се временско стање опише са много випе детаља.

Резултати упоредне анализе дневних часовних вредности температуре ваздуха у Београду, у данима када су регистроване интензивне магнетске буре на Опсерваторији Гроцка, показууу важност праћења међусобних промена свих параметара који дефинишу временско стање.

Ако се промене наведених параметара прате на нивоу дневних вредности, опда регистрациіа интензивних магнетских бура и промене у со-ларно-геомагнетској активности могу послу-
жити као индикатори, или најављивач промене жити као индикатори, или најављьивач промене временског стања
Познавање и дефинисање депресије (најнижи ниво) интензитета хоризонталне компоненте геомагнетског поља, у морфологији и струм ури $_{\text {St }}$ варијације, је врло важан податак примерима нтензивних магчетских бура рет примерина на Опсерваторији Гроша, рег зано је да после регистрачије депресије у структури $\mathrm{D}_{s t}$ варијације геомагнетског нола проме часовши вредноти томтератре ваздуха у Београду, прелазе из области

нарушених односа (великих одступања од ности температуре) у тренд враћања на средњи нарушених односа (великих одступања од носво температуре пре поремећаја.
средње месечне или средње сезонске вред- ниво темера

ЛИТЕРАТУРА

Цандер P.Љ., 1984:Морфолошка студија F области јоносфере и њена примена, докторска дисер ташија, ETF у Београду, Београд

Герман Л.Д.ГГлщберг,Р.А.,1981: Солнце, пагода и климата. Гидрометеоиздат, Ленинград
Иванова, И.Н.,1981.: Влиание солнечној активности и геомагнитних восмушченија на атмосферу Метеорологија верхнеи атмосфери Земли, Гидрометеоиздат, Ленинград.

азимировскиј,Е.С.,1976: Измерение дрејфов в Е и F областјах јоносфери и значение их дл’ја физики јоносфери, Физика Солари-Терестрис ,1,67,1976.

Миловановић Ж.,1991.: Сезонски циклус јоносфере, атмосфере и геомагнетске активности.Електротехника, Но.40.5-6,피.400-404.

Михајловић,Ј.С. ет.ал.,1992.:Веза између интензивних магнетских бура и временских фаза;XXXVI Конферешциа ЕТАНа VI-VII свеска; 351-358 стр.,Београд.

Михајловић, Ј.С. 1996.: Морфологија геомагнетских бура регистрованих на опсерваторијама Југоисточне Европе, докторска дисертација, Рударско-геолошки факултет, Београд, 1-106, Београд. 0

МЕТЕОРОЛОІІКА АКТИВНОСТ У ЗДРАВСТВЕНОЈ

 ЗАІІТИТИ ЧОВЕКА
Др Драгомир М. Ђукановић, дийл. мей.
 11080 Земун, Данила Медаковића 4/6

Abstract

The meteorological activity, as a mean of the protection of human health, contributes to the better understanding of the phenomena of human body's sensitivity on weather and climate changes. Physiological and pathological occurrences caused by meteorological and meteorotropizm influences are subject of a current miltidisciplinary research. These researches are practically oriented, directed to the prevention, prediction, medical-meteorological information gathering and climato-therapy. Current knowledge and experience of the researchers in our country shows a need for a specific research and study, as well as for a mutual cooperation among Meteorological Service of Serbia and medical institutions in Serbia.

Абсӣракии

Мейеоролошка ак $\bar{u} и в н о с \bar{u} ~ у ~ з д р а в с \overline{и в е н о ј ~ з а ш \bar{u} и \bar{u} и ~ ч о в е к а ~ д о и ̆ р и н о с и ~ б о љ е м ~}$ разумевану феномена осейльвосйи људског̄ орг̄анизма на временске йромене и климайиске услове. Физиолошке и ииийогенейске йојаве у домену мейоорофизио-

 и у климайойерайији. Досадашња сазнања и искусйва у нашој земльи уйућују на закључке о ииойреби одређених йройрамских оииределења за будући сииудијски рад и сарадњу Мейеоролошке службе Србије и медицинских инсииийчија.

1. Увод

Данашња сазнања, која вуку корене још из Хипократовог времена, су да време и клима утичу на здравље људи у позитивном или негативном смислу, у зависности од утицаја средине у којој се одвија живот човека, природног прилагођавања организма, психофизичког и здравственог стања, година старости, делатности којом се човек бави и многих других фактора. Отуда и критеријуми за дефинисање повољних и неповољних временских ситуа

ција и климатских услова за човека нису у потпуности дефинисани и јединствени, те представљају и даље актуелну област научног истраживања.

Док време сматрамо као сложени појам физичког стања атмосфере у виду синергизма појединих метеоролошких елемената у одређеном тренутку или периоду, климу сматрамо репрезентативним типом временских збивања на одређеном по-

дручју, која зависе од функције метеоролошких елемената, физичкогео-графских услова и начина реаговања организма човека.
Имајући у виду тему о метеоролошкој активности у здравственој заштити човека, односно о хуманој биометеорологији са аспекта медицинске метеорологије и климатологије, ово излагање је прилагођено интересовању више корисника датих информација, који се налазе и изван медицинских и метеоролошких кругова. Ова сазнања и информације су са медицинскофизиолошким објашњењима о реакцијама човека на временске промене и климатске услове. С друге стране, цивилизацијски научнотехнолошки развој је омогућио да регистровања и објашњења физичких и других процеса у атмосфери помогну бољем разумевању феномена човекове осетљивости на промене у средини у којој се одвија његов живот.
Поред неких општих објашњења о овим феноменима, претходно he ce набројати и укратко описати сингуларни и сложени биометеоролошки елементи и атмосферски процеси, који су од значаја у медицинској метеорологији и климатологији и са едукативног гледишта.

Објашњења о метеорофизиологији и метеоротропизму обухватиће указивања на њихову везу са динамичким атмосферским процесима који се одвијају на нашем географскоклиматском подручју. Досадашња истраживања и искуства мултидисциплинарног карактера допринеће про-ширењу и изоштравању потребних критеријума, како у разради методологије практичног коришкења информацијама, тако и у климато-терапији.

Део излагања о климатизму и климатотерапији пружа сазнања о сложеном утицају климатских и микроклиматских услова на здрав и болестан људски организам, коришћењем резултата одговарајућих меди-цинско-климатолошких истраживања у природним лечилиштима

Завршни део овог рада обухвата нека програмска размишљања, на основу досадашњих сазнања о метеоролошкој активности у здравственој заштити човека у нашој земљи.
2. Феномени човекове осетљивости на временске промене иклиматске услове

Познато је да при јачим променама у атмосфери долази до изражаја мања или већа осетљивост човековог организма на сунчево зрачење, ваздушни притисак, температуру и влажност ваздуха, на ветар, на нагомилавање електромагнетских набоја у облацима, на падавине, маглу и др.

Тако, стабилно временско стање, са дужим осунчавањем и зрачењем сунца, са високим атмосферским притиском и температуром ваздуха, са ниским процентом релативне влажности ваздуха и при тихом времену без падавина, одражава се на стабилност стања човековог организма. Кардиоваскуларни апарат интервенише повећа-ном фреквенцијом рада срца и његовог минутног волумена, а смањењем артеријског притиска, сагоревања кисеоника и промена базалног метаболизма, уз дејство ултравиолентног зрачења на кожу, са стварањем, из провитамина, витамина Д.

Међутим, појавом захлађења са падом ваздушног притиска, облачношћу, падавинама и ветром, долази до појаве сужења капилара и повеђања крвног притиска, повећања електромагнетног набоја, прехлада, са боловима у мишићима, кијавицом и лаким кашљем.

Електромагнетни таласи и гомилање позитивних јона доводе до згрушавања крви и изазивају надражај и у великом проценту случајева раздражљивост, наглим излучи-вањем хормона серотонина. Уз то се код особа чије је здравље под утицајем метеоролошких фактора, још пре наступа захлађења, више часова, јавља и извесна психичка напетост, несаница, мигрена, несвестица, дрхтање руку, сметње у виду, мучнина, гађење или повраћање, отоци, болови у врату и мишићима, реуматски болови у зглобовима и старим ожиљцима, тешка алергијска стања, лупање срца, бол и стезање у пределу срца, губитак ваздуха, отежано дисање, астматички напади и улкусни болови.

у оваквим променама биометеоролошких ситуација реакција организма може се испољити излучивањем хормона штитасне жлезде, убрзаним пулсом, појачаним метаболизмом и другим неповољним манифестацијама код

адреналина, хистамина, натријума, калијума и др. Посебна опасност постоји од инфаркта миокарда, код ангине пекторис и код наглог скока хипертензије код болесника који се лече.

Као изузетно неповољан утицај промене временских фактора су нагли пад атмосферског притиска, испод 997 mb , затим када у року од 12 часова дође до наглих промена температуре и влажности ваздуха, када долази до погоршања стања психотичних болесника, напрасне смрти кардиоваскуларних болесника и повећања броја самоубистава и саобраћајних удеса (Ђекић, М., 1995).

У оквиру овог краћег осврта на метеоротропизам и стабилно временско стање у односу на феномене човекове осетљивости на временске промене и климатске услове, корисно је поменути јонску констелацију у ваздуху, као и дејство негативних јона на људски организам, ангажовањем адапционог и одбрамбеног система, који се јављају у шумама, око река и при атмосферском електричном пражњењу. Позитивни надражајни импулси из природе су неопходни човечијем мозгу, јер неприродан начин живота људи стално оптерећује вегетативни нервни систем.

Разматрање феномена човекове осетљи-вости на климатске услове, који се разликују од осетљивости при јачем степену апериодичних временских промена, подразумевају физиолошке процесе и реакције здравог и болесног људског организма приликом промена утицаја природних фактора спољне средине, које чине различити климати. Бројне индикације и контраиндикације климатских лечилишта са њиховом реактивном терапијом за поједина хронична обољења и реконвалесцентнорехабилитациона стања, указују на значај даљих медицинско-климатолошких истраживања у домену климатотерапије

3. Биометеоролошки елементи и
 атмосферски процеси

Да би се боље разумели феномени човекове осетљивости на временске промене и климатске услове неопходно је, у основним цртама, навести поједине метеоролошке елементе и атмосферске процесе са њиховим сингуларним и сложеним утицајима на људски организам.

3.1 Биометеоролошки елементи

Метеоролошки елементи које можемо назвати биометеоролошким су: ваздушни притисак, сунчево зрачење, температура ваздуха влажност ваздуха и неки сложени биомете оролошки елементи, струјање ваздуха и моћ охлађивања.

Ваздушни притисак

Сазнања о ваздушном притиску, као једном о најзначајнијих метеоролошких елемената у одређивању особине атмосфере и његове везе са процесима и последицама који се у њој не прекидно одвијају динамичког и термичког карактера, указују и на његове утицаје биометеоролошке природе, односно метеоротропне особине.
Иако се може говорити о непосредном утицају наглих и великих промена ваздушног притиска на људски организам, посебно на оболеле о кардиоваскуларних и респираторних болести, ипак треба имати на уму да се оне одвијају у склопу одговарајућих промена општих времен ских стања. Дакле, утицај ваздушног притиска на људски организам треба разматрати у сложеним околностима са обезбеђењем упоредних метеоролошких и медицинских ис траживања.

Пример пада ваздушног притиска у Београду од 13-15. фебруара 1962. године, за $22,0 \mathrm{mb}$, на свега $966,2 \mathrm{mb}$, услед формирања секундарног циклона и продора хладног фронта са северозапада, указао је на метеоропатолошку ситуа цију у односу на повећан број смртних случајева у односу на фебруар месец претходних 11 година. Међутим, ова иако знатна промена ваздушног притиска, указује да она, сама по себи, не би била јача корелативн вредност у овом случају, ако се има у виду да оваквој промени ваздушног притиска одговара његовој безначајној еквивалентној висинској промени. Овде су од много значајнијег утицаја биле промене осталих метеоролошких еле мената у сложеном дејству на људски организам, приликом продора хладног ваздуха са северозапада (Штрасер, Т., Анић, Б., 1963).

Сунчево зрачење

Познато је да је непосредно сунчево зрачење и ифузно зрачење из атмосфере, осим рефлек тованог, које прима Земљина површина, ком плексног карактера са селективним учинцим на телима где бива апсорбовано, према подручјима таласних дужина сунчевог спектра иоклиматског активног зрачена Сунче енергија не допире на Земљу у подједнакој количини, па је и деловање на људски организам различито. Ефекат њеног деловања зависи од спектралног састава, интензитета и трајања сунчевог зрачења.

Ултраљубичаста светлост у малим дозама де лује стимулирајуће, у већим надражајно а затим токсично, што зависи од апсорпције и интензитета зрачења, тј. од дејствујуће квантне енергије на месту апсорпције, где прелази у оплотну енергију са хемијским учинцима Позната је подела сунчевог спектра на вид ъиви и невидљиви део светлости, са осећајним утиском од ултраљубичастог до ултрацрвеног дела, а такође и основни закони који регулип квалитетно и квантитативно количине енер ије зрачења, директног сунчевог зрачења и дифузног зрачења атмосфере, у зависности од висине сунца изнад хоризонта, надморске висине, прозрачности ваздуха, количине водене паре у ваздуху и облачности.
Сунчево зрачење је од значаја за људски организам јер оно може деловати пријатно, нпр. на средњим географским ширинама у зимском периоду, а као веома корисно у борби против многих болести као код туберкулозе и извесних кожних обољења. Као корисно је запажено дејство ултраљубичастог зрачења при дифузној рефлексији сунчевог зрачног снопа код спречавања развоја рахитиса итд.

Многа планинска климатска лечилишта су веома добро позната по својој угодној клими, захваљујући, поред других фактора, интензитету сунчевог зрачења. Међутим, сунчево зрачење може бити и штетно по човечије здравље при прекомерном излагању тела директном, па и дифузном зрачењу, дејством ултраљубичастог зрачења, не производећи осећај топлоте на кожи, који се рефлектују и са водене површине, нарочито у јутарњим и вечерњим часовима. Значајна је и рефлексија ултраљубичастих зракова са снежног покривача, на високим планинама.

Корист излагана човечјег тела глобалном сунчевом зрачењу се огледа у измени функционалног стања организма - хемодинамици, морфологији крви, имунолошким показатељима, процесу размене материја и измене хистолошке слике коже (Leistner, W., 1956). Путем општих и локалних соларијума, уз дејство осталих метеоролошких фактора различитог интензитета, након аклиматизације човека на спољну средину, са постепеним растућим дозама излагања сунчевом зрачењу, долази се до оптималних мерљивих показатеља у хелио и климатотерапији. Коришћењем актинометријских мерења, уз познавање односа глобалног зрачења и ултраљубичастог зрачења, као и дужине осунчавања, добијају се неопходни претходни подаци о хелиотерапијским условима кдиматског дечидишта. Дада ек спериментална истраживања еритемних реакција у погледу процењивања биолошких доза ултраљубиастог зрачења на пацијентима су неодвојива од упоредних метеоролошких ис траживања

Значајно је сазнање дејства механизма регулисања биланса топлоте у људском организму, у односу на физиолошки топлотни промет изазван дејством сунчевог зрачења. Према Pflei-derer-u (1931.) на ширинама Средње Европе, на надморској висини од око 1500 m , тело одраслог човека прима код нормалног упада сунчевог зрачења $8.843 \mathrm{~J} \mathrm{~min}^{1}$ до $13.145 \mathrm{~J} \mathrm{~min}^{1}$, а код косог од 2.629 до $3.943 \mathrm{~J} \mathrm{~min}^{1}$, што знатно премашује основни физиолошки и топлотни промет човека нормалне тежине (60 kr) у пот пуно мирном и гладном стању (2.820 J min), па чак и при узиману хране или физичком раду ($6.811 \mathrm{~J} \mathrm{~min}^{1}$).

Овде се може поменути и резултујућа тем пература као комплексни бројни показатељ топлотног осећања човека у ваздушно средини, изложеног сунчевом зрачењу, када се у њему ствара додатно оптерећење топлоте повисујући при томе за неколико пута нор малну производњу топлоте у организму. Истраживања су показала да се границе зоне комфора налазе измену $16^{\circ} \mathrm{C}$ и $30^{\circ} \mathrm{C}$ резултујуће температуре (Анић, Б., 1969.)

Температура ваздуха

Температуру ваздуха можемо сматрати као сингуларни метеоролошки елемент који непосредно делује на човека са различитим физиолошким ефектом, у зависности од сложености процеса временских промена у окружујућем атмосферском ваздуху. Још пре више од 100 година W. Harrington (1894.) употребио је податке влажног термометра као меру тзв. осећајне температуре, коју је касније W. Kendrew (1949.) назвао физиолошком температуром, а која означава укупну садржину топлоте у ваздуху и објашњава њен физиолошки значај у поређењу са испаравањем са влажне коже човека.

Регулисање топлотног стања човековог тела се углавном постиже хемијским и физикалним процесима који су у непосредној вези не само са температуром околног ваздуха, већ зависе и од стања и утицаја више осталих метеоролошких и других елемената, као што су: струјање и влажност ваздуха, зрачењее, испаравање и др.

Начелно, постоје три могућа случаја у односу температурног стања човечјег организма и атмосферског ваздуха са различитим усмерењима температурног градијента: 1) температура ваздуха је нижа од температуре opанизма, када долази до отпуштања топлоте организма према ваздуху зрачењем и спровођењем, као и конвекцијом; 2) температура ваздуха је виша од температуре организма са супротним усмерењем температурног градијента, и 3) температура ваздуха је једнака температури организма, када нема градијента. Ако организам не успе да одржи своју оптималну температуру, наступиће отхлађивање (хипотермија) или прегревање (хипертермија), са опасношћу по живот, иако у границе варијације доста широке, од $22,5^{\circ} \mathrm{C}$, чак $18^{\circ} \mathrm{C}$, до $43,5^{\circ} \mathrm{C}$, са спуштањем за $15,0^{\circ} \mathrm{C}$ и $19,5^{\circ} \mathrm{C}$ и повећањем за $6,0^{\circ} \mathrm{C}$ од температуре тела од $37,5^{\circ} \mathrm{C}$.

Док се хемијским процесима ствара топлота, као нужни нуспродукт унутрашњим сагоревањем и метаболизмом, дотле се физикалним процесима регулише телесна топлота: издавањем топлоте зрачењем, спровођењем и конвекцијом; због издисања загрејано ваздуха; излучивањем воде на површини тела и испаравањем и издавањем водене паре у

издисаном ваздуху или излученим гасовима Кретање организма као механички процес се последњим претварањем у топлоту повезује са хемијским процесима сагоревања.

Регулисање топлотног стања човековог тела излучивањем воде на његовој површини и испаравањем као и издавањем водене паре у издисаном ваздуху, зависи од температур ваздуха и дефицита засићења воденом паром околног ваздуха, као и од брзине кретања ваздуха. Код охлађивања организма испод температурног оптимума може доћи до прехлађивања са смрзавањем и при температури околног ваздуха и изнад $0^{\circ} \mathrm{C}$, уколико је дуже изложено неповољним условима, када долази до смањења циркулације крвотока и промене пролазног или хроничног карактера.

При облачном времену, када је температура ваздуха висока, ваздух засићен воденом паром без струјања ваздуха, може наступити toplotn udar. Долази до прегрејавања целог тела са повишеном температуром крви и нагоми лавања топлоте у телу, коју организам не може да ода.

Позната је и сунчаница која настаје директним деловањем сунчевог зрачења на главу и за тиљак, нарочито за време јако топлих дана при мирном ваздуху, високој релативно влажности, физичким напо-рима, нехигијенским одевањем, као и при обилној храни и употреби алкохола.

Особе које пате од срчаних обољења, астме који имају бронхијалне и друге тегобе у време високих температура ваздуха не треба д излазе из станова, који се расхлађују, уз упо требу већих количина мало осољених течности.

На планинама где је ваздух ређи, па према томе има мањи топлотни капацитет, хлађење је мање него у низији при иначе истим условима; на истој температури и при истом кретању ваздуха ово хлађење је на висини од 2.000 м за 30% мање него у низији, што пого дује зимским спортовима у планинама (Радошевић, М., 1948.).

Влажност ваздуха и неки сложени биомете

оролошки елементи

ефекат, као и непокретан ваздух при 100% ре-

Пре излагања о деловању влажности ваздух на људски организам, корисно је, укратко, нав ести основне елементе који карактеришу влажност ваздуха у биометеоролошким разма трањима и неке сложене биометеоролонке елементе, који у себи садрже и утицаје тем пературе ваздуха.
Иако за оценивање влажности ваздуха, односно садржине водене паре у ваздуху служе парцијални притисак водене паре (e) и његова максимална вредност при истој одређеној те меператури ваздуха (E), изражених у mb (hPa) апсолутна влажност ваздуха (q) и њена максимална количина (Q) у g/m ${ }^{3}$ ваздуха, специфична влажност (s) у g/kg ваздуха, за біоmeteorologiju и medicinsku meteorologiju су од значаја релативна лажност ваздуха ($U=e / E 100 \%$ и $U=q / Q$ 100%) и дефицит засићености ($\mathrm{D}=\mathrm{E}$ е), као сложени биометеоролошки елементи.

У домен биометеоролошких разматрања улазе и физиолонка влажност (e_{f}) која се изражава процентима (Ramzin, S., 1953.) и дефиниш изразом $\mathrm{e}_{\mathrm{f}}=\mathrm{e} / \mathrm{E}_{36,5} 100 \%$ у коме је $\mathrm{E}_{36,5}$ макси мални притисак водене паре при средњој тем щератури људског организма, $64,63 \mathrm{mb}(\mathrm{hPa})$ и иритисак водене паре, као и физиолошк дефицит влажности (D_{f}) који представља диф еренциіу поменута два притиска $D_{f}=E_{36,5}$ $1,333 \mathrm{hPa}$ а а који служе као мерило количине одузете влаге организму од стране једног куб ног метра ваздуха. У неким мерењима се ко ристи и максимални притисак водене паре при температури ваздуха од $32,5^{\circ} \mathrm{C}$, као средња температура површине коже и средње тем пература издахнутог ваздуха код човека (Vouk V., 1952.).

Климатска осетљивост је биометеоролошка величина у којој суделује температура и влажност ваздуха, тако да су по њој уста новљена три климатска осећања: угодно спарно и влажно хладно. За утврђивање кли матске осетљивости користи се dijagram LancasterCastensTrauner (Trauner, L., 1957.).

Ефективна температура у биометеоролошким смислу је одговарајућа вредност температуре ваздуха у непокретном и влагом незасићеном ваздуху, који даје пријатно осећање топлоте. Изражава се једним вишезначним комплексним бројем, који даје такав топлотни

лативне влажности. Нпр. ефективна темпералура од $17,8^{\circ} \mathrm{C}$ обухвата све комбинације од
туре температуре ваздуха $17,8^{\circ} \mathrm{C}$ (уз релативну влажност ваздуха од 100%) па до $23,2^{\circ} \mathrm{C}$ (уз релативну влажност од 20%). Исти ефекат осећања топлоте ($17,8^{\circ} \mathrm{C}$) се постиже и при температури ваздуха од $28,6^{\circ} \mathrm{C}$, релативној влажности ваздуха од 20%, али при брзини ветра од $2,0 \mathrm{~m} / \mathrm{s}$, чиме се може објаснити подношљивост високих температура ваздуха у пустињским крајевима (Анић, Б., 1969.)

Еквивалештна температура је пропорционална укупној топлотној енергији у одређеној запремини ваздуха, јер представља температуру влажног ваздуха коју би тај ваздух добио када би се у њему укупна водена пара кондензовала а ослобођена топлота испаравања довела, при непромењеном притиску, преосталом сувом ваздуху. Еквивалентна температура се може сматрати и као климатски фактор и као мера за осећање топлоте и запаре са одговарајућом класификацијом (Вујевић, П., 1957.).

У групу комбинованих биометеоролошких елемената долази и моћ сушења, која показује колико воде издаје ъудски органиам ис паравањем у cm или mm , при одређеном атмосферском стању. За разлику од геоклимайске, биоклимайска или анйройоклимайска моћ сушена се примењује за људски организам, узимајући у обзир стање при тишини или ветру, укључујући притисак водене паре при одређеној температури ваздуха, ваздушни притисак и површинску температуру коже (Вујевић, П., 1961.)

Деловање влажности ваздуха на људски организам, иако оно сигурно постоји, није још потпуно објашњено, изузев у екстремним случајевима веома смањеног или потпуно засићеног ваздуха воденом паром. Код нормалних и најчешћих стања влажности ваздуха недостају објашњења о деловањима на људски организам у детаљима, а нарочито кад се ради о краћим, ограниченим временским интервалима дејства.

Дефицит засићења ваздуха воденом паром је од велике важности за ефекат деловања влажног ваздуха на људски организам, јер утиче на издавање водене паре путем органа за

дисање и брзину испаравања воде у виду зноја на површини тела. Међутим, однос између де фицита засићености ваздуха воденом паром и функције йерсйирације (неприметног стално процеса испаравања) је доста сложен, како с показала мерења, јер са порастом дефицита засићења ваздуха воденом паром, при једнако температури ваздуха, није долазило до перспирације при релативној влажности ваздуха између 38% и 75%

У погледу утицаја влажности ваздуха на људ ски организам може се поменути спарина, која прдставља осеһај, који се лако развија влажном и топлом ваздуху, са појачаним зно јеем и непријатним осећањем. Међутим, лажном и хладном ваздуху су и назеби чешф него иначе, јер је тада веће одузимање топлоте ъудском организму, због овлажења коже, која ада постаје бољи топлоноша. При магли човечје тело има појачано осећање хладноће ер се капи магле при додиру са кожом, кој има вишу температуру од ваздуха, испаравају влажан ваздух је погодан за опстанак, ширење умножавање разних микроорганизама, шт тиче на ширење појединих инфективних болести.

С друге стране, сув ваздух уз ниске темпера туре ваздуха делује мање неугодно на орган а дисање него сув и топао ваздух, који не сам пто продубљује и смањује број удисаја, већ осетно исушује слузокожу носа и уста, изази вајући јак осећај жеђи. Ове разлике, у вези са физиолошким процесима и различитим утицајем хладноће и топлоте на слузокожу, су више познате од значаја влажности ваздуха за одржавање влажности слузокоже

Влажност ваздуха има и индиректан хигијен ски утицај, јер што је она мања јаче се исушује површина земље и предмети на њој, што омогућује лакше стварање прашине и ширење разних микроорганизама, нарочито оних отпорнијих.

При истој релативној влажности, са повишењем температуре ваздуха, појачава се излучивање водене паре путем плућа и коже Испаравање тела се појачава и физичким радом и узимањем обилне хране. Знатно појачано излучивање водене паре из организма изазива, углавном, жеђ, сушење и пуцање

коже и слузокоже. Иначе, ветар смањује ис паравање тела јер снижава температуру тела спровођењем.

Спречено излучивање водене паре је од већег хигијенског значаја него појачано, јер је оно у вези са застојем и нагомилавањем топлоте у организму, које ствара неугодност и штетно утиче на здравствено стање. Код осетљивих људи се појављује главобоља, мука, светлуцање пред очима, па и несвестица, а при високим температурама ваздуха настаје и опасност по живот. Тако, неугодан осећај се осећа већ при температури ваздуха од $24^{\circ} \mathrm{C}$ и релативној влажности ваздуха од 7080%. При нижим температурама ваздуха, испод $15^{\circ} \mathrm{C}$ важнос пературама ваздуха, испод $15^{\circ} \mathrm{C}$ влажност ваздуха појачава одавање топлоте из органим и то знатно више него код сувог ваздуха исте температуре. Утврђено је да се при повећању релативне влажности ваздуха за $12,5 \%$, а при константној температури ваздуха, човек осећа као да је температура ваздуха нижа за $1^{\circ} \mathrm{C}$. Међутим, висока релативна влажност ваздуха, при вишим температурама ваздуха, такође осетно појачава осећање топлоте

Може се рећи да готово нема болести на које нагле промене температуре и влажности ваздуха не утичу. чак и здраве особе тада осећају малаксалост, физички и психички замор. Досадашња истраживања довела су до неких општих закључака

- повећање влажности ваздуха, при наглој промени температуре ваздуха, доводи до смањења кисеоника у јединици запремине ваздуха и његовог притиска у спољној атмосфери, чиме се стварају неповољни услови за болесно срце и болесна плућа
- велика топлота шири крвне капиларе у кожи ради регулисања телесне топлоте, што доводи до пада крвног притиска. Нагле промене хладног и топлог времена са сталним мењањем крвног притиска за особе са хипертензијом или ангином пекторис могу довести до наглог попуштања леве коморе срца, па и до напрасне смрти;
лоше подношење нестабилног времена може бити и са појавом топлотног удара, при чему, услед прегрејавања тела, терморегулациони механизам, преко знојних жлезда,

престаје да функционише, када се јавља бити у таквој мери потенциран да може мучнина, повраћање и други познати симп- угрозити и сам опстанак организма томи, па чак и до изумирања ткива и смрти.

Струјање ваздуха
Струјање ваздуха ветар дејствује на људски организам непосредно, углавном на два начина:

1) Termiчko dejstvo у виду повећања губитка телесне топлоте је тесно везано са стањем температуре и влажности ваздуха али са квантитативно специфичним учинком при тихом времену и при различитим брзинама ветра. Тако, нпр. код високих температура ваздуха и сасвим слабо струјање ваздуха делује угодно охлађујује; при температури ваздуха између $0^{\circ} \mathrm{C}$ и $5^{\circ} \mathrm{C}$ код мирног ваздуха осећање је умерено хладно, а код лаганог ветра већ као врло хладно Значајно је да се промене брзине код слабијих ветрова јаче осећају него код јачих ветрова. Из ових искустава уведене су посебне мерне јединице за оцене укупног учинка губитка топлоте, тзв. охлађивања, као и одговарајући мерни инструменти (Hilloв кататермометар, фригориметар, фригориграф и др.).
2) Други начин деловања ваздуха у кретању на गудски организам састоји се у теhaniчkom nadràaju, који се испољава у извесном притиску на површину тела, а који се може и мерити. Овај учинак деловања ветра на површину тела се повећава и тиме, што се јачина притиска услед сталних и наглих промена брзине ветра при адвекцији, конвекцији и турбуленцији стално мења.

Скупност свих термичких и механичких надражаја на површину тела, изазваних кретањем ваздуха, делују освежавајуће, али при дуготрајном дејству или при великом интензитету делују замарајуће, са разликама учинка, у зависности да ли је при томе организам у мирном стању или врши неку радњу. Замарајући утицај сталног деловања ветра, при извршавању неког рада, може се констатовати још дуго након престанка тог деловања. Код ниских температура ваздуха тај учинак може

Измена топлоте организма и околног ваздуха зависи директно од температуре ваздуха и брзине струјања ваздуха. При јачем ветру ствара се стална разлика у топлоти, која изазива непрекидан губитак топлоте, који се повећава само до извесне границе брзине ветра. Деловање јачих струјања ваздуха су, углавном, позната, али је мало познато да и врло слаба струјања, од $0,4 \mathrm{~m} / \mathrm{s}$ до $0,5 \mathrm{~m} / \mathrm{s}$, па чак и од $0,18 \mathrm{~m} / \mathrm{s}$ до $0,46 \mathrm{~m} / \mathrm{s}$ могу да одузму организму знатне количине топлоте, а при ниској температури ваздуха могу да делују и врло неугодно.

Ако слабије струјање ваздуха у затвореној просторији, усмерено у једном правцу, расхлађујуће делује на ограничено место на површини коже долази до тзв. промаје. Да ли ће п́ромаја изазвати назеб, и тиме повећати диспозицију према инфективним болестима, зависи од више фактора, као од разлике у температури ваздуха који струји и околног ваздуха, дужине трајања деловања, од индивидуалне реакције и здравственог стања организма и од тога да ли је тело загрејано или не, да ли је кожа и одело влажно и да ли човек мирује и да ли се креће.

Ветар одстрањује и влагу са површине коже, а тиме и топлоту, у зависности од влажности ваздуха и дефицита засићења. Микроклима испод одела, која је влажнотопла зими, са продирањем ветра омогућује расхлађивање тела и делује угодно при тешком физичком раду и при топлом одевању. Ово деловање ветра је нарочито угодно при преобилном стварању топлоте, као што је то обично лети. Ветар одстрањује влагу и топлоту са површине не само ознојеног тела, него и иначе, путем неприметног сталног процеса испаравања. Ветар делује и у смислу спречавања излучивања зноја, јер он углавном одузима организму топлоту, више спровођењем (конвекцијом) него испаравањем.

С обзиром на целокупност деловања, на организам неповољно делууу два екстрема: врло топао и влажан ветар и врло хладан и сув ветар, док је повољнији топао и сув ветар са појачаним одавањем топлоте, него ли хладан и

влажан ветар са смањеним расхлађивањем организма.

кацији охлађивања сувих и влажних површина (Ђукановић, Д., 1964., стр. 8387)

Индиректан повољан хигијенски значај ветар има у одстрањивању различите нечистоће из ваздуха, као што су дим, чађ, $\mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{CO}$ и други шкодљиви састојци у приземном слоју ваздуха, са издашном вентилацијом насељених места. Међутим, неповољан хигијенски значај ветра се огледа у исушивању површине земље и стварању знатне количине прашине.

Моћ охлађивања

Моћ охлађивања је комплексна биометеоролошка величина са интегралним сједињавањем више основних метеоролошких елемената, који својим заједничким дејством утичу на хлађење слободно изложеног физичког или физиолошког тела (Ђукановић, Д., 1964., стр. 1). Охлађивање се може одређивати инструментално помоћу кататерометра, фригориметра и фригориграфа, а такође и помоћу прорачунавања емпиријским једначинама Hilla и других аутора, на основу истовременог мерења појединих метеоролошких елемената.

Фригориграф Pfleiderrera и Büttnera, који је функционисао и у Институту за медицинску хидрологију и климатологију у Београду од 1958. до 1961. године, заснован је на физиолошким испитивањима у односу на особине мерног тела, прелажења топлоте провођењем и пренашањем у зависности од кривине површине и величине тела, способности коже за упијањем Сунчевих зракова и одавање топлоте у дуготаласном инфрацрвеном делу спектра.

Постоје биометеоролошке класификације постављене од стране више аутора са различитим степенима топлотног осећања, на основу величине охлађивања по Hilly и регистрацији фригориметра. H. Pfleiderer 1931. †одине поставља климатофизиолошку класификацију осећања на основу скале фригориграфске температуре охлађивања.

Анализом трајања различитих вредности охлађивања по Hilly у Београду и проучених веза са фригориграфском температуром дошло се до граничних вредности у класифи-

Охлађивање је због своје сложености важан индекс карактеризације биометеоролошких услова за класификацију климата, у проучавању физиолошких реакција, за потребе лечења, статистику болести и појаве епидемија, у хигијени рада код проблема собне климе и проветравања у проучавашу кожне температуре, код обољења зглобова, сметњв крвотока и размене материја у организму, за тим код обнављања топлотне регулације ор ганизма и утицаја великих промена охлађивања на патологију човека.

Иако постоје и различита мишљења о истраживању појединих климатофизио-лопких проблема у погледу сложености утицаја охлађивања према топлокрвном организму, у којима се даје већи значај одговарајућим краткотрајним животним приликама, охлађивање представља зна-чајну биометеоролошку вред ност појединих локалитета и у климатотера пији уопште.

3.2. Атмосферски процеси

Сложено дејство биометеоролошких еле мената на људски организам се одвија у различитим процесима расподеле енергије у трансформацијама атмосферских циркула ционих система.

За медицинску метеорологију су од значаја различита временска стања у зависности од праваца ваздушног струјања, као и циклоналних, антициклоналних и прелазних временских стања (Радиновић, Ђ., 1978, стр. 83185).
Утицај атмосферских процеса са биотропним особинама су различити, те представљају ак туелну област истраживана човекове осетљивости на временске промене и климатске услове. Овде ће се, под претпоставком претходног познавања карактеристике баричких атмосферских система, поменути да постоје и знатне разлике у ефектима њиховог утицаја на здравље људи, са више варијација Тако нпр. антициклонална временска стања са претежно стабилним, сувим и тихим времено су са различитим утицајима на патолошке групације у летњем или зимском периоду. Лети је већи број случајева са повољнијим временским

стањима за све групације, него зими са хладним и сувим временом. Међутим, циклонална временска стања, са наглим променама времена и појавом атмосферских фронтова се карактеришу као знатно неповољнија за све групације патолошких оболења. Временска стања са различитим положајима фронтова дају такође одређене међузависности атмосферских промена и појединих патолошких стања.

Диференцијација и класификација временских стања омогућује, на основу анализе синоптичких временских ситуација, њихову идентификацију и проналажење корелативних веза са појединим групама обољења.

4. Метеорофизиологија и

 метеоротропизамОрганизам здраве особе поседује способност адаптације у чувању своје здравствене стабилности путем хомеостатског механизма заштите од метеоролошких утицаја. Физиолошке реакције здравих особа на промене временских стања су у домену метеорофизиологије.

Међутим, физиолошко реаговање може прећи у патолошко, ако експозиција организма буде продужена или интензитет дејства метеоролошких фактора буде енормно повећан. Тада настају ненормалне појаве у организму различитих интензитета, које припадају метеоропатологији.
Метеоротропни утицаји су, према томе, они који могу изазвати физиолошке или патогенетске појаве код човека. Метеоротропизам, као осетљивост човека на неповољна временска збивања, може бити йродромалан, са наступом пре промене времена изазивајући предосетљивост или синхронизован са проласком промене времена и манифестацијама преосетљивости.

Метеоротропизам изазивају редовно само они метеоролошки елементи који се јављају у јачем степену апериодично, јер у њиховим нормалним променама постоји довољна способност физиолошке адаптације, осим код извесних болесних стања
Метеоротропизам делује код промене сложених метеоротропних временских ситуа-

ција, када сингуларни метеоролошки елементи (атмосферски притисак, температура и влажност ваздуха, ветар) имају биотропна својства, када при појави метеоролошких фронтова, динамичких промена, зрачења и др.

екстремним вредностима прелазе физиолошки оптимум регулационог механизма, или ако захвате извесна патолошка збивања. То не значи да се сингуларни метеоролошки елементи не могу користити у медицинскометеоролошким истраживањима.

Метеоротропно дејство на човека се састоји у томе да одређена, комплексна, промена вре менских стања може пореметити физикалнохемијску равнотежу човечијег тела, јер је углавном, подређено законима из физиологије надражаја.

У погледу узрока и механизма деловања метеоротропизма постоје подељена ми-шљења, али постоји сагласност у томе да је значај и улог вегетативног нервног система доминирајућа.

Иначе, методе доказивања метеоротропизм или патолошких стања, код којих је утврђен утицај времена као негативан, провоцирајући или интензивирајући фактор, су статистичке компарације на релацији време болест и физиолошки експерименти (Trauner, L., 1957.) Моделне реакције на анорганском материјалу могу послужити за извесна биоклиматска ис траживања (фригориграф и др.).

Од важности су они биометеоролошки еле менти и њихови комплекси, који су биотропни односно метеоротропни, дакле код којих је познат однос са животним збивањима код човека. Уопште узев, медицинар треба из метеоролошког дела истраживања разабрати биотропну функцију временских збивања и дедуцирати реакцију организма, како у погледу метеоролошких услова, тако и код дозирања климатотерапеутских фактора.

Код метеоротропних особа нужно је да се критичним биотропним временским ситуацијама уздржавају од сваког оптерећења, па и у храни и пићу, јер јаче осцилације временских стања доводе до јаког оптерећења организма, путем нервног система, па су отуда рецидивима највише изложени болесници из групе изражених метеоротропних обољења.

Метеоротропизам је последњих година знатно порастао, тако да је већ преко 50% становништва њиме обухваћено. Ова појава је аналогна појму преморбидних стања и може довести до тешких органскопатолошких промена (Trauner, L., 1957.).

у последње време се поклања све већа пажња истраживањима корелационих односа временских промена и реакција људског организма, односно корелативности егзогених и ендогених фактора и биотропности процеса, са својом актуелношћу и тенденцијом пораста акутних патолошких стања у савременом начину живота.

Пре него што се наведу информације о најно вијим медицинскометеоролошким

истраживањима код нас, могу се поменути почеци, везани за ове радове на Медицинском факултету у Београду. Као први подухват ак тивне сарадње, интердисциплинарног карактера, медицинара и метеоролога, објављен у нашим медицинским публикацијама, је анализа 116 случајева субглотичног ларингита, као алергичне манифестације, зависне о метеоролошким факторима, са несумњивом и потврђеном колерацијом са променом временских стања (Подвинец, С., Ђукановић, Д 1959.б, стр. 3338).

У периоду од 14 месеци (јануар 1958. фебруар 1959. год.) медицинскометеоролошка ис траживања у Београду, сарадњом Оториноларинголошке клинике и Института за медицинску хидрологију и климатологију, уз помоћ синоптичке службе Завода за метеорологију и хидрологију НР Србије, указала су да је само $13,8 \%$ случајева субглотичног ларингита забележено при постојању антициклоналног поља ваздушног притиска. Највећи број случајева је констатован при циклоналним временским ситуацијама, са различитим учестаностима, у зависности од положаја у фронталној расподели. Негативни електрични потенцијали при томе могу да буду етиолошки фактори јер делууу на пулс, крвни притисак минутни волумен срца

Каснији објављени радови, који се могу сврстати у домен медицинске метеорологије обухватали су корелативне везе појединих

бољења и промена временских стања, са различитим приступом, обрадом добијених по датака и начином интерпретације добијених резултата. Тако се могу поменути од 1963 године, најранији радови Т. Штрасера и Б Анића па до новијих радова P. КљаићВојиновић из 1981. године и докторске иисертације М. Ђекића из 1993. године и др. Било би од користи да се сачини југословенска медицинскометеоролошка библиографија.

Уопште узев, тако рећи да и нема обољења која у мањој или већој мери нису метеоротропна. Актуелизовано проучавање утицаја времена на здравље људи, везано за апериодичне надражаје, са могућностима утврђивања корелатиних веза и доношења одређених закључака о практичном коришћењу у домену медицинскометеоролошких прогноза издвојило је следећа метеоротропна обољења: исхемијска обољења срца ангина пекторис, акутни инфаркти миокарда, остала обољења срца поремећаји ритма и кардиомиопатије, артеријска хипертензија, цереброваскуларна обољења, акутне респираторне инфекције, бронхијална астма, реуматска обољења, улкус еелудца и дуодема и психозе укључуіући и намерна тровања, повреде у саобраћају и напрасну смрт (Градски завод за хитну медицинску помоћ у Београду и Одељење примењене метеорологије Републичког ХМЗ СР Србије, 1988.).

У неким радовима на теме из медицинске ме теорологије наводе се тзв. сезонске болести, које се могу разабрати из статистичких података у вези са периодицитетима у фреквенцији и временској дистрибуцији, што је у коинциденцији са сезонским карактеристикама метеоролошких промена (Дукић, М., Радиновић, Ђ., Вујичић, Р., 1970., стр. 7178). То су фотодерматоза (под утицајем директног дејства сунчевог зрачења), дисхидроза (летња кожна болест), конгелација (последица дејства хладноће), хипертермија одојчади у летњим месецима, инфективне болести, алергијска обољења, улкусне болести желудца и дванаестопалачног црева у пролеће и јесен, појава и реактивирање психотичких стања у пролеће и јесен, обољења респираторних путева у пролеће и јесен, пролећни леталитет туберкулозних болесника, пролећна авитаминоза. Код сезонских болести не постоји зависност само од метеоролошких

услова, већ и од географског положаја, од које индукууу метеоротропна обољења. Стустамбених и прехрамбених услова, од имунизације и диспозиције и других фактора.

Од значаја за медицинску метеорологију у нашој земљи је мултидисциплинарна монографска студија Утицај времена на здравље људи, напред поменутих институција (Београд, 1988.)

Аутори су метеоротропизам и биотропне временске ситуације, са неповољним временским факторима, као предметом изучавања метеоропатологије, са загађеношћу атмосфере, третирали уз примену сложеног поступка за одређивање колерационих односа у комплексним временским збивањима.

Тако се, у домену егзогених колерационих фактора сложених метеоротропних утицаја, од проналажења односа појединих метеоролошких параметара и промена у организму, дошло до изучавања сложених биотропних ситуација. Коришћена је биокласификација различитих временских стања са поделом на 20 временских типова одређених карактеристика у односу на антициклоналне и циклоналне ситуације са проласком фронтова, смиривањем времена, сувим, топлим и влажним временом, са инверзијом температуре ваздуха и са маглом преко целог дана.

Захваљујући оперативности обе ангажоване службе, са регистрацијама променљивих метеоролошких фактора и учестаности 13 специфичних патолошких стања, обрађени су подаци дневних промена временских типова и дневних структура збрињавања пацијената за период осматрања 19821986. године. Из ових истраживања, како тврде аутори, може се говорити о узрочнопоследичној вези између временских утицаја и одређених обољења, тј. о метеоротропизму и метеоропатијама. Због комплексности и природе обрађеног опсервационог материјала је отежано извлачење неких општих закључака али се за поједина обоњења дошло до приказа односа са неповољним и повољним временским фазама и временских периодичности, изражених у данима.

Финализација ових истраживања обухвата издвајање и класификацију биотропних ситуација, односно синоптичких временских ситуација,

које индукују метеоротропна обољења. Сту-
дија утицаја специфичних стања атмосфере на метеоротропна стања или обољења омогућује добијање биойроӥноза, које се користе у превенцији компликација низа хроничних обољења и њихових ургентних стања, а каталог метеоротропних реакција у основној здравственој заштити, са могућностима корекције терапије код особа у периоду адаптације (Ђекић, М., 1993.)
5. Климатизам и климатотерапија

Утицај природних фактора спољне средине на регулацију или промене извесних животних функција у телу човека у тесној су вези са биоклиматским условима. Проучавања повољности ових услова у смислу здравственорекреативних третмана људског организма у потенцијалним и постојећим природним лечилиштима, су неопходна.

Контролисаним излагањима човечијег ор ганизма утицају оних природних фактора, којим одређено подручје обилује, успешно се спроводи у лечењу појединих хроничних обољења и реконвалесцентнихрехабилитационих стања, као и код рекреације и релаксације организма. Ове активности претпостављају претходна познавања физичкогеографских и климатских услова ужег и ширег подручја лечилишног простора, са даљом разрадом ме тодологије и примене одговарајуће контролисане и дозиране терапије, према врсти обољења пацијената.

Климатска места и лечилишта треба да пружају одређене предности својим климатом, који представља скуп географских и атмосферских услова, којим је подложно једно место. Климатизам обухвата збир питања која се односе на медицинско проучавање климата и њихово терапијско коришћење у превентив ном или терапијском погледу (Тасић, В., 1949., стр. 5160).
Испитивања лековитог утицаја климе на извесна болесна стања и њихове примене у пракси (климатопатологија и климатотерапија), обухватају и физиолошке процесе и реакције организма на временске промене и климатске услове код просечно здравих људи (метеорофизиологија). Иначе, лековита клима у природним лечилиштима се дефинише као

динамичка равнотежа биометеоролошких елемената унутар оптималних граница, при чему се сматра да је климатско лечење реак$\bar{ш} и в н а ~ \overline{ш е р а и ̆ и ј а ~ с а ~ р е г у л а т и в н и м ~ н а д р а ж а ј е м ~}$ организма на нормализацију животних функција, превентивно, куративно и рехабилитационо.
Медицинскометеоролошка испитивања у природним лечилиштима, са метеоролошке стране обухватају периодицитет атмосферских ситуација, међусобни однос свих биометеоролошких елемената, електрично поље и јонизацију ваздуха, аеросоле и др., географски положај и експозицију проучаваног терена, а са медицинске стране реакције организма болесника, врсте и фазе болести, трајање и начин лечења, као и уређаје који служе коришћењу лековитости климе.

Савремени живот човека је претерано регулисан, углавном једноличан и аутоматизован, са успостављањем једне врсте условног рефлекса, који укида инстинктивне тежње човека и смањује активност његових виших психичких центара, са дубоким променама у многим функцијама човековог организма.

Медицинска метеорологија и климатологија у својим проучавањима указују да промена климатских услова делује на човечји организам као повољни, насилно извршени утицај спољних чинилаца и тиме изазива код човека активну одбрану, помоћу реакције прилагођавања промета материја и усклађивања функције нервног система. На тај начин се објашњавају измене у функцији жлезда са унурашњим лучењем, хипофизе и одржавања равнотеже нервног система

Утицај и ефекти једног климата на здрав и болестан организам су врло сложени и зависе не само од физичких фактора (биометеоролошки елементи), него и од хемијских, биолошких и психичких. Ова сложеност се посебно манифестује у оценама да ли је један климат сииимулашииван или седаӣиван, јер код микроклимата, са карактеристикама ограниченог простора, постоје консиииаииини елементи (географски положај, геолошка природа, конфигурација терена и др.) и йроменьиви елементи, међу којима су на првом месту метеоролошкоклиматолошки услови, који указууу на релативан појам микроклимата. У вези

а овим се подразумева неопходност континуираних медицинскометеоролошких опсервација у природним лечилиштима, са стандардним и специ-фичним мерним инструментаријом.

Варијације свих сингуларних и сложених биометеоролошких елемената, са статистиком њихових просечних и екстремних вредности, међудневних променљивости и учестаности различитих интервала повољних и неповољних вредности, кори-шћењем постојећих медицинскоклиматолошких класификација, представљају област истраживања у домену захтева климатотерапије, при одређивању временског, ограниченог дозирања метеокомплекса.

Упоредна медицинска и метеоролошка истраживања при различитим временским ситуацијама, употребом медицинских метеорограма (Ђукановић, Д.,1959.) омогу-ћују одређивање вероватноће појаве погодних часова подстицајним утицајима климатских фактора у категоризацији природних лечилишта са типизацијом на благо надражајне и надражајне реакције организма човека, усмерених на индикације у климатотерапији (Trauner, L., 1957.).

Климатска места и лечилишта могу бити на различитим надморским висинама, у низинама или на приморју, са својим специфичностима у односу на њихову изложеност, нагиб, вегетацију, положај у односу на сунчево зрачење и електронско јонско стање атмосфере, на правац ваздушног струјања и др.

Индикације климатских лечилишта су доста широке, што је у зависности да ли њихови климати припадају висинској (са преко 800 m и 1.000 м), средъе висинској (од 400800 м) и низ инској категорији места, укључујући и йри морје (од 0200 m).

Тако, на пример, висински климаӣи су индицирани млађим особама, слабим лимфатичним лицима (али не нервозним), предтуберкулозним стањима и ТБЦ костију и зглобова анемији, хлорози, аденопатији, токсичној дисперзији, албуминурији, хроничним плућним болестима (без тежих компликација), ем физему, бронхиектазији и астми, извесним неурастеничним стањима и извесним ди

јатезним дерматозама (уртикарије, екцем, прурит). Неки неурастеничари, преморени, плашљиви (фобије), реконвалесценти осећају се добро на висинама. Међутим, опште контраиндикације висинских климата су атероматоза, артериосклероза, све кардиопатије, болести јетре, бубрега и реуматичари, затим нервозни болесници наклоњени крварењу.

Индикације климайа на средњим висинама (од 400800 м) одговарају већем броју болесника; њихово дејство је исто тако снажно, али више седативно; они више снаже него надражују и боље се подносе чак и код људи који пате од бронхија, бубрега, нерава и код старих особа.

Низинска климатска места (од 0200 м) су континентална или приморска. Њихова главна карактеристика је да делују врло благо и умирујуће, седативно. Индикације приморја су доста широке: општа стања наклоњена ТБЦ, премореност, скрофулоза, лимфатизам, хередитарне дистрофије, анемија, хлороза итд. или локална обољења као: трахеобронхијална аденопатија, велики кашаљ, стања после прележане болести плућа и бронхија, рахитис, артритизам, неурастенија, вегетативне дистоније и др. Као контраиндикације приморја су плућна туберкулоза, обољења очију и ушију.

5.1. Медицинскоклиматолошк

класификације

За потребе проучавања климатских и микроклиматских карактеристика појединих климатских места и лечилишта, за планирање и израду здравственорекреативних објеката, користе се одговарајуће биоклиматолошке и медицинскоклиматолошке класификације, засноване на подацима сингуларних и сложених биометеоролошких елемената, добијених из упоредних претходних медицинскометеоролошких истраживања о утицају климатских услова на човечји организам.

Постоји већ одавно више климатских класификација, оријентисаних и на коришћење у биоклиматологији и медицинској климатологији, као што је V. Conrada (1929.) заснована на прорачунатим средњим месечним вредностима охлађивања по Нilloвим једначинама и искуству о разним топлотним осећањима, која се у класама налазе од топлог,

разнежавајућег, благо надражајног, јако надражајног до веома хладног осећања.

Проучавањем везе између фригориграфске температуре у Београду и охлађивања сувих и влажних површина no Hilly добијене су граничне вредности охлађивања са градацијом од осам класа, од топлог до веома хладног осећања (Ђукановић, Д., 1964., стр. 8687).

Позната је метода чубуковФјодорове класификације, која омогућује одређивање пово љних и неповољних временских стања за човечји организам, поделом на 16 временских класа, разврстаних у 3 групе температурних периода у току године, са тежиштем на учестаности појединих временских стања (Анић, Б., 1969., стр. 4772).
Класификација K. Neergarda (1961. год.) за климатска места је увела појмове о надражајним и заштитним климатским факто рима тростепеног обележја. Код првих су најважнији висинска и географска експозиција места, осунчавање и интензивно сунчево зрачење, а код других су заштита од јаких ветрова, умерена и уједначена моћ охлађивања и релативна временска стабилност. Могуће су и комбинације надражајних и заштитних фактора. О климатској терапији и њеном дозирању писали су многи биоклиматолози.
L. Trauner и J. Goldberg 1955. године су дали "Предлог климатске класификације лечилишта", којим су обухватили начин обраде климатских услова у ширем смислу, указууући на потребу анализе годишњих токова свих син гуларних и сложених биоклиматолошких еле мената са њиховим трајањем, учестаности и међудневном променљивости
W. Mörikofer je 1955. године указао на низ биометеоролошких елемената и потребу њихових комплетних анализа, како у сингуларном, тако и у комплексном дејству, укључујући и утицај надморске висине, експозиције и облика терена у односу на микроклиматске услове.

Вишегодишња упоредна биометеоролошка и медицинска истраживања у одређеним природним лечилиштима, укључујући и микроклиматска мерења, са разматрањем надражајних и заштитних климатских фактора, уз

коришћење разних класификационих то у пет одређених дневних термина, од 7 до 21 критериуума представљају основу за час по локалном времену (Ђукановић, Д., одређивање, категоризацију, планирање, раз- Ђурић, В., 1957.б, стр. 115; Ђукановић Д., 1959., вој и експлоатацију климатских места и лечилишта

5.2. Микроклиматска истраживања

Одавно је уочена потреба да се природна лечилишта бањска и климатска места, обухвате континуираним метеоролошкоклиматолошким истраживањима. У протеклим деценијама у свету се дошло до значајних ре зултата у односу на методологију опсервациј и коришћења добијених резултата, у оквиру процењивања услова климатотерапије у при родним лечилиштима

С обзиром да постоје различити здравствени профили појединих природних лечилишта, са климатског и микроклиматског становишта се наметала потреба детаљног диференцирања појединих микроклимата, укључујући и испитивања здравственоклиматских корелација. Овај посао је трајног карактера те представља и даље предмет пажње климатолога и медицинара.

Стечена искуства медицинскоклиматолошких истраживања указала су и на неопходност увођења микроклиматских проучавања, која омогућују уочавања и одређивања разлика између појединих карактеристичних тачака у ужем и ширем лечилишном подручју.

Ове разлике се манифестују у величинама и променама биоклиматолошких елемената, као што је охлађивање сувих и влажних површина са применом одговарајућих класификација биоклиматских осећања и реакција људског организма. Изведени закључци су од важности са аспекта различитости дејства изложености одређених пацијената стварним природним условима у карактеристичној животној средини проучаваног лечилишта

У оквиру рада Института за медицинску хидрологију и климатологију из Београда организована су климатска и микроклиматска истраживања у лечилишту Игало, у августу 1957. године, са метеоролошким мерењима на пет карактеристичних локација, међусобно удаљених око 400 м, дуж Топлајског залива и

стр. 117). Мерења су обухватила глобално сунчево зрачење и следеће метеоролошке елементе: температура ваздуха, физиолошка температура, притисак водене паре, релативна влажност, физиолошка влажност и физиолошки дефицит влажности, учестаност и брзина ваздушног струјања, као и моћ охлађивања помоћу кататермометра и једначина Hilla. Резултати мерења су обрађени у терминским, дневним, екстремним и међудневним вредностима са честинама појаве итд. Утврђене су микроклиматске разлике појединих локалитета, које су биле искористиве у даљим истраживањима лечилишта Игало о дејству климатских утицаја на боравак и лечење пацијената.

Аналогна микроклиматска испитивања обављена су и у Соко Бањи, августа 1959. године, на пет локација различитих карактеристика, са увођењем израде дневних медицинских метеорограма и публиковањем дневних билтена намењених пацијентима у овом бањскоклиматском лечилишту (Ђукановић, Д., 1959.а, стр 131).

Поред ора̄анизовања микроклимайских исиираживана у Ийауу и Соко Бани, ииреба йоменуйи и касније радове: О хелиойерайийланини Гоч (А климайском лечилиийу на дневном ходу међучасовне йромене ииемйерайуре и влажноссии ваздуха у врначкој бани (Анић, Б., 1967.a, cӣp. 231242), и O одређивању времена ваздуиних куйки у климайиойерайији (Анић, Б., 1970., сийр. б169).
5.3. Метеоролошкоклиматолошка ангажовања у природним лечилиштима Србије

у Србији се још од оснивања Медицинског факултета у Београдуч посвећивала одређена пажња питањима из домена медицинске метеорологије и климатологије, у прво време кроз научнонаставну активност у појединим медицинским дисциплинама интерне медицине, у склопу хидро и климатотерапије. Овде се могу поменути лечилишта Врњачка бања, Буковичка бања, Соко Бања и др., у којима је,

у већини, још крајем прошлог века, 1896. године, Милан Недељковић организовао метеоролошка мерења на климатолошким станицама (Ђукановић, Д., 1957., стр. 126).

Половином овог века је основан Институт за медицинску хидрологију и климатологију на Медицинском факултету у Београду. Поред балнеологије, 1954. године је организована и метеоролошкоклиматолошка служба у оквиру медицинскоклиматолошке активности, која је била у тесној вези са Заводом за метеорологију и хидрологију НР Србије, у коме су вршене и основне обраде опсервационе документације (Ђукановић, Д., 1956., стр. 6264). Основано је 20 климатолошких станица у природним лечилиштима Србије, које су имале и регистрирне инструменте, чиме је омогућено проучавање биоклиматолошких услова; увођена су биоклиматска и микроклиматска мерења, укључујући и регистрације фригориграфом, рађени су медицински метеорограми и више климатских студија и анализа природних лечилишта, учвршћена је веза између медицинских институција и метеоролошкопрогностичке службе Завода за ме-
теорологију и хидрологију НР Србије, у циљу проучавања утицаја временских промена на поједина обољења и др. Такође је обављана настава из метеорологије и климатологије за студенте X семестра медицинских студија (Ђукановић, Д., 19551960., стр. 145)
6. О програму метеоролошке активности у здравственој заштити човека

У претходном излагању објашњен је значај медицинске метеорологије и климатологије у проучавању феномена човекове осетљивости на временске промене и климатске услове. Указано је на метеоротропизам и климатизам, као и на потребу мултидисциплинарног истраживања, уз метеоролошко ангажовање.

Досадашња искуства у свету и код нас упућују на потребу детаљнијег сагледавања и примене метеоролошких података у домену здравствене заштите, која обухватају следеће активности:

- Систематска мерења појединих метеоролошких елемената на ужем и ширем опсервираном подручју, укључууући праћење и анализу временских промена синоптичких ситуа-

ција и проучавање климатских и микроклимат ских услова, уз добијање метеоролошкоклиматолошке документације, која је од значаја и у здравству;

- Упоредна праћења промена временских стања и промена у људском организму, са продубљавањем досадашњих сазнања о уоченим корелативним везама на релацији време клима човек, а посебно време болест.
- Студијска разматрања климатских и микроклиматских услова у појединим здравственорекреативним локалитетима природним лечилиштима и у свим подручјима где се укаже потреба за проучавањем дејства изложености одређених пацијената стварним природним условима животне средине човека; - Метеоролошко - климатолошка истраживања за потребе пројектовања и експлоатације здравствених објеката одређивање санитарнозаштитних зона у односу на еколошке захтеве и заштиту животне средине

У разради и иновацији методологије медицинско - метеоролошких истраживања, посебно код превентивно - прогностичких информација, треба користити сву добијену и расположиву опсервациону документацију, у светлу најновијих сазнања, са коришћењем прикладних класификационих одређења појединих временских стања, неоптерећених обилном симболистиком ознака делова баричког поља и утицаја температуре и влажности ваздуха. Извлачењу резимеа из добијених односа неповољних и повољних временских стања и појава патолошких обољења треба прилазити обазриво, због бројности синоптичких временских ситуација и могућег неслагања са претходним описом појединих временских стања.

Требало би размишљати о даљем искључивом коришћењу средњег годишњег броја случајева појединих обољења као основи за одређивање односа неповољних и повољних временских фаза и патолошких стања. Оријентација на краће временске периоде, сезоне и месеце би била ближа реалнијим оценама утицаја временских промена на здравље људи у различитим годишњим добима.

Као методолошка основа за медицинскометеоролошке прогнозе времена треба да се успоставе упоредна, хронолошка регистровања временских стања (што се у синоптичкој служби РХМЗ већ чини) и појединих обољења (не само преко Завода за хитну медицинску помоћ). Из тако постављеног истраживања могуће је извлачити потребне закључке, како у домену општих односа на релацији време здравље, тако и код низа медицинскометеоролошких статистичких параметара у погледу вероватноће појаве одређених обољења у зависности од промене времена и др., а тиме и непосредног увођења у област медициско - метеоролошких прогноза, првенствено у вези са превенцијом код најчешћих ургентних обољења, а и у осталим активностима којима се бави медицинска метеорологија.

Овако постављена истраживања могу се обављати у свим здравственим центрима, који се налазе у различитим климатским подручјима, што би омогућило добијање, не само обимнијег опсервационог материјала, него би указивало и на вероватне разлике у ефектима утицаја временских промена, везаних за развој процеса у атмосфери и конкретне истраживачке локације.
Медицинско-метеоролошко климатолошка истраживања у природним лечилиштима и здравственорекреативним локалитетима морају бити у саставу општих истраживања о дејству климатских утицаја на боравак и лечење, уз упоредно регистровање ефеката н релацији: пацијент климатски, односно микроклиматски услови.

Обим ових истраживања је у функцији задатака лечилишта, из чега произилазе конкретни захтеви за начин рада, врсту и обим опреме за реализацију ових истраживања. Избор савремене опреме био би усмерен на обезбеђење континуираних опсервација одређених биометеоролошких елемената из домена медицинск метеорологије, са увођењем одговарајућег информационог система. Тиме би се створила могућност регистрације актуелних метеоролошких стања и израде медицинских метеорограма у оквиру истраживања лечилишта. Увођењем наведеног информационог система уз сарадњу са Републичким хидрометеоролошким заводом, била би омогућена идентификација климатских утицаја и њихових

варијабилитета. Добијени резултати би били коришћени у стварању и примени одговарајуће методологије у предузимању одређених пре вентивних мера у лечењу и њиховој класификацији према стварним временским стањима

7. Резиме

У здравственој заштити човека је значајна и метеоролошка активност, односно хумана биометеорологија, са аспекта медицинске ме теорологије и климатологије. Она доприноси бољем разумевању феномена човекове осетљивости на временске промене и климатске услове у средини у којој се одвија његов живот.

Проучавање односа човекове осетљивости реакције на физичке и друге динамичке процесе у атмосфери условљавају претходна упознавања сингуларних и сложених биомете оролошких елемената и атмосферских поцеса У вези са овим су физиолошке и пародеса. У вези са овм су физиолошке и па огене у у домену метеоро физиологије и метеоротропизма, који пре стављају актуелну област мултидисципли нарних истра-живања, усмерених у правцу практичног коришћења, како у превентивним, прогностичким, медицинско - метеоролошким информацјама, тако и у климатотерапији.

И код нас као и у свету, постигнути су и објављени значајни резултати у домену проучавања утицаја промене времена на здравље људи, било да се ради о утицајима сингуларних метеоролошких елемената или сложених биотропних временских ситуација, која индикују метеоротропна обољења. Коришћењем одговарајућих класификација специфичних временских стања и њихових утицаја на метеоротропна обољења дошло се до каталога метеоротропних реакција, који се могу користити и у оснявној превентивној здравственој заштити код низа хроничних обољења и њихових ургентних стања.

Климатизам и климатотерапија су такође у домену вишегодишње метеоролошкоклиматолошке активности, посебно у природним климатским лечилиштима, са истраживањима климатских и микроклиматских утицаја на здрав и болестан људски организам.

Актуелност метеоролошке активности у здравственој заштити у нашој земљи

условљава, поред претходних сазнања из до- мене потребних класификација временских садашњих ангажовања, и одређена програмска опредељења. Она обухватају потребу даљег систематског студијског рада и сарадње метеоролошке службе Србије и медицинских институција:

- Рад на медицинско - метеоролошким прогнозама у односу на ургентна обољења, са одговарајућим критичким односом у погледу при-

стања и вероватноће њихових појава;

- Медицинско - метеоролошка истраживања у природним лечилиштима, у оквиру проучавања климато-терапеутских услова укључујући пројектовање и експлоатацију здравствених објеката и одређивање санитарнозаштитних зона у односу на еколошке за хтеве и заштиту животне средине.

8. Литература

Анић, Б., 1964: Методи фригориметријских мерења у биоклиматологији, Лисй ХМС Југ̄ославије, бр. З. Анић, Б., 1967: Хелиотерапијски услови на платоу климатског лечилишта "Бели извор" на Гочу, Зборнии

Ании, Б., 19 Му. Беойрад

а. Диевни ход међудневне промене температуре и влажности ваздуха при различитим вре менима у Врњачкој Бави, Зборник радова йоводом 20 г̆ддна рада и раззоја ХМС Јуйослани 19471967 , Анић, 1970. Одређивање времена ваздушних купки у климатотерапији, VIII Савеӣовање климаі̄олой уйославије, Злайибор, СХМЗ, Беойрад.
Conrad, V.,1929: Messung und Verechung der Abkühlungsgrösse, Gerlands Beiträge zur Geophysik, Band XXI, Leipzig Akad. Verlagsges, 183189.
Дукић, М., Радиновић, Т., Вујичић, P., 1970: Медицинска метеорологија као посебна дисциплина науке, VII Савеӣоване климайоло̄а Југ̈ославије, Злайибор, СХМЗ, Беойрад
Ђекић, М., 1993: Биопрогноза као модел превенције најчешћих компликација водећих кардиоваскуларних оољења у прехоспиталним условима, Докйорска дисерийација, Медицински факулйией, Беойрад.
Ђукановић, Д., 19551960: Предавања из метеорологије и климатологије на Медицинском факултету у Београду, Инсиииийчуй за медицинску хидролойију и климайолог̄иу, Беог̄рад

Букановић, Д., 1956: Рад Института за медицинску хидрологију и климатологију у Београду, Весник хидро меиееоролошке службе ФНРІ, бр. 1.
Ђукановић, Д., 1957: Климатолошке станице у природним лечилиштима HP Србије, Инсйийуии за меди цинску хидролойиуу и климайолоаииу, Беог̄рад.
букановић, Д., 1957: Висинске климатолошке станице у НР Србији за потребе медицинске климатологије Савейоване мейеоролойа ФНРЈ за йланинску мейеоролойију, Сеъ.
 ороиу и кимашологиуу, веоград
Ђукановић, Д., 1959: Прилог микроклиматском испитивању лечилишта Игало, Весник хидрожейеролоике службе ФНРЈ, бр. 34
Ђукановић, Д., 1959: Дневни медицински метеорограм у августу 1959. године у Соко Бави, Инсиииииичу \bar{u} за медицинску хидролойију и климайиолог̄ију, Беог̄рад.
Подвинец, С., Ђукановић, Д., 1959: Субглотични ларингит као алергична манифестација овисна о метеоролонким факторима, Зборник радова LXIV Инсйиийуй за медицинска исйражнивања Срйске академиј аука, кь.
Букановић, д., 1959: Охлађивање по фригориграфу Pfeiderera, Весник хидромейеоролоике службе ФНРЈ бр. 12.
Букановић, Д., 1964: Моћ охлађивања сувих и влажних површина у Београду, Докӣорска дисерийација Природномайемайички факулиией, Беог̄рад
Градски завод за хийну медицинску йожоћ у Беог̄раду и Одељење йримењене меиеоролойије РХМЗ СР србије, 1988: Утицај времена на здравље људи, Бео̄̄рад
Kendrew, W.G., 1949: Climatology treated mainly in relation to distribution in tir. 481485 . Clarendon Press Oxford КљаићВојиновић, P., 1981: Утицај времена на појаву инфаркта миокарда, Хидромейеоролог̆ија, Беойрад, мај 1981.
Leistner, W., 1956: Die Strahlung im Nordseegebiet, Anwendung und Dozierung. Z. angew. Bäderu. Klimaheilkunde, stuttgart, F.K. SchlattauerVerlag 6/XI.
Mörikofer, W., 1955: Gesichtspunkte der Kurortklimatologie, Wetter und Leben

Tergard K 1961• Das kleine Klimabuch der Schweiz Schweizerische Vereinigung der Klimakuorte
Pfleiderer, H., 1931: Die Abkühlungesgrösse, ihre heilklimatische Bedentung und ihre Messmethodik, Strahlentherapie 40, 562575.
Радиновић, โ., 1981: Време и клима Југославије, Грађевинса књига 3135.

Тасић, B., 1949: Здравствени карактер климатских места, Народно здравлве 13, медицинска книг̈а Trauner, L., Goldberg, J., 1955: Vorschlag einer klimatischen, Klassifikation der Kurorte, Wetter und Leben.
Trauner, L., 1957: Основни појмови и предмет рада медицинске метеорологије, Весник ХМС ФНРЈ, бр. з Беог̈рад.
ІІІ̄ррасер, Т., Анић, В., 1963: Прилог познавању метеоропатолошког дејства ниског ваздушног притиска Срйски архив за целокуйно лекарсйиво, 78, 699704.
Vouk, V., 1952: Toplinska mjerenja, Jugoslavenska akademija znanosti i umjetnosti, Zagreb.
Вујевић, П., 1957: Комбиновани климатски елементи на тврђави Петроварадин, Зборник Майице Срйске св. 13, Нови Сад.
Вујевић, П., 1961: Прилози за биоклиматологију Копаоника, Зборник г̄еойрафско̄ инсииийиуйа "Јован Цвијић", књ. 18.
\qquad

МЕТЕОРОЛОІКИ ПОДАЦИ У ФУНКЦИЈИ ТУРИСТИЧКЕ ГЕОГРАФИЈЕ

Др Сшеван М. Сшанковић, редовни ирофесор Геог̄рафски факулӣетй Уииверзиитешиа у Беойраду Сйиденйсски йрй 3/III, 11000 Беойрад

Abstract

Analysis of elements and factors of the climate establishes the importance of the climate for the development of corresponding types of tourism in a certain center, region or country. At the same time, it is an accepted fact that the climate is a direct and indirect tourist value. It is a direct tourist value in the case of hetictherapy, water and snow sports, and an indirect one when by acting on water objects, the relief, flora and fauna, in creasing or decreasing their tourist value. Represented by concrete numerical values, obtained from daily measurements and observations made in corresponding meteorological stations, the climate influences the water temperature, appearance and growth of the vegetation, living conditions and life of man, characteristics of the snow blanket, the length of the swimming season, functioning of the traffic, when series of tourist manifestations are held, the hunting season and the closed season and a series of other events and processes im portant for tourism. Meteorological data is often part of tourist propaganda material, as it concretely, clear documented and graphically understandably, contributes to the affirmation of tourist centers and regions.

Абсйраксй

Анализом климайских елеменайиа и факйора уииярђује се значај климе за развој одйоварајућих

 сйаввена конкрейиним бројчаним йодацима, добијеним свакодневним меренима и осмайррањима сйављена конкреинним бројчаним иодацима, ообијеним свакодневним мерењима иосмайрањима

 ловос $\bar{u} а ј$ и низ другиих йојава и йроцеса од значаја за йчризам. Мейеоролошки йодаци су чесй садржај средсийива ииурисйичке йройайанде, јер конкреиинно, јасно, докуменйивано и йрафички

1. $\mathrm{y}_{\text {вод }}$

Кретања људи из места становања до ближих и даљих одредишта, стара су колико и људско друштво. Различитих су повода, трајања и последица, учесника и превозних средстава Многа од њих су историјски, географски и етнографски добро проучена. Специфичан вид миграција људи из домицила ка природно различитим, споменицима и манифестацијама различитим, споменицима и манифестацијама
другачијим центрима, регијама и земљама, другачијим центрима, регијама и земљама,
представља туризам. Како се велики број тур-

иста опредељује на кретање из рекреативних и здравствених разлога, климатски фактори и климатски елементи, за њих су од пресудног значаја. Како се ови свакодневно осматрају, мере и израчунавају на бројним метеоролошким станицама и обрађују у специјализованим хидрометеоролошким заводима, стиче се утисак да су туристичка географија, климатологија и метеорологија међусобно вишеструко повезане

Основу туризма чине човек и људско друштво јер се јављају као иницијатори и организатори туристичких кретања, односно, као рецептива у прихватању појединаца и група у туристичким местима. Туризам је добар показатељ развијености друштва, његовог материјалног и културног стања, међусуседских међудржавних и светских односа, низа појава и процеса. Навике, жеље и потребе за путовањем су све присутније. Део таквих захтева разрешава се на туристичким путовањима у места, регије и земље другачијих природних одлика, културног наслеђа и атрактивних манифестација (1).
2. Метеоролошки подаци и валоризација

Туристичка валоризација је комплексна оцена природних и антропогених вредности од значаја за туризам. Убраја се у основна питања теорије и праксе савременог туризма и уважава у свој својој сложености. Туристичка валоризација климе неког места или регије, одговоран је посао. Анализе, синтезе, уопштавања, рангирање, компарација, графичко и картографско приказивање, нумеричко вредновање појединих климатских елемената и фактора, усложљени су богатством и веродостојношћу података добијених са метеоролошких станица. Ово је од особитог значаја, јер се клима иснољава и као иницијативни и као рецептивни фвжтөр туризма. Својим негативним особинама карактеристичним за велике градове, индустријске регије и густо насеље равнице, она подстиче туристичка кретања. За разлику од тога, у местима, регијама и земљама, позитивних вредности, стимулативних и седативних својстава, клима се испољава као својеврсна, непреносива, туристичка вредност, те је као таква предмет проучавања туристичке географије (2, 61).

Савремени туризам, уз велику масовност, посебно у земљама стабилне економске и политичке стварности, високог животног стандарда и свестране туристичке понуде, има велику моћ интеграције, те задире у многе сфере живота. У многим земљама директно и индиректно се третира у законодавству, привреди, инвестиционом улагању, образовању, пропаганди, заштити животне средине, социјалном и здравственом осигурању. У том

смислу су и настојања да туристичка места посебно центри бањског и приморског тур изма, обезбеде константно праћење климат ских елемената. На бази компарације са великим градовима као исходиштима туриста, туристички центри, регије и земље, доказуіу своје предности за одмор, рекреацију, климатотерапију, летњу и зимску туристичку сезону иоте.

Када је у питању Србија, чини се да је прави значај осматрања основних климатских елемената, за потребе туризма у бањама, давно схваћен. Прве метеоролошке станице у бањама датирају из 1896. године (Врњачка Бања, Сокобања) и 1897. године (Брестовачка Бања). Од значаја је чињеница да је доктор Стеван Мачај у Брестовачкој Бањи самоиницијативно од 1872 . до 1886. године, осматрао основне климатске елементе, посебно температуру ваздуха и исту изражавао у степенима Реомира. Старији од Мачајз је доктор Владимир Јакшић, који још 1856. ради на устросству мреже метеөролонқких станица у Србији. Лекари су више и боље него други схватили да је преко потребно познавати метеоролонке податке и на основу них дефинисати
 огодй
 клйєатотераппије долази до пуног изражаја (3,
54). Вите од тога, 150 -та годишњица од 54). Вите од тога, 150 -та годишњица од почетка метеоролошких осматрања у Србији и 110 -та годишњица Метеоролошке опсерваторије у Београду, делови су корена којима се морамо враћати и од којих морамо полазити у иногим научним истраживањима и оперативним радовима на терену, како код промоције нових туристичких центара, тако у потврђивању давно афирмисаних вредности

Историјски посматрано за развој туризма веома је значајан период повратка природи. То е време француског књижевника и философа Жан Жак Русоа (1712-1778) и његове књиге Повратак природи". Схватања о корисности путовања брзо се шире. Виђени људи тога доба на путовањима откривају лепоту боравка у природи стимулативног и седативног климата Путовања у непознате, али природно привлачне крајеве, постају елемент престижа, аспитања и образовања. у томе предњач Енглези, који негују тзв. "велике туре". у важно туристичко одредиште убрајају се Алпи

климатски и физиономски, сасвим другачији од насељених равница, приморских простора и великих градова $(1,11)$.

Током времена, са порастом урбанизације и индустријализације, погоршања услова живота у градовима, који имају специфичну микроклиму, расле су жеље и потребе становника за одласком у слободну природу. Многи од њих прате метеоролошке прогнозе, упознају се са климатским карактеристикама туристичких центара, регија и земаља и по свом избору крећу ка њима на краћа и дужа путовања, на краћи или дужи боравак. Од значаја је и чињеница да лекари упућују велики број људи на опоравак, рекреацију и рехабилитацију у средишта пријатног седативног или стимулативног климата. Ефекте климатотерапије прате на основу метеоролошких података, статистике, систематских прегледа пацијената, искуства и слично.

Могућност да се некамо оде, отпутује, посве је бјелодано веома значајна. Свакодневица се може дуље подносити само ако постоје могућности да се од ње побјегне; иначе човјек губи равнотежу и постаје болестан. Слободно вријеме, а напосе путовања, треба да унесу нешто боље у животну пустош. Требало би да значе обнову - рекреацију - човјека, оздрављење и одржавање здравља тијела и духа, црпљење нове животне снаге, нови садржај живота" (4, 37). Подстичу то примамъиви позиви туристичких агенција, који су засновани на метеоролошким подацима, односно контрастима климе (Того, земља за зимске мрзовољнике; Кенија уместо зиме; Глава на сунцу, ноге у мору).

Чини се да више него друге научне радове из домена климатологије, овом приликом морамо истаћи монографско дело Павла Вујевића "О поднебљу Хвара" (5). Објављено на више од 240 страна у Гласнику Српског географског друштва, у низу елемената ни данас није достигнуто. На основу метеоролошких података за период од 60 година, обрађени су сви значајни климатски елементи и представљене битне карактеристике времена сваког годишњег доба. Методом компарације са приморским местима (Кан, Ница, Марсељ, Барселона, Напуљ, Палермо, Крф, Трст, Ријека) доказане су предности климе Хвара за

одмор и лечење. Компарација са местима из ван приобаља Средоземног мора (Биариц Париз, Беч, Београд), још јасније предочав туристичку вредност климе Хвара. Слично садржаја и јасних порука од значаја за тур истичку географију је и рад "Поређење под небља у Охридској и Битољско-прилепско котлини" (6). Упоређујући основне податке о температури ваздуха, облачности, влажности, ветровима и режиму падавина, аутор закључује да је клима у Охридској котлини под утицајем језера и близине Јадранског мора, те има одлике маритимног климата, док је Бито ъскоприлепска умерено континентална Намеће се закључак да је прва погоднија за туризам од друге.

У једној анкети спроведеној у Немачкој 1984 године, међу одговорима на питање шта очекују од годишњег одмора, истичу се они о прикупљању нове снаге, боравку у природи бити на сунцу и избећи ружно време, имати чист ваздух, бистру воду, изаћи из загађене средине, учинити нешто за здравље у смислу превентиве, бавити се спортом. Условљеност климе и туризма у наведеним случајевима долази до пуног изражаја. Метеоролошки подаци, њихова климатолошка обрада, теоријска основа и туристичка оператива, више су него комплементарни. "Често то може значити само бијег од властитог поднеб́ла: из кише на сунце, из хладноће на топлину. Мотив који је засигурно пресудан за велико туристичко кретање сјевер - југ и који понуђачи одмора увијек изнова наглашавају: Када је код нас прљава бљузгавица, а небо попут олова прекрива крајобраз као да никад више неће бити сунца, зрели сте за... Није толико важно камо пу тујете, колико да се изађе из свакодневице, да се промјени декор, искључи из свега. Што се тога тиче, циљеви путовања за већину туриста могу бити једнаки. Камо ће их пут нанјети, мање је важно. Главно је да има снијега за скијање, сунца за сунчање, мора за купање" (4, 44-47).
3. Класификација климата и Биоклиматологија

Климатски елементи који се осматрају на великом броју метеоролошких станица, од значаја су за утврђивање сличности и разлика климе. Током времена научници су изложили

неколико класификација климата, како би одговарајуће групе сврстали делови Земље приближних поднебља. Класификације климата су од великог научног и практичног значаја. За савремени туризам могуће их је више и боље користити код презентације и промоције одговарајућих центара и регија, посебно бањских, планинских и приморских, код којих клима представља наглашену туристичку вредност. Реч је и о коришћењу метеоролошких података у процесу парцијалне туристичке валоризације неке планине, бање, језера, речне долине, као и код истраживања хетерогених и хомогених туристичких регија. Постојеће класификације климата заснивају се на метеоролошким подацима (средње месечне и средње годишње температуре ваздуха, количина падавина, средње месечне температуре најтоплијег и најхладнијег месеца у години), као и другим појавама и процесима, односно, изведеним вредностима (циркулација атмсфере, физиологија биљака, процеси који дају главне црте климату, индекс суше). Већина класификација је од значаја за туристичку географију као науку и туристичка кретања као оперативу

Бројношћу метеоролошких података које уважава, посебно се одликује класификација климата Владимира Кепена, која је први пут изложена 1900 . године, а затим четири пута допуњавана. За потребе географије ову класификацију најбоље је интерпретирао Д. Дукић (7, 227). Навећу туристичку вредност ма Кепенов С климат, посебно Cs климат, познат у туристичкој пропаганди као климат маслина. "Cs - Средоземна клима је карактеристична у приморским крајевима око Средоземног мора, у југозападној Аустралији, јужној Африци (најјужнији крајеви), средњем Чилеу и у Калифорнији. Општа одлика овог климата је сезонска расподела падавина и жарка и топла лета. Према просечној температури најтоплијег месеца средоземна клима има два типа - Csa и Csb климат; први има жарка, а други топла лета. Типичан представник првог климата, Csa јесте Атина и Малага, a Csb климата Лос Анђелес... Сsa - типична етезијска клима: суво и топло лето - у јужном приморју и на острвима јужно од Виса и Хвара. Типичан представник Csa климата је Хвар ... Cfwax" подунавска варијанта умерено - топлог и влажног климата: зима је нешто сувља од лета,

које је врло топло, што је карактеристика кон тиненталног поднебља; максимум падавина се излучује у рано лето - у Војводини, северној и источној Србији. Типичан представник Cfwax климата је Београд" (7, 235-241).

Од интереса су и схватања француског географа Емануела де Мартона изложена 1925. године у делу "Физичка географија" (8) Овај аутор истиче да се познавање климата на Земљи заснива на конкретним бројчаним по дацима о средњим месечним температурама ваздуха, о висини падавина и другим климат ским елементима. Међутим, додаје "да не треба бити сувише педантан при употреби бројки; треба рачунати са чињеницом да је клима укупност појава" $(8,219)$. У разради проблематике он се опредељује за индекс суше, као функцију падавина и температуре ваздуха, а који се може израчунавати за годину као целину и сваки месец посебно

На основу индекса суше (падавине подељене са температуром ваздуха увећаном за 10 степени) поред осталих, издвојени су португалски, грчки и шпански климат, готово сви подједнако тур истички вредни. Португалски климат је осо бена варијанта медитеранског климата, са сувим летом, без обзира на близину Атлантског океана. Од јуна до августа излучи се само 4% годишње суме падавина. Средња температура ваздуха зимских месеци виша је од $10^{\circ} \mathrm{C}$. Ова климат је заступњен и у приморјима Алжира Марока, југозападне Аустралије, јужне Африке и Калифорније. Све наведене области имају развијен туризам, посебно дугу летву купалишну сезону и погодују дугом зимском рекреативном боравку на отвореном простору. Шпански климат је под јачим утицајем копна те су зимске температуре ниже него код Пор тугалског. Грчки климат је познат по летњим сушама које трају до пет месеци, када су и температуре ваздуха изнад $20^{\circ} \mathrm{C}$. Типичан је за приморски појас Егејског мора (7, 247), који је познат по већем броју добро посећених туристичких центара наглашене купалишно - рек реативне понуде, коју потенцира и топло море.

На значај метеоролошких података за туризам указују бројна истраживања деловања климатских елемената на организам човека. y тим проучавањима коришћење метеоролошких података је конкретно и вишестрано. Када је

реч о радијацији, посебно се указује на бактериолошко дејство ултраљубичастих зрака, али и на црвенило коже, пигментацију, позитивне ефекте који се постижу код лечења рахитиса сунчањем, као и на правилно дозирање сунчања здравих особа. Радијација и инсолација су главни елементи хелиотерапије, те се често потенцирају у средствима туристичке пропаганде и изучавају у туристичкој географији. Туристички центри у приобаљу Средоземног мора са 300 до 400 сати сунца током најтоплијих месеци (јули, август) и са 100 до 150 сати сунца у најхладнијим месецима (јануар, фебруар), имају посебну цену на туристичком тржишту. Више од тога мора се наглашавати значај сунчане зрачне енергије за здравље људи, јер "трајање сунчева сјаја утиче у великој мери и на душевно стање појединаца па и читавих народа", јер "сунчани дани имају сасвим другачији утицај на расположење, него облачни и тмурни дани. Када је небо ведро човек је не само веселији, него и подузетнији и вољнији за рад. Сем тога, постоје знатне разлике и у нарави говорљивих и одушевљених јужњака Шпањолаца и Италијана и одмерених и хладнокрвних Британаца и Скандинаваца. То се осећа и у књижевности, и у свирци, и народној уметности. Народне песме код северњака већином су баладе, а код јужнака романсе $(9,230)$

Највише конкретних метеоролошких података потребно је за утврђивање биоклиматских елемената. То проистиче из чињенице да се без обзира на велики климатолошки значај, температура ваздуха, у смислу деловања на људски организам мора уважавати у садејству са релативном влажношћу ваздуха, ветром и сунчевом радијацијом. "Проф. Павле Вујевић је први наш климатолог и географ који се бавио биоклиматологијом или медицинском кли матологијом, као посебном климатолошком дисциплином која изучава утицај поднебља на организам човека и уопште на живи свет" (10 , 16).

Правилно схвативши да клима делује на човека и природу својом целовитошћу, а не појединим деловима, то јасно доказује у раду "Прилози за биоклиматологију Копаоника" (11). Од интереса је и рад "Комбиновани кли-

иатски елементи на тврђави Петроварадина" (12), са којим јединствену научну и апликативну целину чини чланак "Моћ хлађења и моћ сушења на тврђави Петроварадина" (13) Поузданост истраживања и реалност закључака почива на вишегодишњим метеоолошким осматрањима, која су утолико кориснија уколико су низови дужи, мерења прецизнија, подаци бројнији и разноврснији. Уопштавања нису пожељна, јер су климатски лементи веома променљиви често и на малом растојању. Како је за одређивање биоклиматских елемената потребан већи број података са станица вишег реда, чини се неопходним њихово оснивање и оспособљавање за непрекидан рад. Када је у питању наша земља, мора се констатовати, да за детаљнија и конкретнија туристичко - географска истраживања климата, често недостају одговарајући подаци. Мрежа метеоролошких станица је ретка, периоди осматрања често кратки или са прекидима, непогодни за комтарацију и самим тим непоуздани. Друштвена заједница и одговарајуће службе морају уложити веће напоре и материјална средства у метеоролошку службу, јер је њен рад много кориснији и значајнији него што се то на први поглед многима чини.

Висок научни ниво радова П. Вујевића почива на коришћењу бројних и разноврсних метеоролошких података. Без обзира што је живео у време када осматрања нису била аутоматизована, стрпљивим радом је доказао да без метеоролошких мерења, осматрања и израчунавања података, нема правих климатолошких студија. Са нашег аспекта закључујемо да без правих метеоролошких (и хидролошких) података који често чине пва дела једне целине, нема квалитетних туристичко - географских истраживања, праве валоризације туристичких потенцијала, реалне пропаганде, као ни правих здравствено - рекреативних ефеката боравка на отвореном простору, посебно у бањама, на планинама и центрима приморског, језерског и речног туризма, којима вода и клима опредељују место на туристичком тржишту, условљавају дужину сезоне, обим промета, економске и ванекономске ефекте.

4. Литература

Станковић М. С. (1994): Туристичка географија. Универзитет у Београду, Географски факултет, "А.М.И.Р. ", Београд.

Станковић М. С. (1995): Клима као туристичка вредност. Гласник Српског географског друштва, свеска LXXV, број 2, Београд.

Смаилагић Ј. и Николић Ј. (1997): Климатске карактеристике Брестовачке Бање. Зборник радова са научног скупа "Природа Брестовачке Бање", Туристичка организација општине Бор, Eop.

Крипендорф Ј. (1986): Путујуће човјечанство - за ново поимање слободног времена и путовања Завод за истраживање туризма, Загреб.

Вујевић П. (1927-1932): О поднебљу Хвара, Гласник Српског географског друштва, свеска XIII XVIII, Београд.

Вујевић П. (1933): Поређење поднебља у Охридској и Битољско - прилепској котлини. Гласник Српског географског друштва, свеска XIX, Београд.

Дукић Д. (1981): Климатологија. "Научна квига", Београд.
Martone de E. (1925): Traite de Geographie physique I, Paris.
Вујевић П. (1927): Инсолација на средњем и јужном јадранском приморуу. Гласник Српског географског друштта, свеска XIII, Београд.

Ракићевић Т. (1998): Академик Павле Вујевић - утемељивач савремене климатологије у Србији. Гласник Српског географског друштва, свеска LXXVIII, број 2, Београд.

Вујевић П. (1962): Прилози за биоклиматологију Копаоника. Зборник радова Географског института "Јован Цвијић" САНУ, књига 18, Београд

Вујевић П. (1957): Комбиновани климатски елементи на тврђави Петроварадина. Зборник Матице српске, серија за природне науке , свеска 13 , Нови Сад.

Вујевић П. (1958): Моћ хлађења и моћ сушења на тврђави Петроварадина. Зборник Матице српске, серија за природне науке, свеска 14 , Нови Сад.

ТОПЛОТНИ КОНФОР СТАНА КАО УСЛОВ

 ДОБРОГ ЗДРАВЉАМг sci med Данило др Крсииић, сйец.хид., мајор Горан др Голубовић, на сйеч. Војномедицинска академија, ЗПМ, инсиииӣуй за хиг̄ијену Црнойравска 17, 11000 Беогррад,
Мт sci тед Драгица Крсӣић, сйеч. микробиологије
Инсйийчуй за заийий̄̆у здравља, Николе Пашина 1, 34000 Крайујевач

Abstract
During the period of 10 days, in the winter and summer period,three times a day(at 6.30 a.m., 2.00 p.m. and 9.30 p.m.), we examined effects on thermal comfort of 295 male participants(age range: 20 to 55 years). In this research, it was found that air temperature variations, unequal inroom air temperature, increased percent of tion chambers during the winter period Result of this winter microclimate influence is appearance of respirathe diseases at 3.6% of experiment participants what did not happen during the summer period when the mi croclimate factors were more approachable

 смо дејсииво услова ииойлойног̄ конфора на 295 исииииианика муиког йола (сииаросне доби од 20

 йериоду када је йойлойни конфор био умеренији.

1. Увод

Климатски елементи су у филогенези, тојест настајању и развијању људске врсте усмеравали развиће његових система на којима почива живот и његово одржавање. Један од тих система је и терморегулациони систем човека, који има задатак да у различитим температурним приликама током времена, одржи телесну температуру на ниво од око $37^{\circ} \mathrm{C}$ што претставља температурни оптимум људске врсте. Некада је утицај климатских елемената на људски организам био драстичнији са великим, пре свега тем пературним осцилацијама у времену. Данас је тај утицај суптилнији, собзиром на начин облачења, исхране и пре свега становања, али је чињеница да климатски елементи још увек имају велики утицај на терморегулациони механизам човека и то пре свега на просторима где су промене микро и мезоклиматских еле-

мената условљене израженијим утицајем глобалних климатских фактора. Свестан тога, човек настоји да себи обезбеди такве микроклиматске услове у радном и стамбеном амбијенту које називамо оптималним топлотним комфором. Обезбеђивањем услова за одржавање топлотне равнотеже људског организма остварује се топлотни конфор углавном на два начина и то: одевањем у спољњој средини и стварањем повољних микроклиматских услова у радном и стамбеном амбијенту. Како се човек најдуже задржава у стамбеном простору то је и утицај топлотног конфора овог амбијента најизраженији. У условима оптималног топлотног конфора, механизми за стварање топлотне енергије и одавање исте у организму човека, стоје у равнотежи одржавајући телесну топлоту на $37^{\circ} \mathrm{C}$ што сматрамо нормалном телесном топлотом односно тем-

пературом људског тела. Уравнотежена теле сна топлота је услов за нормално одвијање многих физичко хемијских, биохемијских и биофизиолошких процеса у организму (Bell, 1953). У условима постојања топлотног дисконфора долази до стресног стања у терморегулационом механизму и реакције која је зависна од нивоа температуре околине, тј. од температурне разлике између температуре тела и температуре околних предмета односно амбијента. Резултат оваквог стања, нарочито ако оно траје дуже, је пре свега измењени субјективни осећај, смањење радне способности па све до настанка стања прехладе или прегрејаности организма односно нарушавања здравља.

Праћењем и проучавањем здравља код људи видели смо да посебно место заузима топлотни конфор организма, на кога пре свега утичу; температура, релативна влажност и брзина струјања ваздуха, температура стамбеног простора односно температура зидова и околних предмета као и температура загревних уређаја (Žarković, 1977.).

2. Циљ рада

Имајући у виду огроман утицај стамбеног то јест смештајног амбијента на здравље и радну способност људства, приступило се дугорочном истраживању овог фактора у условима сталног смештаја (становања) и привременог смештаја на терену. У овом раду дати су прелиминарни резултати истраживања утицаја топлотног конфора стамбеног простора, код привременог смештаја у зимском и летњем периоду. Притом нас је посебно интересовао утицај истог на појаву нарушавања здравља то јест обољевања.

3. Методологија

Основни методолошки приступ у раду који смо користили је метричко - аналитичка опсервација смештајног простора, испитаника и добијених резултата. Наиме истраживање је спровођено тако што је претходно одабрана циљна група испитаника који су привремено користили стамбене објекте монтажног типа. Група се састојала од 295 одраслих, здравих особа мушког пола, старосне доби од $20-55$ година. Истраживање је спровођено у 2 наврата по 10 дана и то у зимском и летњем

нериоду. Пре експеримента као и после истог сви испитаници су били под здравственом контролом а непосредно пред почетак експеримента подвргавани су санитетском прегледу, као и у току и након тога. Микроклиматска мерења вршена су у скаладу са хигијенско техничким принципима за стамбени амбијент. Том приликом коришћени су; дигитални термометар (ДТ ИМ) као и дигитални хигротермометар за теренски рад (ДХТ). За мерење температуре околних предмета, зидова и пода коришћен је контактни термометар (ДТ-Кт). Након прикупљанја података у виду нумеричких вредности, извршена је статистичка обрада, груписање атрибутивних обележја и дат табеларни приказ истих.

4. Резултати истраживања

Објекат у коме је људство било смештено, изграђен је наменски за привремени боравак, монтажног је типа ,савремене градње где су испоштовани хигијенскотехнички и грађевински захтеви који одређују елементе топлотног конфора. Иако смо прикупљали и друге параметре нас је посебно интересовала температура ваздуха и околних предмета. Ради сагледавања утицаја мезоклиматских односно глобалних метеролошких елемената на микроклимат мерени су: температура спољњег ваздуха, релативна влажност ваздуха и струјање ваздуха. Мерења су вршена у 6.30 ујутру, у 14.00 у подне и у 21.30 час а из разлога сагледавања температурних колебања током дана. Ради уочавања температурних колебања на годишњем нивоу мерења су вршена у зимском и летњем периоду.

У табели 1 дат је однос температуре спољњег ваздуха и температуре ваздуха у просторијама за становање у зимском периоду. У истој табели приказан је и однос температурних градијената за све просторије када је у питању ваздух у њима али и температурни однос између ваздуха и околних предмета односно зидова и пода.

Да би се могле температурне разлике у стамбеним просторијама сагледати и евентуално коментарисати њихов учинак у степену радијације телесне топлоте, у табели 2 дат је приказ средњих вредности на тачкама мерења за свако време мерења посебно,такође за зимски период.
 йорији и ван ье у зимском йериоду

1.	Време	6.30	14.00	21.30	ср. вред.
2.	TC	10.6	16.8	6.4	11.26
3.	TY	19.24	19.51	20.8	19.62
4.	T3	18.07	18.44	18.33	18.28
5	ТП	17.27	17.65	17.93	17.61
6.	$\mathrm{PBC}^{\text {\% }}$	36.62	33.71	49.87	40.06
7.	$\mathrm{PB}^{\text {¢ }}$ \% \%	46.79	43.72	59.85	50.12
8.	Ств ${ }^{\text {m/s }}$	0.3	0.2	0.4	0.3

Табела 2. Средње вредносиии хоризонйилной и верииикалног ииемйерайирног г̄радијенииа у зимском йериоду

1.	Време	6.30		14.00		21.00		ср. вред.	
2.	Место	Bp	Пр	Bp	Пр	Bp	Пр	Bp	$\Pi \mathrm{p}$
3.	Вис 1m	18.90	19.14	19.08	19.34	19.86	19.80	19.27	19.42
4.	Ви 2m	19.68	19.57	19.88	19.75	20.35	20.30	19.97	19.87
5.	$\mathrm{Xr}{ }^{\circ} \mathrm{C} / \mathrm{m}$	0.13		0.14		0.10		0.1	
6.	$\mathrm{B} \Gamma^{\circ} \mathrm{C} / \mathrm{m}$	0.6		1.22		1.0		1.1	

Температура спољњег и унутрашњег ваздуха летњем периоду дати су у табели 3 која следи: тј. ваздуха у стамбеним просторијама као и вредности релативне влажности ваздуха у

1.	Време		6.30	14.00	21.30	ср. вред.
2.	Tcb		10.9	24.68	17.36	17.64
3.	Тув		18.13	24.61	21.57	21.44
4.	T3	z	17.22	23.64	21.43	20.76
5.	TII		17.83	22.42	21.20	20.48
6.	$\mathrm{PBC}^{\text {c }}$		61.05	33.04	52.21	48.76
7.	Pby		52.02	34.34	49.54	45.3
8.	Ств $У$		0.3	0.1	0.2	0.2

Приказ средњих вредности температуре одређеним временским терминима дат је у таваздуха у просторији на тачкама мерења у бели 4.

1.	Време	6.30		14.00		21.30		Ср.вред.	
2.	Место	Bp	Пр	Bp	$\Pi р$	Bp	Пр	Bp	Пр
3.	T-1m	17.98	18.11	24.59	24.33	21.21	21.42	21.26	21.28
4	T-2m	18.18	18.26	24.69	24.86	21.85	21.83	21.57	21.65
5.	XTT ${ }^{\circ} \mathrm{C} / \mathrm{m}$	0.10		0.05		0.09		0.08	
6.	BTT ${ }^{\circ} \mathrm{C} / \mathrm{m}$	0.35		0.63		1.05		0.67	

Као што се из табеле може видети мерење је од зида на коме су прозори (спољњи зид) и на вршено у $630,14.00$ и 2130 часова сваки дан у току десет дана. Тачке мерења су, ради уочавања вертикалног градијента на 1м и 2 м изнад пода односно испод плафона. Ради добијања хоризонталног температурног градијента мерена је температура ваздуха на дистанци 1м

удаљености 1м од наспрамног зида (унутрашњи зид) на коме су улазна врата из ходника. У табели су дате средње вредности за свих десет стамбених просторија у којима ј вршено истраживање током три термин (6.30, 14.00 и 21.30)

5. Дискусија

Полазећи од чињенице да свако тело, флуид или течност зрачи када се нађе на температури изнад апсолутне нуле (Racker, 1975.). Људско тело са својом телесном температуром од $37^{\circ} \mathrm{C}$ је у истој позицији да путем радијације ,најчешће, одаје телесну топлоту. Поред радијације, којом се у нормалним хигијенским и стамбеним условима одаје и 45% од укупно одате телесне топлоте за одређено време, људски организам одаје топлоту и процесом кондукције и конвекције (30%) и евапорације (25%). у условима обнаженог тела са температурним градијентом унутрашњег ваздуха и зидова, који је већи од 3-5 степени целзијусових, проценат одавања телесне топлоте може достићи и 60% (Guyton, 1985.). За обезбеђење оптималног топлотног конфора у стамбеним просторијама, без обзира на спољашње температуре ваздуха, потребно је удовољити хигијенским нормама које су дате у табели 5.

Табела 5. Пожељне ииемйерайире сииамбених $\overline{\text { йросйорија које се зайревају }}$

Ред.бр.	Врсте просторија	Tемпература $\pm 3^{\circ} \mathrm{C}$
1.	Спаваонице	14-16
2.	Дневни боравак	18-20
3.	Учионице	16-18
4.	Купатило	20-22
5.	Трпезарија	16-18
6.	Фискултурна сала	12-15

Дате вредности у табели 4. као минималне обезбеђууу погодне термичке услове у просторијама уколико њихово колебање у правцу плус - минус није веће од $3^{\circ} \mathrm{C}$. Поред овога потребно је обезбедити уједначеност температуре ваздуха у просторији како у хоризонталном (хоризонтални температурни градијентХТГ) тако и у вертикалном правцу (вертикални температурни градијент - ВТГ). Хигијенска норма за ХТГ износи $1-2^{\circ} \mathrm{C} / \mathrm{m}$ а за вертикални $1,5-2,0^{\circ} \mathrm{C} /$ м и то за сваки метар висине. Однос вредности температуре ваздуха у просторији и унутрашњих зидова треба да се крене у границама од $1,5-2^{\circ} \mathrm{C}$ а највише $3-4^{\circ} \mathrm{C}$. јер вен код градијента од $5^{\circ} \mathrm{C}$ м долази до кондензације у просторији (Ramzin,1966.). Да температура спољњег ваздуха утичена температуру зидова,посебно спољњег зида који је и узрок већег ХТГ, видело се из ТГспољњег ваздуха мереног у зимском и летњем периоду и исти износи $6,38^{\circ} \mathrm{C}$, као просечна дневна температура. Температурни градијент ваздуха у истим просторијама у летњем односно зимском

ериоду је износио само $1,82^{\circ} \mathrm{C} / \mathrm{M}$. Овакав однос температура спољњег ваздуха утицао је на постојање температурне разлике унутрашнјег ваздуха зависно од годишњег доба и токо да је у зимском периоду иста износила $9.62^{\circ} \mathrm{C}$. а у летњем периоду $21.44^{\circ} \mathrm{C}$. Из овога се види да је дошло до стварања температурне разлике ваздуха у просторијама за $1.82^{\circ} \mathrm{C}$ јер је температурна разлика спољњег ваздуха у ериоду зима лето износила $6.38^{\circ} \mathrm{C}$

Лако су уочљива температурна разлика зидова у летьем $\left(20,76^{\circ} \mathrm{C}\right)$ и зимском периоду $\left(18,28^{\circ} \mathrm{C}\right.$), која износи $2.48^{\circ} \mathrm{C}$ у корист летње ериода. Код подова температура у зимско периоду је била нешто мања од температуре зидова у истом периоду и то је $17.61^{\circ} \mathrm{C}$. У летњем периоду температура пода износила је $20.48^{\circ} \mathrm{C}$. што је за $2.87^{\circ} \mathrm{C}$. више од исте у зим ском периоду.

Температурна разлика између зидова и пода у иимском периоду није била већа од $0.57^{\circ} \mathrm{C}$. да и у летњем периоду била још мања и износила $0.28^{\circ} \mathrm{C}$. Имајући у виду чињеницу да је темпера тура зидова, подова и плафона као и околних редмета веома важна за формирање субјек ивног осећаја топлотног конфора, у овом случауу била испоштована хигијенска норма од $1.5-2^{\circ} \mathrm{C}$ што се веома повољно одразило на зравствено стање испитаника. Познато је да се човек пријатније субјективно осећа, када је температура ваздуха у просторији нижа о емпературе околних предмета и зидова, ако је емпература спољњег вазлуха висока што случај у летњем периоду (Birtašević, 1984.). У ашем случају није било тако, али је тем нературна разлика од $0.82^{\circ} \mathrm{C}$ била занемар ива. При ниским температурама спољње аздуха бољи субјективни осећај станара с остиже када је температура зидова и околних иредмета иста са температуром ваздуха, што ј температурном разликом од $0,34^{\circ} \mathrm{C}$ скоро ностигнуто. Веома важан чиниоц за обезбеђење доброг топлотног конфора и приатног субјективног осећаја је уједначенос еемпературе вазпуха у просторији у табели дат је приказ средњих вредности температуре ваздуха мерених на висини од 1 м и 2 м ради до бијања ВТГ унутрашњег ваздуха, за зимски пе риод. Том приликом је утврђен просечан вер икални градијент од $1,15^{\circ} \mathrm{C} / \mathrm{m}$ док је у летњем нериоду исти био много мањи $0.67^{\circ} \mathrm{C} / \mathrm{m}$ што се види из табеле 4. На исти начин дат је и при

каз ХТГ-а у просторији за зимски $0.12{ }^{\circ} \mathrm{C} /$ м и летњи период $0.08^{\circ} \mathrm{C} / \mathrm{m}$. Приметна су дневна од $0.6^{\circ} \mathrm{C} /$ у у јутарњим часовима, преко 1.22 ${ }^{\circ} \mathrm{C} / \mathrm{m}$ у подневним сатима до $1.0^{\circ} \mathrm{C} / \mathrm{m}$ у вечерњим часовима. У летњем периоду овај градијент је био нижи и уједначенији током дана. Код влажности ваздуха изражене кроз релативну влажност ($\mathbf{P}_{\text {в }}$) уочљива је разлика у вредностима у зимском периоду код спољашњег и унутрашњег ваздуха и износила је у просеку за 10.06% више код унутрашњег ваздуха. У летњем периоду је приметна разлика вредности у просеку за око 3.46 \%и то

спољњем ваздуху

Хоризонтално струјање унутрашњег ваздуха било је израженије у зимском периоду и кре тало се од $0.2-0.4 \mathrm{~m} / \mathrm{s}$ У летњем периоду исто е приказано са вредностима од $0.1-0.3 \mathrm{~m} / \mathrm{s}$ Уочљиво је да је кретање ваздуха било директно зависно од температурних разлика споњњег и унутрашњег ваздуха. Иста је утицала на стварање температурне неуједначености ун трашњег ваздуха и појаву температурних гра ијената, од којих је посебно био изражен BT у зимском периоду.
6. Закључак

Иако се на први поглед стиче утисак да су рег- јер су њихове вредности биле уједначеније са истроване температурне разлике дискретне, када се ставе у функцију са осталим вредностима (Рв и Струјање ваздуха) види се да је посебно у зимском периоду био присутан триас микроклиматских елемената:

Температурних разлика, Релативне влажност унутрашњег ваздуха и повећано кретање ваздуха у просторији. Синергистичко дејство овог триаса микроклиматских елемената довело је до постојања дисконфора у просторијама за боравак људства у зимском периоду. Овакав дисконфор резултирао је појавом респираторних обољења типа прехлада и Ринофарингита у 3.6% испитаника што се није догодило у летњем периоду када нисмо имали здружено дејство микроклиматских елемената

много маним градијентима.
у зимском периоду било је изражено велико температурно колебање за кратко време тојест у току дана. Присутни кондукцијски ефекат овећане Релативне влажности у просторијама е допринео повећаном одвођењу телесне оплоте а уз асистенцију наглашеног струјања ваздуха потенциран је и конвекцијски начин расхлађивања организама испитаника. у оваквим микроклиматским условима са наглашеним дисконфором, посебно у периоду зимског истраживања дошло је до стресогеног десства поменутог триаса елеменатана термодегуашиони механизам испитаника од којих ј регулациони механизам испитаника од којих је 3.6% испољило реакцију у виду такозвано
стања прехладе односно нарушеног здравља.

1.	Период	Летњи	Зимски	Збир
2.	Број испитаника	127	168	295
3.	Број оболелих	3 (2.36\%)	21 (12.5\%)	24 (8\%)
4.	Респир.болести		6 (3.6\%)	6 (2\%)
	Остале болести	3 (236%)	15 (8.9\%)	18 (6\%)

7. Литература

Bell G. et Al: Textbook of physiology and biochemistry, second Edition, P. 166-180. E. S. Livingstone LTD, Edinburgh and London, 1953
Žarković G. i sar.: Udžbenik higijene za studente medicine i stomatologije, Vol 2, P 37-68, Univerzitet u Nišu, 1977.

Racker E.; Energy Transduncing Mech anisms, Baltimoire University Park Press, 1975 Ramzin S. i sar.: Priručnik za komunalnu higijenu, Vol. 1. , Medicinska knjiga, Beograd- Zagreb, 1966. Guyton C.A.: Textbook of medical physiology, Vol-Sixth Edition P. 1127-1139, Philadelphia, W.B. Saunders Birtašević B. i sar.: Priručnik iz preventivne medicine za trupne lekare, P 19-30, Vojnoizdavački zavod, Beograd, 1984.

> МЕТЕОРОЛОГИЈА У ФУНКЦИЈИПРОЈЕКТОВАЊА, ИЗГРАДЊЕ И ЕКСПЛОАТАЦИЈЕ ЗНАЧАЈНИХ ПРИВРЕДНИХ ОБЈЕКАТА

ЗНАЧАЈ МЕТЕОРОЛОІІКИХ ПОДАТАКА ЗА ИЗУЧАВАНЕ БАЊСКИХ ХИДРОГЕОТЕРМАЛНИХ СИСТЕМА

Др. Миливојевић Михаило дийл. инж. геологије

г̄еойермалну енерйију, 11000 Беойрад, Ђушина 7.
Мр. Никић Зоран дийл. инж. геолойије,
Рейублички хидромейеоролоики завод Србије, 11030 Беог̄рад, Кнеза Вииеслава 66.

Abstract
The Republic of Serbia disposes with significant natural potential refering to various types of thermo-mineral waters. The resorts with mineral springs are the most important and prosperous factors of tourism in Serbia. For the purpose of overall recognition of resort system operation, it is necessary to perform multidisciplinary investigations, with the important rolle of meteorological observations. The existing meteorological observations in the resorts in Serbia are not sufficient for the complete studies of resort systems. The adequate estimation of thermal water reserves in a resort depends on the corresponding meteorological elements that should be observed in the area of water supply to the hydrogeological system. This requires a close collaboration of a hydrogeologist who determines the macrolocation of meteorological stations and a meteorologist who decides the type of the station and the definition of the operational program

У Србији йосйоји око 300 йојаваизвора Абсриралиии, йермоминералних и минералних вода, од којих се 49 најйознаииијих корисиии више или мање ора̄анизовано за балнеолоике сврхе. Бање су
 исйраживаиии, нарочийо хидройеойермални ресурси, на којима се заснива рад и йосйојане већине од њих. У склойу исйррживања йриродних хидрог̈еойермалних сисйема, чији се резервоари йразне йреко наведених йојава, у виховим йојединим фазама йосйоји йойреба и врне се мейеоролоніка исйийивања. Мейеоролошка исиииииивања се ерие ради дефинисана микроклима̄̄ских каракииерисииика банских месйа, у фази йросйекције скривених зона исйицања хидройеойермалних флуида, у склойу изучавана нихове генезе и у фази оцене резерви $\overline{\text { ииих флуида у ниховим резервоарима. У бањама Србије мешеоролошка исиииивања за ше сврхе }}$ нису сисыемайски организована зашо шио ние иосйјала координација и сарадња измеду $\overline{\text { йо ареднсти ресурса йрийдд, норају се конйлесно валоризовайи сви нихови ресурси й и }}$ ио вредносии ресурса ирииада, морий

1. $У_{\text {вод }}$

Бање у хидрогеолошком смислу представљају локалитете на којима се врши коришћење хидрогеолошких ресурса у виду термалних термоминералних или минералних подземних вода у циљу лечења или опоравка људског организма. Те ресурсе представљају углавном природне хидрогеолошке појаве у виду извора наведених вода. Поред природних извора у хидрогеолошке ресурсе бања спадају и вештачке хидрогеолонке појаве у виду тих вода које

истичу из бушотина и бунара израђених на различите начине без обзира на време израде

Коришћење природних хидрогеолоиких појава у виду извора почело је веома давно без обзира да ли се ради о води за пиће или о термоминералној води. Наиме, сасвим је реална предпоставка да је коришћење топлоте вода термалних термоминералних извора почело од стране првих људи пре "откривања" ватре. Када је касније

почело коришћење тих вода за потребе лечења и опоравка није тачно познато. Материјални, тј археолошки докази показуіу да је коришнење термалних и термоминералних вода вршено у античкој Грчкој и Риму, тј. може се тврдити да су тада постојала лечилишта, уствари бање. Њихов значај је био велики у целом друштвеном животу, науре збо кула воде, ноготово природне термалне, тако да су бројна насеља и градови појава и ресурса. Уствари, тада суреолошких појава и ресурса. Уствари, тада су започеле и урбанизациее и разво таквих локалитета као бањских насела за нечене ошшти
 аутвчкй практвчно је шаслеђеша и без неких веливих промена се провлачи и до шашег поба. Пршмера за то има мого, како у Србиіи тоба
 Европи.

Да би се остварило свеобухватно сагледавање функционисања природног хидрогеотермалног система у којем се формирају карактерситике бањског хидрогеотермалног ресурса, чија коинциденција заједно са осталим предусловима као што су географски, саобраһајни, друштвени, економски, историјски, здравствени, урбанистички, развојни и други, омогућује стварање бање, потребно је спровести комплексна испитивања и истраживања. У склопу тих
 посматрано, њима није поклањана посебна пажња у нашим бањама, тако да су се она одвијала спонтано, највише од схватања о комплексности балнеолошких фактора оних људи који су били оснивачи наших појединих бања. У "малим", тј. мање познатим и мало развијеним бањама, таква мерења нису вршена одмах по њиховом оформљењу, већ су она успостављена касније у зависности од брзине развоја метеоролонке службе, односно зависности од густине мреже метеоролошких станица
2. Хидрогеолошки нотенцијал бања Србије

На територији Србије налази се велики број појава природних извора термалних термоминералних вода од којих се један део користи за бањске или лечилишше сврхе. У купан број тих појава је већи од 300 . Он се не може тачно одредити, јер неке појаве у току времена мењауу свој квалитет услед различитих узрока Највеһи број природних извора налази се на територији Србије ван Војводине, која је практично без тих појава. Међутим, у Војводини се налази велики број вештачких извора, тј

ушотина са термалним и термоминерални оодама. Такав распоред природних и вештачки извора термалних и термоминералних вода на територији Србије је последица веома разноликог геолонког састава, хидрогеолошких и геотермалних карактеристика терена, као веома бурне геолонке историје територије Србије, јер се на њој сучељавају све главне геотектонске јединице Балканског полуострва и јжног дела Европе: Динаридии, Панонски басе Карпато-Балканиди и Српско-македонска маса

Србији има 46 локалитета који се сматрају као бање, тј. природва лечилишта у хидрогеолошком миислу. у односу на укупан број појава ріаве у банама чше око 15% Ованав онос односно релативно мали број исуориноности мриродних појава за бањске сврхе је шрва млустрашшја балнеолошког као дела укушег

Прве бање су формиране око извора чија је температура воде блиска температури људског гела. Уједно то су биле бање и у античко време, односно наслеђене су од Римљана. Висока температура термалних вода извора у неким бањама је уједно и неповољан параметар, јер ограничава употребу воде у балнеолошке сврхе. С друге стране, температуре воде изнад темшературе људског тела су индикатори добре хидрогеотермалне потенцијалности. Око 60% од ороја свих појава извора термалних и
термоминералних вода чине појаве са температуром од $20-40{ }^{\circ} \mathrm{C}$, а око 20% са температуром од $30-40^{\circ} \mathrm{C}$.

Издашшост свих појава природних извора термалних и термоминералних вода је већа од $1200 \mathrm{l} / \mathrm{s}$. Овај параметар је индикатор повољьних хидрогеолошких карактеристика терена до дубине од око 2000 m , до које се највећи број тих вода формира као термоминералне воде, и индикатор повољних услова за изналажење нових количина, тј. повеһање садашњег хидрогеолошког нотенцијала бања

Термалне и термоминералне воде природних извора и бања су значајан и први индикатор геотермалне потенцијалности територије Србије. Ове воде изнесу из земљине коре у интервалу дубине до око 2000 m геотермалну енергију, т). топлотну енергију или топлоту у еквивалептном износу од око 300.000 тона нафте годиињье, штто износи нешто мање од 10% од количине нафте коју Србија увезе годишње. Највећи део те енергије се практично расипа у ваздух, зато што се она користи за топлификацију само на
неколико локалитета: Врањска бања, Куршу-

Извори термоминералних вода које садрже значајне, тј. експлоатабилне количине слободног гаса CO_{2}, користе се за индустријску производњу минералних "стоних" или такозваних "киселих" вода. У Србији таквих производних погона или "фабрика" киселе воде има осам. Према броју појава извора киселих вода које би се могле користити за исте сврхе, тих фабрика би могло бити дупло више.

укупна издашност свих природних и вештачких појава, тј, извора и бушотина износи више од издашношћу до $30 \mathrm{l/s}$.
3. Стање истражености хидрогеотермални ресурса и могућности отварања нових бања

Хидрогеотермална истраживања у подручјима бања и бањских комплекса у Србији су релативно новијег датума, тј. врше се последњих десетак година. Пре тога њихова истраживања су вршена у склопу ошшттих хидрогеолошких истраживања, тако да због тога резултати нису били увек на нивоу очекивања. Почетак тих истраживања на неким локалитетима датира из периода између Првог и Другог светског рата. Захваљујући развоју употребе геотермалне енергије, односно геотермалним истраживањима која су у Србији почела 1975. године, дошло је до убрзања хидрогео-термалних истраживања у многим бањама зато што су оне, као што је нанред речено, уједно и хидрогеотермалне појаве. То је било и логично, јер је у бањама најинтензивније коришћење геотермалне енергије. Међутим, због недостатка средстава најчешће, због разних других проблема и слабост, није још у потнуности истражен ныедан хидрогооермални систем ниједне бање. Садашвом кризом све

 не раснолаже Елаборанма о резервама термериане ерергје, ини сооботог гаса CO_{2} Ако би се саноне, Ако би се зако доси могло да добје

 конщескіу на мыералне ресурсе коіе ожсинотите, тј ша воду Повољно је што су на већини хидро-геотермалних локалштета и у свим банама започела истраживана у машем ити вен обиу, али су она пажалост праитич прекинута у веһини од њих.

Степен истражености хидрогеотермалних ресурса на територији Србије није равномеран. Међутим, постоје прелиминарни резултати одене њене геотермалне потенцијалности, који су веома добри. Такође постоје и изванредни резултати хидро-геотермалних истраживања у резултати хидро-геотермалних истраживања у велика налазишта термалних вода у обиму којих се могу практично код сваке бушотине са термалном водом формирати бањски, односно спортско-рекреациони и рехабилитациони центри.
4. Значај метеоролошких

података у склонукомплексног изучавања бањских ресурса

Метеоролошки подаци имају вишеструки значај за бање, односно бањска места. На првом месту о је познавање метеоролошких карактерситик одручја бање и њене околие као део опимих лиматских карактеристика. Ти подаци су до сад бог балнеолошких изучавања, којима се бав медицински стручњаци - балнеолози били од рворазредног значаја, зато што су метеоролошка испитивања старија о хидрогеолошких, и што се у балнеологији лековито дејство нодземних вода не носматр двојено од климатског фактора, већ у садејств са њиме. За климатска места, ту. локалитете гд нема хидрогеотермалних појава, метеоролошк нодаци представьају непроцењив значај, јер су
 хидрогеотермални за бање. Њихов значау ј утолико већи, пाто је старост осматрања, одака вена. Нанм, вазуі на вен
 валист клмаких ресура, но нова
 уедначепос й арата климатснх параметара.

Други значај метереолошких података у подручју бањских локалитета је што се њиховим изучавањем побијају полаци који указуіу м утицај бањских хидрогеолошких хидрогеотермалних ресурса са површш терена на атмосферу, тј. на стварање спепифичне иикроктве око зона истипања бањсиих вода Овај аспект значаја микрометеороношки оватака је шнтересантан, не само за балнеологе и метеорологе, већ и за хиярогеологе збо сагледавања и проучавања конвективног пренос топлоте и гасова из земље у атмосферу, односно на конвективно губљење геотермалне топлоте Наиме, свугде у свету где су вршена одговарајућа испитивања, нарочито метеоролошка, доказано е да се око свих термалних извора веће издашности, без обзира да ли су око њих

формиране бање или не, створена посебна микроклима са карактеристичним и специфичним режимима појединих параметара. Због тога у многим бањама утицај микроклиме је у садејству са лековитим дејством хидрогеотермалних ресурса

Трећи значај изучавања метеоролошких карактеристика у подручіу бања и њиховој околини је у склопу оцене резерви
хидрогеотермалних флуида, који, као што је раније наведено, истичу из земљине коре у подручіу бана Овом пробдематиком у нашим условима баве се хипрогеолози а шретхоиния аспектима балнеолози
5. Досадашње стањеметеоролошких осматрања у бањама Србије

У Србији постоји 49 локалитета који су регистровани као бањска и климатска места и природна лечилишгта. Метеоролошка осматрања се не врше у њима на исти начин, нити од истог датума, како би то иначе требало да буде да би се изучили микроклиматски ресурси као
балнеолошки фактор. Такође, зб̈ог нашре изнетог значаја, ни у једној бањи Србије метеоролошки подаци шису изучени на таквом нивоу детаљности да би се могао одвојено посматрати утицај микроклиматског фактора проузрокованог истицањем хидрогеотермалних флуида и њиховим утицајем на атмосферу и тло. Мереолошка осматрања у бањама Србије су, историјски и временски посматрано, започињана углавном, тек после проглашења датог локалитета за бању, ако се ради о локалитету који је "касно" откривен, или, ако се ради о локалитетима који представљају насеља настала због лековитог фактора, у склопу метеоролошких осматрања у насельима, као један уобичајен поступак у развоју метеорологије и њене службе.

Анализом података за одговарајуће станице у данашњим бањским локалитетима на подручју Србије, види се да се метеоролошка осматрања врше у 29 бања. У неким од њих она су прекидана, дуже или краће у зависности од различитих узрока, односно нису била у континуитету. Ти подаци су приказани у табели 1. Од 49 бањских места и бања, метеоролошка осматрања се врше у само 17 од њих. За 12 бања метеоролошка осматрања се не врше у њима, већ у оближњим насељима. Тип осматрачких станица у бањама није уједначен. Присутне су све њихове врсте: падавинске станице, главне метеоролошке се уочити да је до 1995 гошине бино у фушишіи 12 падавинскит ставита, а ушола мане гларних

метеоролошких и климатолошких станиц (Табела 1).

> 6. Хидрогеолошки аспек метеоролошких осматрања у бањама Србије

За потребе изучавања порекла, интензивне експлоатације, одређивања резерви, коришћења ашттте и конзервације хидро-геотермалних комплексна, уотштено говорећи хиярогеолошт исшитивана и истраживања У ниховом склопу, у појениним фазама, а шарочито за потребе оцен резери, се јвда и нотреба за метеоролоижи резерви, се јвва и нотреба за метеоролошкии исшитивањима.

у склопу хидрогеолошких, односно хидрогеотермалних испитивања метеоролонка испитивања могу да се користе у склопу примене различитих хидрогеолошких и хидроге отермаживвања.

У фази проспекције хидрогеотермалних ресурса метеоролошка исшитивања су значајна при испитивању скривених места истицања појединих гасова из земље који се не могу детектовати на основу мириса или боје, или када су њихове концентрације у ваздуху мале. Ти подаци с важни при проспекцији ради откривања невидљивих зона истицања CO_{2}-гаса из тла подручјима појава тзв. киселих вода. Такве зоне су директап индикатор скривених делова хидрогеотермалних резервоара или покривених транзитних зона и зона истицања угљокиселих вода. У таквим подручјима и у њиховој околини мотребно је вршити детаљна метереолошка испитивања на реперним станицама и ио одређеној мрежи како би се на основу садржаја испитиваног гаса у ваздуху, његове температуре и других параметара индицирале зоне истицања у тмосферу и промене њених микроме теоролошких карактеристика. Мерења темпе ратуре ваздуха и тла, такође су важна метеоролошка испитивања која треба да се врше у бањама, јер могу у току проспекције да помогну у циљу откривања скривених места истицањ ееотермалних вода близу површи терена. На основу температуре ваздуха може се приближно одредити дубина границе са константном гддињом температуром, која је значајна за тумачење дубине до које циркулину термалн или термоминералне воде на датом локалитету

Метеоролошка испитивања падавина су значајн у склопу изучавања порекла бањских вода преко ззтопа. Наиме, природни изотопт лаки елемената су најбољи индикатор порекла

Табела 1. Периоди рада метеоролошких станица у бањама Србије (ТМС-ллавна метеоролошка таница; КС-климатолошка станица; ПС-падавинска станица; СПР-станица са прекидом у раду)

Реп. 6 р.	Назив бање	IMC	KC	пС	CIP
1.	Палић	1945-1997			
2.	Бечеј	1945-1997			
3.	Б. Русанда			1945-1997 (Мелении)	
4.	Сланкамен			$\begin{aligned} & 1945-1997 \\ & \text { (Крчедин) } \end{aligned}$	
5.	Обреновачка			1946-1997	
6.	Ковиъача	$\begin{aligned} & \hline 1951-1997 \\ & \text { (Лозница) } \end{aligned}$		1946-1997	
7.	Селтерс	-			$\begin{gathered} \text { 1953-1979 } \\ \text { (Младеновац) } \end{gathered}$
8.	Пал. Кисељак	1946-1997			
9.	Буковичка		1947-1997		
10.	Врујци			$\begin{aligned} & \hline \text { 1941-1997 } \\ & \text { (Мионица) } \end{aligned}$	
11.	Брестовачка			1955-1997	1948-1992 (Eop)
12.	Гамзиградска			1949-1997	
13.	Г. Трепча			1956-1997	
14.	Овчар			1949-1997	
15.	Матарушка				1951-1970
16.	Јошаничка		1965-1997		
17.	Врњачка		1948-1997		
18.	Соко		1941-1997		
19.	Рибарска				1956-1964
20.	Новопазарска		1951-1997		
21.	Луковска			1949-1997	
22.	Куршумлијска		$\begin{gathered} \text { 1951-1997 } \\ \text { (Курнумлија) } \end{gathered}$		
23.	Нишка	$\begin{gathered} \text { 1943-1997 } \\ \text { (Ниш) } \end{gathered}$			1955-1968
24.	Пролом			1954-1997	
25.	Звоначка			$\begin{aligned} & \text { 1949-1997 } \\ & \text { (Звонце) } \end{aligned}$	
26.	Сијаринска				1955-1993
27.	Врањска	1944-1997			1956-1964
28.	Бујановачка				1948-1992 (Бујановац)
29.	Пећка	1946-1997(Heh)			
Сума		7	6	12	8

подземних вода. У склопу изучавања њихове генезе треба врнити и испитивања узорака метеорских вода, тј. падавина. Да би се то извело потребно је у датом подручју располагати одговарауућом густином станица за прикупљање узорака. Мора се рећи да је то у нашим условима тешко увек изводљиво на потребан начин, зато ито се то може организовати само преко одговарајућих станица.

групе: испитивања у зони прихрањивања исшитивања у зони извориштта
Метеоролошка испитивања у зони прихра њивања хидрогеотермалног система су потребна ради дефинисања улазних параметара као што су: количина падавина, њихов режим, изотопски састав, хемијски састав, температура ваздуха ваздушши притисак

Највећи значај метеоролошких испитивања је у току израде симулационих хидрогеолошких модела терена поједпих хидрогеотермалних система за потебе одреявава резерви воде у њима. Ова испитивања се могу поделити у две

Од метеоролошких испитивања у зони истицања хидрогеотермалних флуида, тј. у нодручју ввздушног најважниуе је на осрову мого вредности могу се добити индикативни подап који ужазуіу ва иространтто резервора

хидрогеотермалном систему, односно на његову везу са предностављеном зоном прихрањивања Из напред изнетог значаја извођења метеоролошких испитивања, не само при бањаживањима хидрогеотермалних ресурса хањама, вен и у осталим областим координациіа активности између хиррогеолога и метеоролога при одређивану места мет оролошкпу станица у шодручіима бана ити у току истраживања нихових система. Зато што такве сарадње до сада ншје било, то ни метеоролошка испитивања у бањама Србије нису обављана на адекватан начин у Србије нису обављана на адекватан начин у такво стање, а да се оно убудуће не би понављало, најбоље би било да се локапије метеоролошких станица у бањским подручјим постављају после консултацдја са хидрогеолозима. Ако нема могућности да се поставе нове метеоролошке осматрачке станице, тада би неке постојеће требало преместити на нове локације које су прикладније у хидрогеолошком смислу

Горњи захтеви у вези метеоролошких осматрања у бањским подручјима не би имали никакво значаја, ако их не би пратила систематска осматрања нивоа и притиска бањских вода у нојединим хицрогеолошким осматрачким експлоатационим објектима, штт често није случај. Разлога за то има много. Један од њих је нерационалан однос ирема ресурсима од животног значаја, као што су геотермалне минералне воде због који су постале баве Последица тога је да се они недовољно цене њихов значај минимизира у погледу бриге за сталним изучавањем. Оии се схватају као "поклон природе" или "божији дар" неограниченог трајања о коме се не треба бринути, односно нека испитивања која су нека учињена су "довољна" и по схватањима оних који се брину о бањским ресурсима, углавном представљају финансијско оптерећење које треба по сваку цену смањити или избећи. Само у пар бања у Србији постоје стручњацихидрогеолози за бригу о ресурсима. У осталим бањама о ресурсима се брину они који у хидрогеолошком погледу имају лаичка схватања, а сва На тај начин је месвореп засновања на њима На тај начип је створеп један апсурд који предсавва само одраз једне високе на пољу газлована и ушравлана ресурсима, ои , бањске воде

7. Закључак

Метеоролошка испитивања имају значајно место у склопу комплексних истраживања и испитивања бањских ресурса, од којих су иидрогеолошка међу најобимнијим и намоноша исштивана нису срије ме
 сагледавана обичво оит мшматсих шараметара датог места Пошто ј значај метеоролошких испитивања и добијених резунтата евидентан, то је потребно да се она изводе у пуној коориинадији метеоролога хидрогеолога и балнеолога. Само на тај начин изведена метеоролошка иститивања имаће вишезначан смисао и оправдати уножена ретства у поставване модерих осматрачии станица

8. Литература

Миливојевић, М., 1994: Праћење промена климе на основу геотермалних испитивања у бушотинама. Геол нали Београл 265-284

Миливојевић, М., Миљевић, Н. \& Голобочанин, Д., 1995: Испитивања стабилних изотопа у геотермалним водама Србије (Stable Isotope Study of geothermal Waters in Serbia). Glasnik Srpskog hemijskog drustva (Bulletin Soc. Him.) Београд, 157-158.

Миливојевић, М. \& Никић, З., 1995: Значај хидрогеолошких карактеристика околине бањских места Србије за одређивање локација метеоролошких станица. У: Зборник радова, саветовање "Место и значај минералних вода у развоју бањских и климатских места Југославије", 05-07.10.1995. Врњачка Бања, Београд, 143-150.

Миливојевић, М., Никић, З. \& Мартиновић, М., 1995: Значај хидрогеолопких услова за избор локација падавинских станица у бањским местима Србије. У: Зборник радова, саветовање "Место и значај минералних вода
у развоју бањских и климатских места Југославије", 05-07. 10. 1995. Врњачка Бања, Београд, 151-159.

Фондовска документација Републичког хидрометереолошког завода Србије.

ПРАЋЕЊЕ И АНАЈИЗА ВОДНОГ РЕЖИМА УЛОГА И ЗНАЧАЈ ДОПУНСКЕ МРЕЖЕ СТАНИЦА ЗА ПРОЈЕКТОВАЊЕ У ПРИВРЕДИ И ВОДОПРИВРЕДИ

Борјанка Палмар, дийл.инж.г̈рађ., Мира Ивљанин, дийл.инж.г̄рађ. Ивича Николић, дийл.инж.г̄еол
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 6б, 11030 Беойрад, Југ̈ославија

In this paper it is given a review of methods of observation and measuring of surface and subsurface water regime elements in the Hydrological Department of the Republic Hydrometeorological Service of Serbia. An accent is put on the importance of data collected from the Network of hydrological and meteorological stations that are designed and established on additional demand of water management organizations. Also an analysis is given of the subject matter of yearbook studies with published results of observations and measurement from that type of network.

Абсииракии

У овом раду се даје йрейлед йраћена режима йовриинских и иодземних вода у Хидролоиком секйору Завода. Посебан найласак је сииавъен на значај йодаииака са дойунске мреже хидролонких и мейеоролошких сиианица које се оснивају на йраженим йрофилима односно ло кацијама ради задовоъења сйецифичних захиешева код йројек亠̄иовања у йривреди и водойривреди У раду се даје анализа садржаја годиињей елабораша са резулиашима осмашрања и мерења ирофилу наменски основане сиианице дойунске мреже.

Увод

Елементи површинских односно подземних вода који се осматрају и мере на успостављеној станици Допунске мреже одговарају елементима који се осматрају и мере на станицама Основне мреже станица површинских односно подземних вода.

Хидролошке станице Основне мреже територијално су, приближно равномерно, у оквиру Хидролошког сектора подељене на седам реоиских центара, тако да новоосноване доодговарајућим теренским јединицама.

Задужења радника хидролошких реонски центара су у вези послова на станицам површинских вода, како основне тако и допун ске мреже, садржана у следећем: пројекто вање, изградња и одржавање водомера, ук лањање ситнијих недостатака или кварова на инструменту и позивање Техничке службе за уклањање крупнијих проблема, контролно

нивелисање коте нуле водомера према државном нивелману, одабирање мерних профила и постављање сталних белега, вршење хидрометријских мерења по планираном годишшем распореду са циљем обухватања целе амплитуде нивоа, снимање попречних подужних профила тока према утврђеном плану, узимање узорака, обука и контрола ос компјутерске обраде.

Група за подземне воде врши пројек-товање и надзор при бушењу и угрални, као и пери одичну контролу пијезометара. Задужења радника хидролошких реонских центара на пословима одржавања станица су контролно нивелисање коте нуле, чишћење пијезометара по утврђеном плану, уклањање ситнијих недостатака, одржавање инструмената за контину ално праһење, обука и контрола осматрача узимање узорака и одређени послови примарне компјутерске обраде

Праћење водног режима

Водостај реке или језера је одстојање оовршине воде од утврђене нулте равни Нивои река, језера и акумулација се користе непосредно у хидролошким прогнозама и за разграничење плавних зона и посредно за пројектовање хидротехничких и других објеката. Низови водостаја се добијају успостављањем систематских осматрања на референтном водомеру - водомерној летви или лимниграфу. Када су корелисани са мереном рие као осно за црорачун низова цротица м ромене заиремине. или промене запремине.

Приликом успостављања допунске станице прегледом терена треба утврдити да ли физичке и хидрауличке карактеристике редложеног места задовољавају захтеве 3 а осматрање нивоа воде. Место које је одабрано за осматрање водостаја треба да одговара сврси због које се подаци прикупљају, треба да има лак приступ и да се може паћи осматрач чак и када се поставља лимниграф. Водомере а великим воденим површи-нама треба лоцирати тако да се не осети неповољьан утица аких ветрова. Хидраулички услови су бита чинилац у одабиру места на водотоиима посе бно где се нивои прерачунавају у протицаје

Водомерна станица се састоји од једног или више референтних водомера. Када се н ражи континуални запис водостаја постављ се само водомерна летва. Уобичајено j е међутим да се захтева континуални запис и стога се лимниграф инсталира заједно са референтним водомером

вертикални или коси водомер се састоји од етве са скалом која је означена ил ричвршћена на одговарајућу површину. Овакви водомери треба да задовоље следећ функционалне захтеве.
треба да су прецизно и јасно означени
б) треба да су трајни и лаки за одржавање
ц) треба да се једноставно постављају и користе.

Материјал од кога је водомер направљен треб да је трајан, поготово y променљивим словима мокро - суво, отпоран на хабање брисање ознака. Материјал треба да има малу илатацију у односу на промене температур или стално квашење

радуисање вертикалног водомера мора бити асно и перманентно или на глаткој површин или на мерној летви. Цифре морају бити пре-

цизно обележене тако да им је доња ивица уз црту на коју се односи. Градуисање косог водомера може се извршити на летви или дирек-
 ияра да морару поређеном нагибу восине тако да одговарају одређеном нагибу косине. на диу места вредизима нивела калибрисан тролним репером

Водомер је пожељно лоцирати на самој обали тако да се може вршити директно очитавање. Ако је то непрактично због јаких турбуленмија ефекта ветра, ии нешриступачности, мерења нивоа се могу вршити у приголним умирујућим бунарима где је сманен утицај таумира а миво арршине воде прати шромене нивоа у водотоку Да би се то обезбедило треба мравилно пројектовати и лоширати бу треба правилно пројектовати и лоџирати бу наре.

Водомер се лоцира mто је могуће ближе одабраном хидрометријском профилу без утицања на услове течења у њему. Не треба га лоцирати тамо где је вода турбулентна или постоји могућност оштећена речним наносом. Мостовски опорци и стубови су у принципу неповољније локације од степеништа с једноставним приступом. Мерна летва или плочице треба да су фиксиране на основу, али треба да се омогући и скидање летве или плочица ради одржавања или подешавања Ивице мерне летве треба да су заштићене.

Одговарајућу основу за вертикални водомер представља вертикални зид чије је лице паралелно току реке. Мерну летву или плочице треба фиксирати на зид. Водомер се може фиксирати и на шипу који је или чврсто побијен у корито или обалу или уграђен у бетон тако да нема слегања или нагињања. Скале на тако постављеној серији степенастих водомера имају адекватно преклапање. Коси водомер се поставља да прати контуру речне обале. Пожељно је да је нагиб обале такав да се поставља водомер константног нагиба, међутим некад је потребно направити коси водомер из неколико секција различитог нагиба.
Лимниграф с пловком има пловак који се креће у умирујућем бунару, челичну сајлу, контра-тег, котур и писач. Пловак региструје флуктуације и позиционира сајлу а тиме и тсаљау. Носављање водомера са нловком треба да омогући мерење водостаја при свим нивона од исод Пыоваг де изнад најишег оченвалаг нивоа. Но вак се прави од рајно треба да је непропусан и да функционише у

Функција бунара је
a) смештај инструмента и заштита система пловка
б) обезбеђење истоветности нивоа воде у бунару и реди;
щ) утишавање осцилација водене површине

Функција захвата је:
a) да омогући да вода уђе или изађе из бунара тако да се вода у бунару одржава на истом ивоу као у водотоку под свим условима течења;
б) да контролише ефекте кашшења и осциловања у бунару.

Јимниграфи на щритисак су једноставни и доста робустни. Обично се састоје од сензора за питисак, писача везаног на њега преко сис тема котурова, и траке коју окреће сат

У принципу, механички лимниграфи се могу класификовати као аналогни и дигитални Аналогни даје графички запис, а дигитални уписује кодиране вредности у меморију у задатим интервалима. Аналогни се могу даље класификовати као лимниграфи са континуалним записом и интервалним записом (дневним, недељним...).

Праћење режима подземних вода прве фреат ске издани врши се преко осматра-чких об јеката пијезометара. Опште геолошке, хидро геолошке и хидродинами-чке карактеристике одређеног подручја предодређују решења за постављање пијезометара. Након уградње пи језометра врши се праһење промена нивоа подземних вода континуално преко лимниграфа и периодично осматрањем тј. мерењем дубине (од упврьепе коте нуле на врху пијезометра) до нивоа воде неким од прибора пишттаком и пантљиком, преко дигитала аутоматским мерачима.

Нула водомера треба да се корелише са државним нивелманом преко репера станице. Тај однос треба да се контролише најмање једном годишње. Однос између нуле водомера и других делова водомера треба повремено проватаван. . го је могуне дуже треба нулу станицу не треба да је већа од +1 mm . Бенег треба да је фиксиран у бетонском \quad мо. Велег сличном узвишену шад зем эоку или слрзавана бвнену над земљом, због државним нивелманом д је корелсаи са државним нивелманом. филу се класификују као: појединачна мерења,

ограничен број мерења или повремена мерења протицаја. Такође могу да се врше симултана мерења протидаја на суседним сливовима ил
 тврдити њихову међузависност

Обилазак терена ради одабирања хидроме тријског профила се врши да би се утврдило да ли су физичке и хидрауличке карактеристике предложеног места у складу са захтевима одоварајућих техничких прописа односно стандарда. Неколико таквих прегледа под различитим условима течења је потребно да се утврди да локација није подложна изливању у широку инундацију, сталном или повременом успору, бујној вегетацији у кориту за велику воду, загушењима ледом (ледени чепови), формирању спрудова при малим во тако да може да се мери цео оисег щри свим појавама.

Посебна нажња при одабиру локације се посвећује следећем:
a) места где је вегетација јако изражена треба избегавати, ако је могуће,
б) не сме да буде вирова, стајаһе воде и других неправилности течења
ц) избегавати профиле који се леде
д) приступ месту треба да је могућ под свим условима

После прелиминарног обиласка, треба обавити топографски снимак приликом избора сталног места за погодни мерни профил. То кљзучуе ситуациони план предвиђене локације са назначеном шшрином воденог огле дала при радном водостају, означене линије дриродних обала корита за средњу воду, означене линије свих прелома нагиба обала, као и ножице и круне одбрамбених насипа.

Детаљно геодетско снимање деонице се може роширити преко плавне зоне до висине ннатно инад највене очекиване велике воде. авни снимања и сондирања треба да су дово вно близу да открију све карактеристичне реломе контуре обале. Дно корита треба ажљьиво испитати да би се утврдило да ли има рушног камења и громада посебно у близин мерног профила.
Положај сваког попречног пресека треба да ј дефинисан на обалама јасно видљивим и читљивим идентификапионим сталним белезима.
амо где у нормалном мерном профилу нем вољне дубине да се задовоље захтев мерења или где су изразито мале брзине при

ниским водостајима, протицај се може мерити на истој деоници на другом профилу који је ногоднији под тим условима, а није задовољавајући за високе водостаје.

Треба изградити погодап приступни пут до профила ради безбедног пролаза особља и возила и преноса инструмената и опреме при свим метеоролошким

хидролошким условима

Све кључне тачке профила треба да су перманентно маркиране на земљи белезима укопаним у земљу до дубине која сщречава њихово померање. Сталне тачке попречног профила треба да су тако постављене у линији попречног пресека да олакшају понављање нивелисања или сондирања код провере пресека.

Након конструкције водомерне станице треба обавити дефинитивно снимање.

Када се дубине мере сондирком или сајлом у односу на површину воде, треба вршити честа читања водостаја на референтном водомеру да Нетачности при сондирању су најчешће последица следећих појава:
a) Одстушање од вертикале приликом мерења сондирком или сајлом, посебно у дубокој води. Код сондирања сајлом долази до одтупања у односу на вертикалу због утицања речне струје на саму сајлу и на тег.
б) Проблем пробијања дна сондажним тегом или шттангло
ц) Утицај камених громада на дну може се редуковати вишеструким понав-љањем ондирања
д) При коришћењу ехо-сондера фине наслаге могу дати двоструки ехо. Горњи ехо нормално даје ефективну дубину али даља мерења су потребна да би се утврдио узрок
Код мерења крилом, крило се користи за мерење брзине речног тока. Крило се држи у жељеном положају штанглом нивелирком у било којој вертикали у плитким рекама, или спуштањем кабла или штангле с моста, сталне жичаре или укотвљеног брода код већих река.

Годишњи резултати осматрања и мерења

По истеку године, односно по завршетку прикупљања података са терена од осматрача о водостајима и нивоима подземних вода, машинске обраде лимниграфских трака, као и примарне обраде попречних профила и измер-

ених протицаја, врши се контролна анализа по билансним чворовима, а затим у елабо-ратима мубликууу годишњи резултати осматрања мерења на траженим профилима Донунск мреже.
Годишњи резултати осматрања нивоа подемних вода обухватају израду ситуацио-них ланова распореда пијезометара, прегледе олошких профила бушотина, хидрогеолошк раме нреградних места, упоре тре учесталости нивоа подземних вола преглен учесперату воде и друге аиалие, прегл до смпературе воде и реби

тандардни елаборат садржи податке о локащији и историјату хидролошке станице, мрегледну карту слива, попречни профил танице, годишње прегледе водостаја, регледне таблице измерених потока, мл мротицаја, табеле и дијаграме трајања честалости водостаја и протицаја, а за по едине кориснике и годишње прегледе тем пературе воде и псамолошке анализе. Ко израде претходних анализа и студија некад се захтева и прорачун годишњег отицаја са пришадајућег слива анализирањем времен ских серија метеоролошких података са климатолошких и падавинских станица, напр. у сливу Груже

Значај оснивања станица Допунске мреже

Пре изградње односно пројектовања великих хидротехничких објеката инвеститор је закоп ски обавезан да финансира оснивање хидролошких стани-ца ради сатледавањ режима површинских вода односно роучавања карактеристи-чних протицаја обичајено је да та истражна осматрања мерења обухвате период од неколико хидролошких година.

Након изградње каниталног хидротех-ничко објекта остаје предузећу које њиме управљ бавеза да организује праћење режим поврнинских и подземних вода ради утврђивања последица изградње односно ути цаја изграђеног објекта на околину.

у циљу проучавања и објективног прикази вања потенцијалних резерви подземних вода битних за планирање водоснабдевања градова и индустрије, степена њиховог искоришћења као и одбране од њиховог негативног утицаја антропогених утицаја у сливу - неопходно антропогених утицаја у сливу - неопходно је

редовно систематско праћење режима подземних вода. Изградњом водопривредних подэемиих вода па је анализа прикуптених шодатака у дужем периоду од нзузетног знанај за шознаване као и шрешиташе нромене режима подземних вода Између останог, тиме се ствара претпоставка за отиланине или бар убтжжане негативних востедииа такввх промена у приобаљу

Завод је у протеклом периоду у циљу решавања конкретних захтева водопри-вреде организовао и вршио осматрања и анализу режима подземних вода у приобаљу из грађених вештачких језера као и у профилима планираних објеката преко мреже наменски щије Ћелије, Бован, Паљуви Виш, Фијерза Ђердап, Завој, Семедраж и друге.

ІІто се тиче наменског оснивања метеоролошких станица за потребе водопривреде то је уобичајено код пројектовања брана јер се сматра да станице морају да буду висински просторно репрезентативне да би се прецизно дефинисао просечни дотицај у акумулационо језеро, и тиме правилно димензионисао хидро кен обиекат за захтевано изравнање. На кон анализе максималних надавина (ос методологији, димензионишу се простор за прихватање таласа и евакуациони органи.

Након изградње бране и формирања акумулационог језера, наменски основане мете оролошке станице (на којима се мере падавине и температура ваздуха) имају своју примену напр. код концептуалних мддролошких модела који континуално моделирају отицај генеришући доток од киша и топљења снега Дуготрајним осматрањима елемената по требних за прорачун потенцијалног ис паравања, може се утврдити има ли утицаја вештачког језера на микроклиму околине.

Дуги низ година Завод, оснивањем допунске мреже станица, остварује успешну сарадњу са мерења Завод је учествовао у изради хидролошких подлога за решавање проблема хоросваб-деана внше грава у Решубиия Ваљева Парабина Тущрије Крагујевца Рековца Врњачке Бане, Кралева Урошевиа Аранбеловца и других Завод ша заутев кому
 врши систематска мерења и осматраша на токоввма ол ивтереса за водоснабдеване : на Јабланици, Кладници, Турији, Kачеру, Угље

шници, Дуленки, Јасенищи, Грошници, Ка ленићкој, Гружи, Борачкој, Ресави, Миросави, Грзи, Црници, Расини, Лепенцу и Големој реци, Вејској, Студеници, Лопатници, воздачкој, Великом Рзаву, Дичини, Топлици, Дри, а за потребе Електропривреде Србије на Дрини, Лиму, Бистрици, Црном Рзаву, Малом Тегошиици, Плавскоі, Пећкој Бистрици, Ношници, Моравици, Нишави, Топло-долској, и на другим рекама.

На водотоцима пресеченим државном грани ном, у зони граничног појаса или у шеносренно близини, Завод је у сарадњи са водопривредом оснивао станице на улазним профилима за потребе газдовања водама: на свим банатским рекама пресеченим југословенско-румунском гра-ницом, на каналима на југословенскомађарској граници, а за станице на Јерми и Нишави и притокама су рађени елаборати ради анализе и утврђивања количине воде иреведене у други слив. Хидролошке станице су успостављене и на свим излазним профилима на рекама које припадају јадранском и егејском сливу. у том смислу је значајна израда годишших елабората метеролошких осматрања и хидролошких осматрања и мерења површинских и подземних вода на ливу Белог Дрима с циљем заштите приобаља од утицаја успора акумулације Фијерза

Оснивањем допунских станица задово-љавају се нарасле потребе привреде и водопривреде и безбеђууу неоиходне подлоге за пројектовање на конкретном профилу. Основна мрежа станица има за циљ да обезбеди поуздане информације о глобалном стању и променама водних ресурса. Подаци са станица основне мреже са дугим низовима осматрања чине ос-
 На основу тих основних авализа врше се специфиче апализе података са допунских саница - унутаргодишња расподела отицања,
 родужавање низова средњих месечнх пром цаја, регионалне амалзе, мултиваријацион регресионе анализе итд

Одатле следи да се прогушћавањем мреже допунским станицама, омогућава детаљ-није саледавање водних ресурса, односно просторне расподеле одређене хидролош-ке величине. Изградњом мреже допунских станица, мрежа постаје динамична - прилагодљива потребама за квалитетним подацима на недовољно изученим сливовима, посебно изворишним деловима.

ЗНАЧАЈ МЕТЕОРОЛОШКИХ ПОДАТАКА ЗА ПРОРАЧУН ОПТЕРЕТЕНА ГРАТЕВИНСКИХ КОНСТРУКЦИЈА

Проф. Гојко Ненадић, дийл.инжк. граб.
 Мр Лизвана Ђукић, дийл.инжеграђ.
Факулӣеш̄ шехничких наука, Гра弓ееииско-архииеекйонски одсек 21000 Нови Сад, Трї Досииееја Обрадовића 6

Abstract

Set of standards JUS U.C7.110-113 and JUS U.H2.110 dealing with wind actions on structures, published in 1991., are significantly different from previous Yugoslav Technical Codes. New standards are mostly based on principles adopted in EC1: Basis of design and actions on structures, Part 2-4: Action on structures - Wind Action.
Use of new standards in our civil engineering practice during last few years caused some dilemmas and doubts, not dealing with basic principles but with correctness of certain numerical values, which influence on safety and economical design of structures is of great importance. That is the reason why the meteorological data, which are crucial for defining the wind action on structures, should be updated Key words: wind action, reference wind velocity, Yugoslav Technical Codes, Eurocode 1.

Абсииракиы
Године 1991. објављена је йруйа сйандарда ЈУС У.Ц7.110-113 и ЈУС У.Х2.110 који се односе на оййерећене консиирукција ветиром и који се бийно разликују од до йида важећих Техничких йройиса. Наведени сиандарди засновани су већим делом на йринцийима садржаним у Еврокоду ЕС1: Основе йрорачуна и дејсиива на консиирукције, чији се део 2-4 односи на ойииерећење вейром (Wind action).
Након вишег̄одишњей искусӣва у њиховој йринени, сиеченой у свакодневној инженерској йракси, не доводећи у ииииатье основне йринцийе, йојавиле су се дилеме и сумье у валаносйи неких нумеричких вредносиии од којих бийно зависе сиауурносйи и економичносй консйирукиија. Из
 за йрорачун оййрећена од дејсйва снега и иеейра.
Клучие речи: дејсииво ве"ира, основне брзине, Југ̄ословенски сйандарди, Еврокод ЕС1

1. УВОД

Ступањем на снагу групе стандарда ЈУС них докумената за примену система Евроко-У.Ц7.110-113 и ЈУС У.Х2.110 приступило се на дова је у току, указала се прилика и потреба да један потнуно нов начин прорачуну оптерећења ветром грађевинских конструкција, који се битно разликује од раније примењиваног, а садржаног у Привре-меним техничким прописима за оптере-ћење зграда (ПТП-2, 1948) и Техничким прописима о дејству ветра на носене челичне конструкције (Сл.лист
СФРЈ бр. $41 / 1964$). Како су ови ЈУС-еви покаСФРЈ бр. 41/964). Како су ов ЈУС-еви пока зали извесне мањкавости, а израда Национал

се ови пропусти исправе.

Земље Европске економске заједнице раде на прицреми јединствених усклађених Европских стандарда за област грађевинског конструктерства, који су названн Еврокодови за кон-
 изједначавање усла и других грађевинских

објеката у будућој уједињеној Европи. Од иредвиђених девет посебних Еврокодова први Еврокод EC1 се односи на Основе прорачуна и дејства па кошструкивіе чији се део $2-4$ односи на оптерећеше ветром. За примену појединих Еврокодова у Југославији, на нивоу европског врестанара (ENV), неотолни су шзрана и роношене ожговараућег Нацио-нанног докумита ва првкеу (НАД) Овим документом могућиа би се тогом шрелазног шериода
 националних прописа.

С обзиром да брзина ветра представља осС оши полатак при прорачууу оттерећена ветром и ирема сада важећим ЈУС-евима и према касније важенем Еврокону EC1, а у суштини је податак који региструју и обрађуіу метеоролошкие службе, веома је битно да се стручним круговима метеоролога приближе потребе грађевинских конструктера. Стога ће се у раду указати на сличности и разлике у наведеним прописима и стандардима, као и на потребе за одређеним подацима неошходним за коректну примену важећих ЈУС-ева и будућу примену Еврокода ЕС1.

2. ПРИВРЕМЕНИ ЖЕХНИЧКИ ПРОПИ-СИ

(ITII) И ТЕХНИЧКИ ПРОПИСИ
У наведеним Техничким прописима параметри
који утичу на величину дејства ветра могу се сврстати у три категорије:

- брзина и правац ветра, као и ударно дејство ветра,
- конфигурација терена, географски положај заштићеност објекта у односу на околину и
- облик и димензије елемената, односно констукције, као и положај елемената у односу на конструкцију и на правац ветра.

Утицаји из прве и друге групе обухваћени су избором величине основног оптереһења ветром дефинисаног као притисак, а чије су вредности дате табеларно. Величина основног оптерећења ветром (q) изражена је иреко брзине ветра (ν)

$$
q=\frac{v^{2}}{16}\left[k g / \mathrm{m}^{2}\right]
$$

У датом изразу брзина ветра зависи од:

- географске зоне ветра,
- локалног положаја објекта и степена његове заштићености од дејства ветра, и
- висине објекта

Стварно оитерећење ветром дефинисано је као производ основног оптерећења ветром, кое фицијента облика и површине објекта која је

зложена дејству ветра

$$
w=q \cdot c \cdot A[k N]
$$

3. ЈУГОСЛОВЕНСКИ СТАНДАРДИ

Од 1992. год. обавезна је примена групе стан дарда ЈУС У.Ц7.110-113 и ЈУС У. Х2.110 који се односе на оптерећење ветром грађевинских конструкција и по којима се цео концеп рорачуна битно и из основе мења, а заснив се на познавању основне брзине ветра
Према стандарду ЈУС У.Ц7.110. оптере-ћење ветром је динамичко оптерећење случајно арактера (стохастичка пореме-ћајна сила) оре солим равнима у математичои ристу оптерећене ветром іе станионара роцес а јавља се као последица брзине и тур будентног карактера струіана ваздуха који се нин могу оисати ашаратом теорије веров нноће и математичке статистике.

Оптерећење ветром рачуна се као производ аеродинамичког притиска ветра (уместо до ада примењиваног основног оптерећења вет ом): коефичијента силе или притиска (до сада оефицијента облика) и површине објекта изложене деј-ству ветра.

$$
w=q_{g, T, z} \cdot C \cdot A[k N]
$$

Аеродинамички притисак ветра зависи од:
физичких особина ваздуха

- правца и брзине ветра,

топографије и храпавости терена и
особина конструкције, односно материјала и крутости конструкције
$q_{g, T, z}=\frac{\rho}{2} \cdot\left(v_{m, 50, z} \cdot k_{t} \cdot k_{T}\right)^{2} 10^{-3} \cdot S_{z}^{2} \cdot K_{z}^{2} \cdot G_{z}$
На вредност аеродинамичког притиска велики, чак доминантан утидај, има управо основна брзина ветра $v_{m, 50, z}$, која је дата картом изотаха брзине ветра и нумеричким вредностима по метеоролошким стапицама. С обзиром да овај податак представља базу, тј. фундамент за цео каснији прилично обиман поступак прорачуна, мора се обратити посебна пажња на одређивање вредности основне брзине ветра.

Према међународном договору, за основну орзину ветра узима се брзина ветра која је заележена на анемографу чији је пријемник постављен на 10 m изнад равног и отвореног

терена. Ова се брзина сматра референтном брзином. Према важеһим Југословенским стандардима основна брзина ветра $\nu_{\mathrm{m}, \mathrm{T}, 10}$ је ос редњена брзина ветра у једночасовном иитер валу, која може бити достигнута једном у одина, добијена из аиемографеких записа пр исини инструмента од 10 m изнад посматрано терена. Период времена Т је повратни перио брзине ветра, изражен у годинама, у ком рзина ветра не прелази задату вредност ν

ЕВРОКОД ЕС 1

Према Еврокоду ЕС1, Део 2-4, сила ветра рачуна се као производ референтног притиска средње брзине ветра, коефицијент изложености, динамичког коефицијента, кое фицијента силе и референтне поврнине

$$
F_{w}=q_{r e f} \cdot c_{e}(z) \cdot c_{d} \cdot c_{f} \cdot A_{r e f}[k N]
$$

Референтни притисак средње брзине ветра одређује се као производ густине ваздуха и референтне брзине ветра

$$
q_{r e f}=\frac{\rho}{2} \cdot v_{r e f}^{2}\left[k N / m^{2}\right]
$$

Референтна брзина ветра $v_{\text {ref }}$ је дефинисана као 10 минутна средња брзина ветра на висини од 10 m изнад тла на терену $І$ категорије, која има годишшу вероватноћу прекөрачења 0.02 обично се односи на средњи повратни период од 50 година), а одређује се као:

$$
v_{r e f}=c_{D I R} \cdot c_{T E M} \cdot c_{A L T} \cdot v_{r e f, 0}
$$

где су:
$c_{D R}$ - коефицијент правца, који узима у обзир вероватноћу прекорачења максималне брзине ветра за различите правце унутар подручја угла од $\pm 15^{\circ}$. Максимална вредност овог коефицијента износи 1.0 и може се као таква усвојити уколико не постоје тачнији подаци.
$c_{\text {TEM }}$ - коефицијент привремености, који узима у обзир вероватноћу прекорачења максималне брзине ветра за од једне године. Максимална вредност овог коефицијента износи 1.0 и може се као таква усвојити уколико не постоје тачнији подаци
$c_{A L T}$-коефицијент надморске висине, који узима у обзир повећање брзине ветра са повећањем надморске висине локације. Максимална вредност овог коефициенаа из уколйо мо постоје акв усвода уколико не постоје тачнији нодаци
$\nu_{\text {re } .0}$-основна вредност референтне брзине ветра.
У већини земаља чланица Европског комитета за стандардизацију (CEN) наведени коефицијенти имају вредност 1.0 (Аустрија, Данска Финска, Француска, Грчка, Ирска, Холандија, Луксембург). Када се ради о примени Еврокода ЕС1 у Југославији, који обухвата основне принципе прорачуна и дејства на копструкције, за сада не ностоје озбиљнији разлози за промену појединих одредби и неприхватање свих препоручених нумеричких вредности. Јасно је, међутим, да је за Југославију неопходно дефинисати све оне нумеричке вредности, које су у ЕС1 приказане посебно за сваку од 18 земаља чланица CEN-а у којима се Еврокодови пимењују. Ради се о основним пумерилчким вредностима рефер ентне брзине ветра, које имају локални карактер, а одређују се статистичком обрадом на цио-налних података добијених осматрањем у току дужег временског периода

Националшим документом за примену Ев рокода ЕСС у Југославији, неопходно је, према утврђеним критеријумима дефинисати основне вредности референтне брзине ветра $\nu_{\text {ré }}$

4. KOMIIAPATИBHA AHAЛИЗА ВРЕД HOCTM OCHODHMX DPGWHA BETPA IIPEMA JУС-y И ЕС

У југословенским стандардима за дејсто ветра код одређивања основне брзине ветра не фиг ришну коефицијенти правца и привремености. Коефицијент надморске висине такође не пос тоји у облику како је то дато у EC1, али пос гоји одредба по којој се за објекте на локацији чија је надморска висина већа од 1000 m усваја основна брзина ветра од најмање $35 \mathrm{~m} / \mathrm{s}$, у ко лико не постоји тачнија вредност.

У даљем излагању указаће се у чему се, само у погледу одређивања меродавне брзине ветра разликују наведени ЈУС-еви у односу на Ев рокод EC1 - део 2-4 Wind Action, као и шта би требало даље предузети у циљу њихово усклађивања.

Према ЈУС.У.Ц7.110. осредњена брзина ветр v_{m} одређује се на следећи начин

1) Прикупе се анемографски подаци на јмање 15 -годишњих снимања,
2) Одреде се, анализом екстрема, годи-шњи $\mathrm{maксимуми} \mathrm{осредњених} \mathrm{брзина} \mathrm{ветра} \mathrm{за}$ $\mathrm{t}=1 \mathrm{~h}$ и интервалом осредњавања за сваку годину снимања
3) Вредности основних брзина ветра из 2) коригууу се уколико је потребно и свод
 терену (кисну од 10 m и
ентну висину од 10 m и
Из низа вредности из 3) одреде се, при меном Фишер-Типитове дистрибучиі тина 1 , вредности $\nu_{\mathrm{m}, \mathrm{T}, 10}^{\beta}(\mathrm{m} / \mathrm{sec})$ за повратни период од T год

У наведеном ЈУС-у дате су: Привремена карта сновних брзина ветрова $\nu^{\beta} \quad(\mathrm{m} / \mathrm{sec})$ СФРЈ, као и Преглед привремених и при ближних основних брзина ветра $\vartheta^{\beta}{ }_{\text {mo,10 }}$ по по јдиним метеоролошким станицама у СФР (екстремне брзине ветра осмотрене на метеоролошким станицама Југославије у шериоду од 1951 до 1970. год.).
Према нашим истраживањима, до 1970. (т године која се наводи у ЈУС-у), у Србији су ностојале само три метеоролонке станице са о 15 годиа ау перидом осматрања дужим од 15 година, а у Црној Гори ни једна. Према оме екстремне брзине ветра осмотрене на мелеоролоким станицама Југославије у периоду од 1951. до 1970 . год. могле су се извести ррешиести теринских осматраиа
 напомену да се визуеним меренеи ји ветра никана не могу побитх оне врерости које су забележене инструменталном реги трашјом као п да добшјене вренноти дауу само корисиу иозоб за оцениване маисшал
 дручјима с тим на каснија систематска ис траживања треба да потврде шшхову псшрав ност и употребљивост. Сем тога у шисаним матервјалима који су служити ири изапи карте и табела основних брзина јасно се указује на одређене недостатке као што су:п су осматрања која се врше три пута дневно терминима 7,14 и 21 h " или " мора се имати у виду да се претежно ради о субјектив ном оцењивању брзине ветра од стране осма трача помоћу Wild-овог ветроказа и по Bofor овој скали. Време за које осматрач субје тивно врши осредњавање је 2 до 3 минута

Као карактеристичан пример пеадекватно одређене вредности основне брзине ветра може да послужи пример Новог Сада где је $\nu_{\mathrm{m}, 50,10}^{\beta}=35.0 \mathrm{~m} / \mathrm{s}$. Ова вредност дата у табели поменутог ЈУС-а истовремено представља на јвећу основну брзину ветра у Србији, не узимајући у обзир висинске станице
После обраде података, како је наведено под 3), прописује се даљи начип обраде по Фишер-

Типитовој дистрибуцији тип I да би се дошло до вредности основних брзина ветра $\beta_{\mathrm{m}, \mathrm{T}, 10}$. Овде се поставља питање зашто се прописује овај тип расподеле, уз напомену да је учињена груба грешка јер би требало да стоји тип III уместо тип I
У оквиру Еврокода ЕС1 не постоји посебна одредба о дужиии периода и начину щрикупљања основних података о брзини ветра јер се, с обзиром на светске токове у даши узимају из записа са ашемографа да се покоје ресистују водате аном 24 уских трака көје рекисрују подаке током 24 часа у дану и вања износи најмање 15 година. Како промене режима ветра зависе ол сезоских уснова јасно је да период времена треба да буде што туи да ре вром преба да буде што Такође у свету де достоји јданистве стави. величини основног сжуга података, односо колики је миншмалан број голна оатана по требан за анализу. Међутим у свету је шрев ладао став који је застушана Аустратва да се период опажања краһи од 15 година сматра кратким, шериод мерена ол 15-20 година већ ноузданим, а да периоде мерена кране ов 10 година не би требало узимати у обзир.

у свету постоји доста неуједначена пракса у односу на основне брзине ветра. Неке земље имају прописане брзине ветра за одређене области, док неке земље узимају измерене односно прорачунате брзине ветра за одређена раздобља осредњавања. Одлучујућу улогу при том сигурно имају практични разлози метода мерења, традиција и резултати истраживања. Тако се у Канади и Холандији користе средње сатне брзине ветра, у Данској и Швајцарској десет минутне, на Исланду и Норвешкој тросекундне, у Аустрији дво-секундне.

у погледу саме методологије обраде података ЕС1 не даје никакве препоруке, веһ се ту оставља слобода да се свака земља одлучи за методу која њој највише одговара сходно расположивом основном скупу и природи нодатака.

5. ПРИМЕР РЕЗУЛТАТА ПРОРАЧУНА ДЕJCHBA BLFPA MPEMA MPИBPEМЕНИМ ТЕХПИЧКИМ ПРОНИСИМАИ НОВИМ ЈУС-евима

Бавећи се проблемима везаним за дејство ветра на конструкције, стицајем околности, радећи на челичним стубовима - носачима антена на Биокову (1706 м.н.в.), Ловћену (ІІтировник - 1745 м.н.в.), Бјеласици (Зекова Глава

2111 м.н.в.) и Белом Манастиру, могли смо да зршимо упоредне анализе п дођемо до интере антних сазнања и података. Наведени сту 062 1064 год (Бен Манастир 1973 гор) в у нотреби су и данас. Значи нихов век унотреб потреби су и данас. Значи њихов век употребо до данас дужи је од 30 година

Предметна четири стуба, у погледу опгерећења ветром, рачунати су по старим, оп ажећим Техничким прописима за оптерећење ветром ПТП-2/1948 Стубови на Бчокову, Ловћену и Бјеласици рачунати су са основним оптерећењем ветром интензитета $q_{w}=1.10$ $\mathrm{N} / \mathrm{m}^{2}$ а стуб у Белом Манастиру са притиском етра $\mathrm{q}_{\mathrm{w}}=0.45 \mathrm{kN} / \mathrm{m}^{2}$ на нивоу 10.0 m изна ерена Ни код јеног од ових стубова нису анализирани динамички утицаји. Исто тако, нализирани динамички утцади. Исо нако веку трајања ових објеката било изузетно великих и јаких удара ветра. Тако је у зим 1990. године на Биокову дувао толико јак ве тар да је са стуба "одувао" параболичне ан тене, без било каквих последица по кон струкцију самог стуба. Не сме се при томе из убити из вида да су све параболичне антене тестиране и да могу да издрже ударе ветр ири брзини од $\mathrm{v}=200 \mathrm{~km} / \mathrm{h}$

Ако из вредности притиска ветра од $\mathrm{q}_{\mathrm{w}}=1.10$ $\mathrm{kN} / \mathrm{m}^{2}$, т.j. из притиска са којим су рачунати ови стубови, изведемо брзину ветра, добићемо да је тај притисак изведен из брзине средње максималног годишњег ветра од

$$
v=\sqrt{16 q}=\sqrt{16 \cdot 110}=41.95 \mathrm{~m} / \mathrm{s}
$$

или из апсолутне максималне брзине ветра од

$$
v=\sqrt{25 q}=\sqrt{25 \cdot 110}=52.44 \mathrm{~m} / \mathrm{s}
$$

Придржавајући се одредби нових ЈУС-ева за дејство ветра на стубове - носаче антена и на основу података добијених од надлежне метеролошке службе о максималном удару ветр а повратни период $\mathrm{T}=50$ година од $\mathrm{v}_{\max }=57.7$ $\mathrm{m} / \mathrm{s}(208 \mathrm{~km} / \mathrm{h})$ одређена је вредност основне брзине ветра $v_{\mathrm{m}, 50,10}=38.81 \mathrm{~m} / \mathrm{s}$. Овој брзини еетра одговара ос, осредњени аеродинамички

притисак ветра од $q_{m, 50,10}=v_{\mathrm{m}, 50,10}{ }^{2} \cdot \rho \cdot 0.5 \cdot 10$ ${ }^{3}=0.94 \mathrm{kN} / \mathrm{m}^{2}$ (табела 1). Међутим, према стандарду ЈУС У.Ц7.110 ову вредност треба увећати множећи је са динамичким коефицијентом G_{z}. Вредности динамичког коефицијента и аеродинамичког притиска ветра $\mathrm{q}_{8,50,10}$ за ова четири стуба дате су у Табели 1 , из које се такође види и однос притисака ветром по важећим стандардима у односу на старе пронис
Овде треба напоменути да је израчунати аеродинамички притисак ветра $q_{\text {e } 50,10}$ физички фиктивна величина која се не може измерити, јер је и вредност динамичког коефицијента физички немерљива величина.

Иако су стубови на Биокову, Ловћену и Бјеласици рачунати са мањим оптереће-њем од ветра од оног који прописују важећи стандарди, а поред тога су пренатрпани аитепским системима тако да се поред њих подижу нови стубови (Ловћен и Бјеласица), ови стубови и поред тога што су у протеклом периоду прошли кроз све могуће фазе оштереһења и даље гордо стоје и пркосе теорији!

После изнетог могу се поставити следећа питања:

- да ли нам динамички коефицијент служи да исправимо грешке настале употребом некоректних вредности основних брзина ветра
- да ли су конструкције које се димензионишу према одредбама из ЈУС У.Ц7.110-113 и ЈУС У.X2.110 предимензионисане (или непоуздане) и како се то одражава у економском погледу, и
- да ли и у овим изузетним - екстремним случајевима треба задржати коефицијент сигурности $v=1.5$ или ићи на нижи коефицијент сигурности, с обзиром да се вредности основних брзина ветра према стандарду ЈУС У.Ц7.110 добијају као резултат Фишер-Типитове расподеле тип I за коју се зна да даје нереално високе вредности брзине ветра за мале вероватноће, односно велике повратне периоде?

Табела 1. Односи притисака ветра на нивоу 10 m изнад терена срачунатих по новим стандардима

овJекat	СТАРИ ПРОПИСИ		НовИ ПРОПИСИ - JУС			$\mathrm{q}_{\text {c } 50.10} / \mathrm{g}$
	30HA			G_{2}	$\mathrm{q}_{\text {, } 50.10}$	
		$\mathrm{kN} / \mathrm{m}^{2}$	kN/m ${ }^{2}$		kN/ $/ \mathrm{m}^{2}$	
Биоково	III	1.10	0.94	2.37	2.23	2.03
Ловћен	III	1.10	0.96	2.47	2.37	2.15
Бјеласица	III	1.10	0.91	2.48	2.25	2.04
Б.Манастир	I	0.45	0.16	1.85	0.30	0.67

ЗАКЛУЧАК

Након вишегодишњег искуства у примени тоје реални услови за обраду прикупљених ме одредби из стандарда ЈУС У.Ц7.110-113 и ЈУС утичу на сигурност иденени недостаци који
 неусаглашености, као и евидентних разлика у одређивању меродавних нараметара (фактор експозције, динамички фактор, коефицијенти мритиска и силе) неошходно је извршити до пуну наших прописа меродавним основним подапима шрема опредбама Еврогода EC1 Такође је потребно извршити усаглашаване осталих параме-тара уз истовремено шрихва мие једносавијих у мриступачных одредб прорачуша према EC 1.

С обзиром да се број анемографа на метеоролошким станидама стално повећавао, тако да је 1994. године у Србији већ било 24 , а у риы ори 8 станица са периодом осматрања дужим од 15 година, сматрамо да сада већ пос-

ЛИTEPATУРА

1. Бојовић, А: Прорачун оййерећења вейром $\overline{\text { р абевинских консиирукиија, Грађевинска књига }}$ Београд, 1993. год
2. Еврокод ЕСІ: Основе йрорачуна и дејсӣва на консиирукције, Грађевински факултет У нивер зитета у Београду, 1997, Београд.
3. ЈУС У.Ц7.110/1991 Ойӣерећене вей-ром: Основни йринцийи и осреднени аеродинамички ириӣисак веӣра, Савезни завод за стандардизацију, Београд, 1991. год.
4. Ненадић, Г., Ђукић, Љ.: Основни йој-мови, начин осмайрања и обрада йодайака о вейру, Часопис Изградња бр. 2, Београд 1995. год., стр. 69-74
5. Ненадић, Г., Ђукић, Љ.: Осврий на основне брзине вейира из сйиндарда ЈУС У.ІІ7.110., Часопис Изградња бр. 3, Београд 1995. год., стр. 108-117
6. Ненадић, Г., Ђукић, Љ.: Комйарайивна анализа делована вейра на г̄рађеви-нске објекйие ирема сйирим йройисима и новим ЈУС-евима, Стручни семинар '95 ДГИТНС, Зборник радова, Нови Сад 1995., стр. 55-70.
7. Паквор, А., Бајић, Д., Стишанић, Б., Поповић, Б.: Еврокод 1: Основе йрора-чуна и дејсӣва на консырукције, Југословенско саветовање Еврокодови и југословенско градевинско конструк герство, Грађевински факултет Универзитета у Београду, Књига Посебна излагања ЕС1 Зеоград, 1995, стр. 19-133.
8. Паквор, А.: Еврокод 1: Основе йрора-чуна и дејсӣва на консйрукиије, Друго Југословенско саветовање Еврокодови и југословенско грађевинско конструктерство, Грађевински факултет Универзитета у Београду, Књига Генерална излагања ЕС1-EC8, Београд, 1997, стр.1 23.
9. Поје, Р.: Неки резулйа̄ии о брзини вјейра у СРХ, Грађевинар бр.37, Загреб 1985. год., стр.714.
10. Поповић, Б.: Еврокод 1, део 2-4: Дејсиива веӣира, Друго југословенско саветовање Еврокодов и југословенско грађевинско конструктерство, Грађевински факултет Универзитета у Београду, књига Посебна излагања ЕС1-ЕС4, Београд, 1997., стр. 29-46.

КАРАКТЕРИСТИКЕ КИШIE НОШЕНЕ ВЕТРОМ У БЕОГРАДУ
Смиља Ђорђевић и Гордана Јовановић Савезни хидромейеоролоики завод, Беогррад

Wind driven rain is an important parameter used for the purpose of building constructions which is calculated on the basis of meteorological elements. Hourly observational data of rainfall amount, wind speed, and direction were analyzed at the meteorological station Belgrade - Sur in, for the period 1981-1990. The paper contains the calculation of relative wind frequency of the particular direction regardless precipitation and wind frequencies with simultaneous precipitation occurrence for all months of the year, for all seasons and for the whole year. Beside, the driven rain index calculation method has also been presented as well as the graphs of general
wind roses, wind roses with precipitation and wind drien ran wind roses, wind roses with precipitation and wind driven rain roses.

Абсииракие

Киша ношена вейром је иарамеииар који се корисиии у аррађевинарсииву а рачуна на основу неииеоропоиких елеменайиа Анализиране су часовне вредносиии количине иаддавина, брзине и йравца
 релаиииних чесиинн вейра одребеног йравца без обзира на йадавине и чесйине вейра са исиовременон иојавон иадавина за све месеце у иоку године, за сезоне и за годину. Осии ииойа веиира и руже вейрра са иадавинама, као и ружка индекса киие ноиене веииром.

1. Увод

Пројектовање, извођење радова и коришћење зграда свих врста у великој мери зависе од времена и климе. За низ активности у грађевинарству неопходне су климатолошке подлоге, односно анализа разних метеоролошких елемената. Један од примера за то је анализа истовремене појаве ветра и падавина.

Због ветра киша пада под одређеним углом у односу на вертикалну површину и позната је као "ношена киша". У случајевима обилне кише која је удружена са јаким ветром, вертикални зид може апсорбовати велике количине лаге, уколико је његова површина нарављена од порозног материјала. Вишак влаге производи пад унутрашње температуре и значајно угрожава конфор у зградама
У овом раду су анализиране неке од карактеристика истовремене појаве ветра и падавина и то на основу часовних вредности правца, Београд - Сурчин, у периоду 1081 станици Прорачун је рађен према 1991 . упутствима СМО. Циљ рада је шружане

поузданих климатских информација грађевинарству, односно побољшање начина процене носледица излагања грађевинских објеката налетима кише.
2. Мапа производа кише и брзине ветра

Киша која под углом пада на вертикалну површину се не мери систематски на мете ролошким станицама. Због тога се вредност ошене кише израчунава на основу измерене оличине падавина на хоризонталној површини п брзине ветра у току падања кише. Најједоставнија информација о томе се добија из роизвода средње годишње суме падавина и средње годишње брзине ветра (претноставка је да однос брзине ветра у току кише и брзине ветра у општтем случају није велики) (Lacy, 1962). Овај производ у ($\mathrm{m}^{2} \mathrm{~s}^{-1} \operatorname{god}^{-1}$) за 34 станице (осматрања у три термина) у Србији и Црној Гори за период 1951-1970, приказан је на слиди 1 изолинијама, илуструјући меру могућих проблема ношене кише. Слика 1 указује на повећане вредности производа у планинским и приморским регионима где су високе количине падавина и/или брзине ветра.

Слика 1. Производ средње г̄одише колинине йадавина и брзине ветира у $\left(\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{god}^{-1}\right)$ за 34 сиианице у СР Југ̄ославији у йериоду 1951-70. IIрафиране йовриине су йланине са надморском висином изнад 500м.

. Анализа података за аеродром Београд - Сурчин

Статистичка обрада података у овом раду је заснована на часовним вредностима правца ветра, брзине ветра и количине падавина регстровани у дневнцда осматања элавне метеоролошке станице Београд - Сурчин, у периоду 1981-1990.
3.1 Општа ружа ветра и ружа ветра са падавинама
На почетку су одређене апсолутне честин општег правца ветра за сваки од 16 праваца п честине правца ветра са падавинама, такође по ружи од 16 правада, као и честине тишина. Ре лативне честине (у \%о) изачунап су као од-

равца и укупног броја случајева појаве ветра а сваки месец у току године, за сезоне и за рел честина односио ошште руже ветра (означене испрекиданом линијом) и руже ветра са падавинама (пуна линија), за све сезопе у току године дат ја на слици 2 . На слици 3 а) дате су годишње руже ветра, а на слици 3 б) ружа ветра са падавинама за период IV - X.

Уочава се да је у ошштем случају најзаступьенији SE правац ветра у Београду у пролеће и јесен, док су најчешћи правци ветра са падавинама W и NW. Лети и у току зиме у највећем броју случајева дува W ветар, без обзира ңа појаву падавина
3.2 Индекс ношене кише

Величина која даје меру количине падавина ношене ветром на вертикалну површину зове се "индекс ношене кише". Количина ношене кише при различитим правцима ветра је врло важна карактеристика у грађевинским пројектовању
Приор (1983) је предложио одређивање средње вредности индекса ношене кише коришћењем формуле:
$\overline{I D R}=\sum_{1}^{n} \frac{h u \cos \theta}{n}$

где је $\overline{I D R}$ - средња врсдност индекса ношене кише ($\mathrm{m}^{2} / \mathrm{s}$), h - количина падавина у једном сату у mm, u - средња брзина ветра у истом сату $\mathrm{y} \mathrm{m} / \mathrm{s}, \theta$ - угао између правца ветра у сату и нормале на зид и п - укупан број сати са падавинама.

у овом раду индекс ношене кише је рачунат као сума производа релативне
честине одговарајућег правца (f), средње брзине ветра и количине падавина у сату з сваки од 16 праваца ветра.
$I D R=\sum_{1}^{n} h u f$
У табели 2. су дате суме производа часовне количине падавина и одговарајуће брзине ветра за поједине месеце у години, затим израчунати IDR за исте месеце и IDR за права ветра који је најзаступљенији. Мерни ипстру менти за часовно мерење падавина се уклањају током зиме тако да је за Сурчин било могуће рачунати IDR само за период април - октобар. Због тога се не могу директно уноредити апроксимативне вредности индекса ношене кише са мапе рачунате за целу годину (слика 1) и израчунате на основу часовних вредности за период април - октобар, али се уочава да су вредности производа \mathbf{u} *h сличне
Месец са највећим износом индекса ношене кише је јун, када је и просечна вредност количина падавина у Београду највећа. Удео најчешћег правца IDR у односу на све правце ветра при појави кише је велики, као што с види из табеле 2.

3.3 Ружа ношене кише

На слици 3 ц) је представљена ружа индекса ношене кише за период IV - X. Очигледно је да се та ружа поклапа са ружом ветра при појави кише. Преовлађујући W правац ветра остаје исти у оба случаја. Међутим, не поклапа се увек правап максималног индекса ношене кише са преовлађујућим правцем ветра.

Лето

Слика 2. Рел. честине у \% о ветра са падавинама (пуна линија) и опште честине ветра (испрекидана линија) за четири сезоне, за Београд - Сурчин, за период 1981-1990

Табела 1. Рел. честине у \% о правца ветра са падавинама (пуна линија) и честине ошштег ветра за четири сезоне, као и честине тишина, за Београд - Сурчин, у периоду 1981-1990.

	Tisine	NNE	NE	ENE	E	ESE	SE	SSE		SSW	sw	WSW	W	WNW	NW	NW	N
Prolese	29.5	30.9	31.4	32.4	59.5	47.8	68.7	31.8	40.8	31.1	35.4	38.2	137.5	82.1	130	73.2	99.1
*Leto	28.8	30.3	34.3	24.3	29.6	18.5	17.7	23.6	38.6	34.2	39.8	44.9	203	81.1	187	70.3	93.5
*Jesen	20.6	32.2	45.5	8	60.8	4.5	54.3	40.8	27.3	22.4	25.7	31.4	157.3	83.4	122	66.2	117.2
*Zima	34.7	48.0	50.1	26.4	56.5	47.6	55.6	31.2	37.6	24.3	36.	33.4	158.	67.2	102	91.5	98.1
Prolese	34.2	28.7	35.4	32.0	54.5	85.6	105.9	58.2	72.7	58.0	58.1	44.9	78.4	62.	83.	55	50.0
Leto	64.2	29.2	41.0	31.9	44.3	44.4	62.0	40.9	54.2	55.9	69.8	61.4	112	71.4	100	56.0	54.2
Jesen	81.9	22.7	38.8	36.7	60.2	87.2	98.2	63.8	63.1	55.	55.8	47.2	74.6	58.2	65.5	48.1	41.2
Zima	60.4	26.8	46.7	38.7	47.6	73.3	91.9	58.9	68.5	55.7	57.	47.	96.	65.	71.	50.	27.6

\qquad

METEOPOЛОIIKA АКТИВНОСТ У ЕЛЕКТРОПРИВРЕДИ

Др Драг̄омир М. Ђукановиһ, дийл. мейи.
 11080 Земун, Данила Медаковиһа 4/6

Abstract

Meteorological activity in the needs of electrical industry is large and various. It is in the range of projecting, building and exploatation of the electroenergetic system production groups: water power and steam power plants, electricity supply system as well as dispatch ing service. Meteorological involvement in hydroelectric power consists of the research of the water power potential, water reserve and the rivers' flow. For the steam power plants it involves the research of the cooling system, proper coal storage space control and the conentration of polluted materials in the surrounding areas; ice formation, wind power, at mospheric electric discharges and air pollution in regards to the transmission of the electrical energy as well as planning the production and using of electrical energy dispatching service. At the present, it is necessary to reactivate the previous successful cooperation between the Republic Hydrometeorological Service of Serbia and all of the Electric Industry of Serbia, the whole of the groups in the range of research works as well as preventive measures and forecasting engagements.

Абс $\bar{u} р а к \bar{u}$

 сна. Она се одвија у домену йројекииована, изградње и ексйлоайиаиије елекииро-
 $\overline{\bar{u} р а н а ~ и ~ е л е к \overline{и р р о и ̆ р е н о с н е ~ м р е ж е, ~ с а ~ д и с и ̆ е ч е р с к о м ~ с л у ж б о м . ~ М е \overline{и е о о р о л о ш к о ~}} \text { оио }}$ анйажоване код хидроелекйирана обухвайиа водни йойенцијал, дойицај у акумулације и речни йройицај, код ииермоелекйирана расхладни сисиием, лайероване ӯ̄љьа, дисйерзију и конценйрацију зайађујућих майиерија у околини, код йреноса елекйричне енергије залеђивање, вейар, аймосферска елекиррична йражнена и заг̄ађење ваздуха, а код дисйечерске службе йрог̄нозе за йланирање йроизводње и иойрошње елекйиричне енергије. Акйиелно је реакйивиране раније усйешне сарадње Рейубличког хидромейеоролошког завода Србије и Елекйройривреде Србије у свим г亠руйацијама елекйиройривреде, у домену сйиудијскоисӣраживачког рада и у йревенииивно-йрог̄носииичком анг̄ажовању.

Увод

Електропривреда функционише као сло- Метеоролошка активност се већ више де-

жени електроенергетски систем рада по јединих производних групација - хидроелектрана (XE) и термоелектрана (TE) и као електропреносни систем (ЕПС) са диспечерском службом (ДС)

ценија одвија у оквиру решавања бројних проблема у појединим групацијама електропривреде у правцу истраживачког рада, пројектовања, изградње и експлоатације електроенергетског система (Ђукановић, 1961).

И данас, као и пре више од двадесе година, када је у Заједници југословенск електропривреде израђена Студија о организацији хидрометеоролошке активности за потребе југословенске електропривреде, уочава се њена актуелност у свим групацијама (ЗЈЕ и Институт "Јарослав черни", 1975).

Код хидроелектрана се метеоролошка ак тивност уклапа у хидролошке радове обухватајући проблем падавина (водни по тенцијал), укључујући снег и снежни пок ривач, као и испаравање са акумулационих базена, што је од значаја за прогнозирање дотицаја или речних протицаја при планирању и оперативном раду XE. Експериментално се радило и на проблем стимулације падавина на сливним површинама XE. Одржано је више стручних саветовања у оквиру ЗJE о из градњи и експлоатацији XE, на којима с излагани и реферати о XM активности.

Са изградњом великих термоелектрана познавање метеоролошких услова при пројектовању и експлоатацији је постало неопходно, посебно при разматрањима режима рада TE, расхладних система, термалног и хемијског загађења вода, лагеровања и транспорта угља и услова дисперзије, транспорта и концентрације загађујућих материја у атмосфери и око лини. И за групацију TE у ЗJE је одржано више стручних саветовања на којима су излагани реферати о метеоролошкој ак тивности.

Функционисање електропреносног система

 је у зависности од метеоролошких услова Постигнути су значајни резултати из сарадње Метеоролошке службе и елек тропривредних предузећа. Проблеми ути цаја залеђивања и дејства ветра, атмосферских електричних пражњења и атмос ферског загађења на далеководима свих напонских нивоа су решавани у компе тентним стручним круговима - у студи јским комитетима Југословенског ко митета Међународне организације великих електричних мрежа - JУHAKO CIGRÉ и на бројним стручним саветовањима у области доношења норматива и прописа за пројектовање и експлоатацију електропреносног система.

Диспечерска служба у електропривреди има сталну потребу за метеоролошким информацијама и прогнозама. Ранији период се карактерише невеликим бројем радова о XM прогнозама за поједине XE који су коришћени у диспечерским плановима. Оперативна пракса диспечерских центара ограничавала се на коришћење квалитативних краткорочних и дугорочних прогноза времена, при чему се недостатак квантитативног предвиђања компензовао искуством диспечера. Из досадашње праксе и искуства иностраних електропривреда проистиче неопходност егзактних математичких веза потрошње електричне енергије и метеоролошких услова.

Метеоролошка активност у електропривреди има као основни циљ смањивање неизвесности, које доносе метеоролошки феномени, на минимум. Ово је у вези са чињеницом да они спадају у групу геофизичких појава, које се не могу са сигурношћу предвидети и да садрже знатан проценат неизвесности. Све метеоролошке студије и информације садрже известан ризик, који треба да буде увек исказан мерном величином, која омогућује упоредљивост и употребљивост исте. Дескриптивно излагање метеоролошких феномена и елемената је веома тешко и скоро неприменљиво у електропривреди.

Метеоролошка активност у електріривреди се може поделити у пет општих група радөва:

Сйудије за йројекйоване обухватају скоро све метеоролошке елементе и појаве: код групације XE - падавине, температуру и влажност ваздуха, код ТЕ је тежиште на режиму струјања ваздуха и температури ваздуха, а код ЕПС на залеђивању надземних проводника, екстремним брзинама ветра, атмосферском електричном пражњењу и загађивању ваздуха.

Мещеоролоике информације у иоку изградње елекйроенерӣейских објекайиа

садрже прогнозу атмосферског времена по разним метеоролошким елементима, који се изражавају на квантитативан начин, при чему се напр. за краће временске периоде дају вероватноће појаве падавина, тем пературе ваздуха, ветра, магле и др.
 сйлоаиацију елекйроенерйейских објекаиа су веома разноврсне и често интердисциплинарне, као напр. студије о дугорочном прогнозирању дотицаја (протицаја) за XE, о топловодном режиму водотока, као основе за процену термалног загађивања вода код ТЕ и др.

Текуће мейеоролоике информације служе за дневно и дуже временско планирање производње и дистрибуције електричне енергије, као подлога оперативним диспечерским плановима и за друге групације електропривреде, са тежиштем на њиховом квантитативном бројном одређењу дијапазона вредности појединих метеоролошких елемената. Овде се могу поменути екстремне температуре ваздуха њихово трајање изнад или испод неке критичне вредности, за потребе грејања и хлађења у врховима потрошње електричне енергије. Инверзије температуре ваздуха са њиховим трајањем, дебљином и јачином су важне у оценама дисперзије загађујућих материја из већих ТЕ, као и прогнозе ветра малих брзина и влажности ваздуха код расхладних торњева ТЕ. Код електропреносне мреже су значајне информације о јаким ударима ветра и могућностима залеђивања, атмосферског електричног пражњења и др. Овде спадају и метеоролошке информације и прогнозе количине падавина по површини и времену, као улазни подаци за прогнозе хидрограма, уз помоћ радара. Количина облачности, у вези са смањењем природног осветљења, је од интереса за дневно диспечерско планирање и др.

Вишедневне квантитативне хидромете оролошке информације су ограничене несавршеношћу метода прогнозирања, који у себи садрже знатан степен неизвесности (Lorenz, E. N., 1963). Међутим, за неке метеоролошке елементе као што су темпера-

тура ваздуха, падавине и др., могуће су квантитативне прогнозе изражене путем вероватноће остварења, које у себи имплицитно садрже и величину ризика, на основу анализе историјског опсервационог материјала, применом математичко-статистичког апарата, на серије вредности различитих, међусобно физички везаних, променљивих (напр топљење снега - тем пература ваздуха - зрачеше, мададине - отица итд.).

Прикуйљане и обрада информација у циљу ефикаснијей коришћења изг̄рађених објекайа има за сврху да побољша и емпиријски проверава претходне студије и део текућих информација и да буде значајно при предузимању сличних радова исте врсте на другим објектима.

Треба имати у виду да су метеоролошке студије и информације, које се раде или које ће се радити, подједнако потребне свим групацијама електропривреде, чији се интереси преплићу, јер раде као један систем.

у оквиру општег излагања о мете оролошкој активности у електропривреди овде ће се само поменути производња електричне енергије у нуклеарним елекшранама, које су за сада изостављене у програмима југословенске електропривреде, и за које се, у свету, претходна метеоролошка истраживања за конкретн локацију сматрају примарним.

у многим земљама се ради на коришћењу енера̄ије ве"̄ира за производњу електричне енергије, нарочито у удаљеним крајевима где не постоји далеководна мрежа. Мете оролошко ангажовање и код нас треба да буде усмерено на реонизацију расподеле и јачине ветрова на различитим висинама, у оквиру планова за стварање мреже аероелектрана, које могу да егзистирају као локалне или електране са укључењем у електроенергетски систем.

Метеоролошка активност налази своје место и у проучавању искоришћења унчеве енерг̄ије у производњи електричне енергије, било да се користе фотоелек-

тричне ћелије или класичне топлотне машине. Претходна испитивања дужине осунчавања и интензитета сунчевог зрачења, са различитим вредностима апсорпције у атмосфери, су од примарног значаја за прорачуне степена корисности ових електрана.

Метеоролопка активност

но групацијама електропривреде Хидроелектране

Метеоролошка активност за потребе хидроелектрана обухвата израду хидрометеоролошких основа које се користе у пројектовању и експлоатацији, са статистичким карактеристикама дугих низова података, који зависе од њихове варијансе. С друге стране, репрезентативност серије са статистичко и физичко-географског аспекта подразумева што већи обим серије за шире сливно подручје, са применом бројних показатеља, добијених методама теорије вероватноће и математичке статистике (коефицијенти колерације, регресионе криве у аналитичком облику и интервалима поверења изведених статистичких оцена, Hershfield, D.M., 1965).

Како у пракси не постоје дуге непрекидне серије хидрометеоролошких података, користи се реална интерполација а у погледу поузданости објективне параметарске и непараметарске методе испитивања хомогености серија (Ђорђевић, Н., 1967).

Методи обраде и презентирања метеоролошких и хидролошких нодатака.
Начини обраде података морају бити објективни, засновани на примени поменутих метода, са интервалима поверења, без којих није могуће оценити сигурност одређивања вредности променљиве за дату вероватноћу.
Опсервациона метеоролошко-климатолошка и хидролошка документација са сливног подручја XE може бити приказана табеларно, графички и картографски за сваки од метеоролошких и хидролошких елемената, са аналитичким облицима кривих, које апроксимирају серију, са

расподелом екстрема и вероватноћом појаве.

Код неких радова, услед укључивања већег броја променљивих, користе се шеме, модели, који захтевају употребу рачунара, различитих капацитета, са одговарајућим програмима, првенствено за прогностичке једначине за релације падавине - отицај, топљење снега - отицај, итд.

У нашим крајевима веома изражен рељеф отежава одређивање ииермичког режима хидролоиког слива XE. Средња температура ваздуха треба бити обрађена за сваки месец по закону вероватноће, као и екстремне месечне и годишње вредности, табеларно и у облику закона о расподели. Такође је од значаја за XE податак о трајању температуре ваздуха изнад или испод одређене критичне вредности и о вероватноћи тог трајања, у вези са испаравањем, топљењем снежног покривача и одређивања хидрограма из односа падавине - отицај итд.

Влажнос解 ваздуха и ветиар су од значаја за испаравање акумулација, о којима се подаци добијају са пажљиво лоцираних метеоролошких станица на сливу XE, уз одговарајућу обраду података

Водни потенцијал акумулационих и проточних XE у својим специфичним видовима се односи на бруто водни потенцијал слива услед йадавина и свих вода које дошичу и речних йокова. Финални интерес хидроенергетике обухвата технички и економски искористив водни потенцијал.

Особита пажња код XE се обраћа падавинама због тешкоћа проучавања везе између количине и трајања падавина и површине сливног подручја. Екстремне количине падавина и протицаја су у домену малих вероватноћа појаве, нарочито код серија испод 50 година, али су реалне, те се преливи високих брана са великом акумулацијом димензионирају на максимално могући протицај. Метода екстремних вредности падавина (WMO, 1969) користи се као физичка метода и полазна основа

процене екстремно максималних проти- диспечерске центре (Warnich, C.C., Denton, цаја.

Иначе, за утврђивање средњих годишњих падавина, поред примене полигона на сливу, користи се метод изохијета, иако тешко применљив у нашим орографским условима (Reinbird, A.F., 1967. и др.). Препоручују се карте изохијета за топлу и хладну сезону. Од интереса за одређивање протицаја је да се вредности падавина у појединим мерним местима, за сваку кишну епизоду, екстраполирају на простор, са израдом изолинија о количинама падавина за исту вероватноћу и трајање и за исту површину. Временска и просторна расподела падавина, одређена радаром, је од значаја за хидрометеоролошке анализе и експлоатацију XE.

Водни иоойенцјал снежног йокривача је од велике важности за прогнозирање дотицаја воде, посебно код акумулационих ХЕ. У југословенској електропривреди су коришћене стандардне методе станичних и маршрутних мерења снежног покривача за одређивање резерве воде на сливним површинама XE (Ђукановић, Д., 1974). Тако су код ХЕ на Власини организована мерења водности снежног покривача са четири маршруте на надморским висинама од 1.207 м до 1.260 m , а код Црногорских XE са четири маршруте на надморским висинама од 650 м до 1.600 м, укључујући и одређена станична мерења.

У оквиру ових истраживања израђене су планиметрисане XM карте појединих сливних површина XE у ступњевима од по 100 м нв, са кумулативним вредностима изнад и испод одређене надморске висине, чиме се добија увид у физичко-географске карактеристике слива, што је од значаја за степен отицања воде у акумулационе базене и др. (Ђукановић, Д., 1968., 1970). Прорачунате вредности водног потенцијала снежног покривача достављане су редовно и оперативно енергетскодиспечерским центрима. Актуелна су радиоактивна мерења садржине воде у снежном покривачу путем бројача и телекомуникационог преноса података, са успостављене мреже мерних места, у
V.E., 1971).

Проїнозе дойицаја у акумулације и йропиичаја за йройочне $X E$, које се користе ради њиховог економичног коришћења, су различите, у зависности од карактеристика водотока, објекта и времена прогнозирања.

У студији организације XM активности за потребе југословенске електропривреде указано је на класификацију метода хидролошких прогноза, која се заснива на диференцирању метода по типу водног објекта и хидролошког процеса који се прогнозира, а према периоду за који се издаје прогноза.

За крайкорочне йрог̄нозе хидрограма поплавних таласа за период до 10 дана унапред, актуелни су методи тенденције, коресподентних елемената на бази кретања поплавних таласа, без метеоролошких елемената и хидрограма поплавних таласа на малим сливовима, која укључују хидрометријске и метеоролошке податке

Дуӣорочне йройнозе подразумевају методе које омогућују прогнозе просечних вредности одређеног трајања од 10 дана до једне године унапред. Оне се деле на три основне групе: емпиријске методе коресподентних запремина (на бази залиха воде у великој речној мрежи), водног биланса (на бази формирања процеса отицања на основу података о падавинама, залихе воде у снежном покривачу, температуре и залиха подземних вода Ђорђевић, Н., Јовановић, С., 1966) и типизације (на бази уочених тенденција развоја хидролошког процеса и могућности његовог поновног јављања у случају сличних претходних услова.

Хидрюелектране - резиме
За потребе хидроелектрана се већ више деценија у нас одвија сарадња електропривреде и Хидрометеоролошке службе.

Метеоролошко ангажовање у домену пројектовања, изградње и експлоатације акумулационих и проточних XE обухвата више области. Проучавање падавина, укључуући снег и снежни покривач, затим ккључујупире и вдажности вазпуха и ис температуре и влажности ваздуа и испаравања са акумулационих базена су у
вези са познавањем водног потенцијала на сливним површинама XE.

Студије за пројектовање служе и као подлоге за будуће добијање краткорочних и дугорочних прогноза дотицаја и протицаја код ХЕ. Оне су засноване на објективним методама теорије вероватноће и математичке статистике дугих низова података, уз употребу модела и програма на рачунарима за прогностичке једначине у релацијама падавине - отицај - протицај итд, које укључују хидрометријске и метеоролошке податке.

Очекује се даља сарадња електропривреде и Хидрометеоролошке службе у реализацији програма изградње и експлоатације хидроенергетских објеката.

Термоелектрапе

Утицаји метеоролошких и хидролошких фактора у области пројектовања и експлоатације термоенергетских постројења, могу се разматрати са аспекта потреба код израде подлога при проналажењу најпогоднијих економско-техничких решења за избор врсте и локације појединих објеката и њихове експлоатације у одржавању правилног и безбедног режима рада при различитим временским
(Ђукановић, Д., 1970, стр. 79-90).
стањима

Метеоролошко-климатолошки услови й хидролошко-термички режим, како за пројектовање, тако и за експлоатацију ТЕ, обухватају следеће утицаје.
утицај топлотних услова атмосферске средине на хлађење и режим рада TE, посебно у периоду високих спољних температура ваздуха;

утицај влажности ваздуха на функционисање појединих уређаја, који зависе од степена њеног дефицита или презасићености;

утицај учестаности и количине падавина, поред непосредног значаја, у тесној је вези са топлотних условима условима влажности ваздуха;

утицај ваздушног струјања на хлађење појединих постројења (расхладни торњеви и др.), а посебно на услове загађености ваздуха, воде и земљишта у околини TE, и

сложени утицај атмосферске средине на функционисање TE.

Проблеми који захтевају проучавање ме теоролошкоклиматолошких услова код ТЕ су бројни:

1) Одређивање макро и микро локације и проналажење оптималних решења за избор типова и врста расхладних торњева; 2) Одређивање димензије димњака и сани тарно-заштитне зоне у односу на загађењ ваздуха, воде и земљишта у околини TE; 3) Планирање радова и ремоната и превентивна заштита од атмосферских непогода;
) Проблеми површинских откопа, депонија и транспорта угља у односу на услове замрзавања земљишта, ниских температура ваздуха, димензионисање одводних канала у вези са интензитетом падавина и др.;
2) Упознавање водног биланса акумулационих водних базена и хидрометеоролошког режима и њихове експлоатације у систему расхлађивања појединих објеката у ТЕ, и
3) Упознавање сложеног утицаја промене метеоролошких услова у отклањању погонских тешкоћа и др.
Израда метеоролошко-хидролошких подлога претпоставља претходну организацију одговарајућих мерења на локацији TE, увођењем континуираних регистрација метеоролошких и хидролошких елемената, не само у приземном слоју атмосфере. Добијени фонд података се, путем примене математичко-статистичких метода обраде, непосредно укључује у систем подлога за пројектовање и експлоатацију ТЕ. Тако напр. индивидуалне и кумулативне вероватноће појаве часовних вредности тем-

пературе и влажности ваздуха, са интервалима поверења и срачунатим ризиком у појединим месецима, пружају могућност да се одреде трајања вероватних вредности изнад или испод одређене граничне вредности, изражене у часовима.

За упознавање услова околне средине код прорачуна расхладних торњева и других термоенергетских објеката може користити појам стешен-дан, који је најпре био употребљен у САД (Ri~el, H., 1949), а који, у ствари, представља температурну суму диференција између жељене (константне) температуре објекта и температуре околног ваздуха у одређеном грејном периоду. Постоје изрази за метеоролошки и климатолошки степендан као и потрошња горива на степендан. Такође и моћ охлађивања сувих и влажних површина, као функција утицаја више метеоролошких елемената, може послужити у подлогама за прорачуне расхлађивања појединих објеката код ТЕ (Ђукановић, Д., 1964).

Поред метода једноструких и вишеструких корелација и њихове графичке интерпретације, у пракси се користи и метод изоплета. Напр. из изоплета температуре влажности (мокрог термометра), као мерила максималног хлађења расхладне површине, напр. торња код ТЕ (Odenthal, A., Spangenmacher, K., 1959) и релативне влажности ваздуха, може се издвојити временска област са вишим расхладним температурама и мањом релативном влажности итд. Иначе, не препоручује се коришћење података о краткотрајним највишим и најнижим, као и средњим месечним вредностима, јер доводе до погрешних прорачуна температуре расхладне воде, што важи и за еквивалентну температуру.

Због све мање могућности проточног хлађења код ТЕ јавља се проблем скупог хлађена рециркулацијом, због чега је неопходно утврђивање биланса вода на водотоку, са сезонским или вишегодишњим изравнањем акумулација, уз одређивање основних статистичких и аутокорелационих

параметара

вишеструких серија. Пошто се код поврат ног хлађења расхладних торњева неп овратно губе значајне количине воде путем испаравања, морају се вршити одго варајући прорачуни у зони микролокације Процене и мерења концентрације загађујућих материја, које TE испуштају у атмосферу захтевају обимне мете роке радове, који, због многих ролошке радове, који, због многих ограничења научног и техничког карак тера, дају само најбољу процену израчунавања концентрације. Како концентрације зависе од дисперзионе способности атмосфере, која је, опет, функција особености режима струјања и термичке стратификације приземног слоја, то је еопходно претходно успостављање регис трације правца и брзине ветра и тем пературног профила. Због цене коштања ових мерења, промене ветра са висином се одређују•у карактеристичним временским ситуацијама

Познате шеме процене концентрациј загађења (Pasquil, F., 1961. или Berlyand, М.Е., 1972) указују на потребу познавања физичких процеса у атмосфери, од којих зависи дисперзија, и располагања фондом иетеоролошких података за дату локацију TE. Концентрације су зависне од мете ролошких услова, висине димњака и не ких техничких карактеристика система испуштања загађујућих материја. Висина димњака је такође зависна од мете оролошких услова. Како је концентрација обрнуто пропорционална квадрату висине имњака за загрејане гасове, то варирајући одређене техничке параметре (отвор димњака, излазна брзина, температура дима итд.) и компонујући их са постојећим метеоролошким параметрима, од којих зависи дисперзија, могуће је наћи опти мално решење за дате локације, а тиме постићи знатне уштеде, при чему се поштују норме о концентрацијама (Анић, Б., 1968, 1971)

Висине димњака се одређују на најчешће неповољну висину слоја мешања, а не на његову најнеповољнију висину, због економичности изградње ТЕ. Иначе, од размера синоптичких процеса у атмосфери може се очекивати транспорт преко-

граничних загађења у одређеним неповољним временским ситуацијама.

Координација рада ТЕ и површинских рудника угља може бити у знатној мери поремећена услед неповољних метеоролошких услова (падавине јачег интензитета и дужег трајања, снег, ветар и видљивост) у односу на производњу, транспорт и лагеровање угља.
Републички ХМ Завод из Београда већ низ година учествује у раду на решавању проблема пројектовања, изградње и експлоатације TE, укључујући и заштиту животне средине, у вези са чим је организован и посебан Сектор за контролу животне средине. Разрада методологије мерења, обраде и анализе метеоролошких елемената и појава, који су од значаја за прорачун транспорта и дифузије загађеног ваздуха и загађење земљишта из димњака TE, се остварује у сарадњи са одговарајућим институцијама у домену научноистраживачког рада, пројектовања и експлоатације термоенергетских објеката (Плазинић, С., 1985, стр. 190-247). Овде се могу поменути радови на праћену концентрације загађења и метеоролошких параметара код постојећих TE (Косово А, Вреоци и Обреновац), као и мерења и прикупљање података за прорачун висине димњака, при којима би концентрација загађујућих материја била испод МДК (Нови Сад, Косово Б и Ц, Колубара Б, Никола Тесла II).

Термоелектране - резиме

Метеоролошка активност за потребе TE је обимна и разноврсна, како за пројектовање, тако и за изградњу и експлоатацију термоенергетских објеката.

Метеоролошко-климатолошки услови и хидролошкотермички режим обухватају бројне утицаје на режим рада TE, посебно код расхладних система, термалног загађења вода, транспорта и лагеровања угља и дисперзије загађујућих материја у атмосфери и концентрације на земљишту у ближој и даљој околини, у циљу одређивања санитарно-заштитне зоне и др.

Досадашња сарадња Хидрометеороло-шке службе и електропривредне групације TE указује на потребу њеног даљег развоја и усавршавања. Овде се подразумева, поред студијско-пројектантског ангажовања, и рад на унапређењу прогностичких метеоролошких информација за текуће, оперативне, потребе у TE и целом електроенергетском систему.

Електропреносни систем

у програмима примењене метеорологије и климатологије налази се и метеоролошка активност у електропреносном систему. Она се, као и у осталим групацијама електропривреде, одвија у правцу пројектовања, изградње и експлоатације појединих објеката у јединственом систему.

Проблеми који су везани за метеоролошку активност у обезбеђењу сигурности рада електропреносног система су следећи залеђивање проводника надземних водова, дејство ветра на проводнике надземних водова, атмосферска електрична пражњења и испади далековода, и загађеност ваздуха и испади далековода.

Бројни стручни метеоролошки радови већ више деценија су у нас разматрали теоријске карактеристике и практичну примену у обради сваког од наведених проблема.

У мају 1972. године, у оквиру Студијског комитета надземни водови ЈУНА-KO CIGRÉ основана је радна група метеорологија. Она је дала значајан допринос сарадњи електропреносних организација и хидрометеоролошке службе у коришћењу података из постојеће мреже метеоролошких станица, са увођењем специјалних мерења и ескперименталних водова. Објављено је више стручних реферата на саветовањима електроенергетичара и ме-теоролога-климатолога о утицају залеђивања и ветра, атмосферских електричних пражњења и загађења ваздуха на далеководе. Ови радови су имали и програмски карактер у вези са израдом техничких норматива и прописа у електропреносном систему.

За проучавање штетних утицаја наведених метеоролошких фактора, метеоролошка активност обухвата истраживања путем мерења појединих метеоролошких елемената у одређеним атмосферским условима на одређеној територији. Анализе опсервационе документације са резултатима и закључцима се користе у прописима за пројектовање и каснију експлоатацију електропреносне мреже (Ђукановић, Д., 1961, 1963; Ђукановић, Д., Плазинић, С., 1969).

Залеђивање проводника надземних водова

 Проблем залеђивања у електропреносној мрежи је у њиховој штетности за конструкцију и погонску сигурност далековода, а њихово решавање се усмерава на избор најповољнијих, економски оправданих траса, исправно димензионисање у пројектовању далековода и примену одређених заштитних мера (Ђукановић, Д., 1963, 1973; Ђукановић, Д., Плазинић, С., 1966).Методи мерења залеђивања су различити и на међународном нивоу и веома се често допуњују. Визуелна и непосредна мерења залеђивања не захтевају већа материјална улагања, али постоје одређене тешкоће у њиховој примени на терену. Сличан је случај и са индиректним мерењем даљиномером. Различита региструјућа мерења, непосредно на проводницима далековода, динамо-і̀рафима, ледоітрафима и др., су тешко остварива на терену, па се у свету и код нас користе испитни уређаји за мерење залеђивања на метеоролошким станицама (Плазинић, С., 1985., стр. 1617).

Савремена истраживања залеђивања односе се на мерења додатних оптерећења на проводницима водова под напоном, са упоредним праћењем метеоролошких елемената и појава. Један од најновијих система биће приказан ове године на састанку AWAIS-a у Рејкјавику (Исланд). Оваква мерења и испитивања улазе у мрежу метеоролошких мерења залеђивања према препорукама IEC-а.
Осмайрање йојаве и мерења йарамейара залеђивана йроводника у мрежи меше-

оролоиких сиианица РХМЗ СРС, са јед ноставним испитним уређајем, уведено ј крајем шездесетих година. Специјална мерења на ГМС, каква су напр. гради јентна мерења на различитим проводницима, дала су драгоцене информације о променама параметара залеђивања у функцији врсте проводника (Поповић, Т., Миљковић, Н., 1991). Може се констатовати да се на ГМС реализовала истраживачка активност која је задово љавала потребе електропреноса.

У оквиру рада стручне групе метеорөлогија у Студијском комитету надземни водови ЈУКО CIGRÉ разрађена је методологија прикупљања и обраде мете оролошких података при утврђивању узрока и степена хаварија на електропре носној мрежи у СФРЈ (Ђукановић, Д 1973; Ђукановић, Д., Плазинић, С Ханцић, М., 1979).

Дејство ветра на далеководе

За потребе пројектовања и експлоатације електропреносне мреже неопходно \mathfrak{j} обезбедити довољно квалитетних мерних података о ветру, као величини која непосредно улази у прорачуне оптерећењ далековода (Ђукановић, Д., 1963, 1973).

Према прописима за градњу далековода од посебне важности су максималне брзине ветра и вероватноћа њихове појаве из периода од најмање 5 година, које се могу добити из мерења разних врста анемо-乞̄рафа, који су, углавном, неповољно лоцирани у односу на потребе електропреноса.

Познавање додатног оптерећења далеко вода услед дејства ветра је важно у широком распону брзина ветра, како за проводнике са наслагом леда или иња, или без њих, тако и за далеководне стубове. Такође је од важности испитивање додатног оптерећења далековода услед дејства ветра код различитих експозиција проводника, посебно у односу на преовлађујуће правце ветрова, затим корекционих кое фицијената за прорачуне са променама

висине изнад земљиног тла, отклона изо- о броју атмосферског електричног латорских ланаца и корелационих веза појединих врста залеђивања и учестаности правца, односно брзине ветра у одређеним временским ситуацијама, као и испитивања галопирања, вибрација, њихања и увијања проводника (Ђукановић, Д., Плазинић, С., 1969; Ђукановић, Д., Киригин, Б., Плазинић, С., Ханић, М., 1977; Ђукановић, Д., Плазинић, С., Ханџић, М., 1979).

Пројектантима треба пружити што поузданије полазне вредности метеоролошких елемената за потребе различитих прорачуна. Овде се могу навести два прилаза: йрви - пробабилистички прилаз пројектовању далековода, кроз припрему метеоролошких параметара у РХМЗ СРС, практично је прихваћен средином осамдесетих година, а тек после 1997. године се преузимају стандарди са оваквим приступом, на основу којих тек треба да се иновира Технички правилник за изградњу надземних водова; друг̄и йрилаз при решавању сложених захвата, као што је био прелаз Дунава код ТЕ Дрмно, са висином вешања проводника на 116 м, када су прелиминарни предлози датих вредности за ветар, након специјалних мерења и прорачуна, прихваћени као коначни, јер је установљено одступање од само 5 процената.

У протеклом периоду је од стране домаћих аутора објављено више радова напојединим саветовањима и конгресима, не само у земљи него и у иностранству, који су третирали проблеме залеђивања и дејства ветра на проводнике надземних водова (Плазинић, С., Миљковић, Н., 1982, 1983; Вучковић, 3., Плазинић, С., Николић, И., 1996. и др.).

Атмосферска електрична пражњења и
 испади далековода

За пројектовање, изградњу и одржавање електропреносне мреже (далековода и трафостаница), за које удар муње и атмосферски електрични пренапони представљају опасност, веома су важни подаци

пражњења на јединицу површине и о њиховој просторној и временској расподели на локацији објекта или дуж трасе далековода (Плазинић, С., 1985, стр. 250).

Увиђајући недостатке визуелних осма трања појаве атмосферског електричног пражњења за потребе електропреноса, у РХМЗ СРС је реализована израда бројача атмосферског електричног пражњења 1968. године. Овај бројач је омогућио добијање првих информација за прорачун Ng (густина пражњења типа облакземља по једном км ${ }^{2}$ у току године) на подручју Србије, које су приказане и на међународним конференцијама за електрицитет и громобране (Плазинић, С., 1968; Плазинић, С., Миљковић, Н., 1973; Плазинић, С., 1975). Иначе, Југославија је међу првима у Европи успоставима мрежу бројача атмосферских електричних пражњења са пратећим визуелним и ра дарским осматрањима. Анализа погонских догађаја са овако добијеним информацијама, су, такође први пут, указале на проценат испада далековода због атмосферских пренапона.

У РХМЗ СРС су 1986. године израђена два успешна прототипа новијих бројача. После једногодишњег тестирања и одговарајућих анализа изабран је бројач 10 kHz за иновирање и квалитативно побољшање ове врсте инструменталних осматрања (Поповић, Т., 1991). Развој и израду прототипова нових бројача реализовао је Електротехнички институт "Никола Тесла" из Београда, а израду прве серије од 10 комада бројача финансирало је предузеће "Електроисток" из Београда. Инструменти су уступљени РХМЗ СРС, а по својим карактеристикама представљали су видно побољшање.

Плодна сарадња метеоролога, првенствено из РХМЗ СРС, и електропреноса је ослаиз РХМЗ СРС, и електропреноса је ослабила почетком деведесетих година.
Имајући у виду да је она била обострано Имајући у виду да је она била обострано
корисна и да нема разлога да таква поново корисна и да нема разлога да таква поново
не буде, треба настојати да се она што пре не буде, треба настојати да се она што пре реактивира. На 23. Саветовању ЈУКО CIGRÉ 1997. године ово питање је актуел-

изирано у облику одговарајућих закључака и препорука.

Загађивање ваздуха и испади далековода

Загађивање ваздуха у свом штетном дејству се јавља и у електропреносној мрежи код загађивања изолаторских ланаца на проводницима надземних водова у индустријским зонама. Овај феномен се повремено јавља у нашим крајевима, када долази до испада далековода.

Забележени су испади ДВ услед загађења ледених наслага и промене проводних карактеристика. Обрађен је случај испада ДВ 400 kV на превоју Попадија код Доњег Милановца, при чему су вршена и лабораторијска испитивања састојака скинутих узорака ледених наслага (Вучковић, З., Плазинић, С., Милановић, Д., 1988; Вучковић, З., Плазинић, С., Здравковић, 3., 1990). Ови радови, први пут у свету, су приказали овај проблем и редовно се цитирају у страној стручној литератури.

На 23. Саветовању JУКО CIGRÉ 1997. године донети су закључци да се због све израженијег проблема аерозагађења, између осталог, утврде нивои и врсте загађености у појединим подручјима

Електропреносни систем - резиме

Метеоролошка активност у електропреносном систему обухвата проучавање метеоролошких услова залеђивања, ветра, атмосферског електричног пражњења и загађења ваздуха на постојећим и будућим трасама проводника надземних водова. Ово је од значаја за избор најповољнијих, економски оправданих траса, исправно димензионисање у пројектовању и одређивању заштитних мера. Из вишегодишње сарадње Метеоролошке службе и електропреносних предузећа проистекли су бројни стручни реферати на домаћим и страним саветовањима електроенергетичара и метеоролога. Дат је допринос и у изради техничких норматива и прописа. Актуелно је реактивирање метеоролошке активности преко Студијског комитета 22

- надземни водови JУKO CIGRÉ и сарадње између Републичког хидрометеоролошког завода Србије и електропривреде.

Диспечерска служба

Диспечерска служба, по карактеру свог рада и циљевима, заинтересована је за резултате метеоролошке активности из претходних студија. Тако, из студија трајнијег карактера за експлоатацију електроенергетских објеката су важни подаци из проучавања разних серија вредности мете оролошких елемената за дугогодишњу оцену производње, како XE , тако и код TE, напр. због заштите животне средине, као ограничавајућег фактора и специјал них прогноза, које су у квантитативној вези са потрошњом електричне енергије (оптерећења електроенергетског система) Метеоролошке информације и прогнозе за потребе диспечерске службе, у планирању и тренутном реаговању, првенствено обухватају температуру ваздуха, ветар и облачност, који су у вези са потрошњом електричне енергије, затим количине и облик падавина, у вези са отицајем и протицајем вода у XE, а и залеђивања, ветра и атмосферских електричних пражњења, у вези са радом електропреносне мреже Метеоролошке информације о прошлом и тренутном стању атмосферског времена за разлику од прогноза, своде неизвесност ових на минимум.

Краткорочне метеоролошке прогнозе се изражавају у бројним вредностима мете оролошких елемената, са вероватноћом остварења у региону којег диспечерски центар снабдева електричном енергијом Оне, иако довољно прецизне, кориговане и детерминисане за диспечерску службу, условљавају претходна утврђивања корелативних веза промене метеоролошких елемената и потрошње електричне енергије, исказаних у функционалној математичкој вези за оперативно и планирано руковођење диспечерском службом, са најмањим и бројно израженим ризиком. Применом нумеричких модела, прогнозе до 72 часа имају висок степен оправдања, а уз уношење субјективних искустава корисне су у предвиђању општег

карактера времена и за период од недељу дана. Већина научника верује да средњерочне прогнозе, за време од 2-3 недеље, представљају максималну дужину прогнозирања процеса у атмосфери.

Дугорочне метеоролошке прогнозе на бази аналогија, из архива синоптичких карата, имају известан успех, без објашњења правог механизма, који условљава дугопериодске карактеристике опште циркулације атмосфере. Улажу се и даље значајни напори у развијању и проверавању метода дугорочних прогноза времена на бази статистичко-динамичких, нумеричких, аналогних и других метода, са исказивањем у форми која експлицитно одређује ризик на релацији прогноза времена и информације - потрошња електричне енергије. Диспечерски центри треба да располажу емпиријски утврђеним функционалним релацијима између потрошње (оптерећења) и метеоролошких услова.

Електропривреда није у могућности сама да обавља обиман посао прикупљања, обраде и анализе метеоролошких података. Низ свакодневних метеоролошких мерења су потребна за оперативни рад, па и директне телекомуникационе везе између диспечерских центара електропривреде и појединих мерних пунктова, као напр. за дисперзију и концентрацију загађујућих материја и расхладних торњева итд.

Везе између производње, потрошње и безбедности у електропреносном систему и метеоролошких услова, добијене из студија у облику математичко-статистичких модела на основу стварних података из дугих опсервационих серија и одређених теоретских претпоставки, се од самих електропривредних организација верификују, побољшавају, одбацууу или установљују нови емпиријски проверени поступщи.

Информациони систем електропривреде се заснива на регионалним центрима где се метеоролошке информације стичу у диспечерску службу из Републичког XM

завода, са допунама у директном повезивању диспечерске оперативе у подручјима концентрације великих потрошача и произвођача електричне енергије са локалним метсоролошким службама, напр. на аеродромима и метеоролошким опсерваторијама.

у Диспечерском центру Електропривреде Србије (ДЦ ЕПС), односно Центру за планирање и подршку Управљању EEC, већ више од 30 година се одвија метеоролошка активност. Она обухвата перманентно ангажовање у издавању дневних и седмичних метеоролошких прогноза средњих и екстремних температура ваздуха, правца и брзине ветра и количина облачности и падавина за Београл као највећем потрошачком региону Такође се највећем потрошачком региону. Такође се
издају прогнозе екстремних температура ваздуха за области до 500 м нв, падавина у лит $/$ м 2 и дотока воде у м ${ }^{3} / \mathrm{c}$ за XE у горњем и средњем делу слива Дрине (Пива, Потпећ, Вишеград и Бајина Башта). у периоду снежног покривача врше се процене водности и дотока од његовог отапања. Потребни метеоролошки подаци се користе у хидролошком моделу ССАРР за процене потрошње електричне енергије.

у току је реализација I фазе Студије о практичним могућностима примене аутоматских метеоролошких станица у оперативном раду ДЦ ЕПС. Планира се проширење оваквог начина рада и на слив Дрине и друге локације, са циљем аутоматизације процеса прикупљања и обраде података при изради прогноза и за друге потребе у оквиру Електропривреде Србије.

Диспечерска служба - резиме

Диспечерска служба представља финализирајући и неодвојиви део електроенергетског система. У њој се метеоролошке информације о прошлом и тренутном временском стању користе за планирање производње и потрошње електричне енергије, сводећи неизвесност атмосферских промена на минимум.

За краткорочне метеоролошке прогнозе, Метеоролошки и хидролошки услови које се изражавају у бројним вредностима утичу на режим рада термоелектрана, код појединих метеоролошких елемената и вероватноћом остварења, у Диспечерској служби се користе, студијски добијене, корелативне везе са потрошњом електричне енергије, у облику математичко-статистичких модела, на основу стварних пода така из дугих опсервационих серија и одређених теоријских претпоставки.

У диспечерској служби се користе дугорочне метеоролошке и хидролошк прогнозе, добијене статистичко-динамичким, нумеричким, аналогним и другим методама, са исказивањем у форми која експлицитно одређује ризик на релацији прогноза времена - потрошња електричн енергије.

Метеоролошка активност у
 електропривреди - резим

Метеоролошка активност за потребе електропривреде је обимна и разноврсна Она се одвија у домену пројектовања, изградње и експлоатације електроенергетског система - производних групација хидроелектрана и термоелектрана и електропреносне мреже, са диспечерском службом.

Код хидроелектрана метеоролошко ангажовање обухвата водни потенцијал са израдом прогноза дотицаја у акумулације и речних протицаја воде. Користе се објективне методе вероватноће и математичке статистике, са програмима прогностичких једначина, које укључују хидрометријске и метеоролошке податке.

Литература
Анић, Б., 1968: Прорачун концентрације загађења ваздуха код термоелектрана, III Савейовање о ексйлоайацији ӣермоелекйирана у Југоославији, Заг̆реб.
Анић, Б., 1971: Мерења метеоролошких параметара потребних за прорачун атмосферске дифузије загађености ваздуха код ТЕ Косово, I Конг̈рес за хемијско инжењерсйивво и йроцесну йехнику, Беог̄рад.
Berlyand, M.E., 1972: Atmospheric diffusion investigations in the U.S.S.R., Technical Note No 121, WMO, Geneve.
Тукановић, Д., 1961: Хидрометеоролошка активност у домену електропривредне проблематике, Елекйройрияреда, бр. 11-12, сійр. 578-582.

Букановић，Д．，1963：Залеђивање и удари ветра као утицајни фактори код далековода， Заједница југ̄ословенске елекӣройривреде，Беойрад，I Савейовање о ексйлоайиацији
 Букановић，Д．，1964：Моћ охлађивања сувих и влажних површина у Београду，Док $\overline{\text { борорска }}$

Ђукановић，Д．，1968：Хидрометеоролошке карте сливних површина хидроелектрана Југославије，I，Заједница Јуӣословенске елекйройривреде，Беойрад．
Букановић，Д．，1970：Хидрометеоролошке карте сливних површина хидроелектрана Југославије，II，Заједнииа Југ̈ословенске елекйройривреде，Беог̄рад
Букановић，Д．，1970：Метеоролошко－климатолошка активност у пројектовању и ек－ сплоатацији термоелектрана，X Савейивање енерг̄еииичара Југ̄ославије ЈУНАКО CIGRÉ， Дүбровник，VIII Савеӣовање климайолог̄а Југ̄ославије，Зла̄̄ибор；Савейовање о из－ драдни и ексйлоайиццији йерлоелекйирана СЕВ－а и Југ̃ославије，Закойане，Полска．
Ђукановић，Д．，1973：Систематизација података о хаваријама на електропреносно
 мрежи，Заједница југ̄осля
мрежи у СФРЈ，Оиайија．
Букановић，Д．，1974：Метод одређивања водног потенцијала снежног покривача на слив ним подручјима хидроелектрана у Југославији，Заједница југ̄ословенске елекйиро－ йривреде，Беойрад，Савейовање о хидроелекйрранама и йумйнокумулационим хидроелек亠幺рранама，Сйлий，14．сиирана．
Ђукановић Д．，Плазинић，С．，1966：О проучавању залеђивања далековода у Србији， ЈУНАКО CIGRÉ，VIII Савейивање енерг̄ейичара Југ̄ославије，Мосӣйар．
Букановић，Д．，Плазинић，С．，Вукмировић，Д．，1967：Резултати претходних изучавања залеђивања надземних проводника у Србији，Зборник радова иоводом 20－ог̄одиињице Хидромейеоролошке службе СФРЈ，Беойрад，СХМЗ，с＂̄ир．207－230．
Ђукановић，Д．，Плазинић，С．，1969：Експериментална станица за проучавање залеђивања и дејства ветра на далеководе，Зборник III Савеӣовања о екссйлайиацији и изг̄радни йреносне мреже СФРЈ，Примошйен；VII Савейовање климайолог̆а Југ̄ославије，Будва，

Букановић，Д．，Кириг̄ин，Б．，Плазинић，С．，Ханиић，М．，1977：Обрада података о ветру за потребе пројектовања и изградње далековода，ХІІІ Савейовање елекйроенерг̄ейичара Југ̄ославије，ЈУНАКО СIGRÉ，Блед，сйр．123－151
Букановић，Д．，Плазинић，С．，Ханиић，М．，1979：Метод прикупљања и обраде мете－ оролошких података при утврђивању узрока и степена хаварија на електропреносној мрежи у СФРЈ，XIV Савейиовање елекййоенерг̄ейичара Југ̄ославије，JУНАКО CIGRÉ Сарајево，сйр．133－148．
Ђорђевић，Н．，1967：Хомогеност дугих низова падавина у Југославији，Зборник радова йоводом 20－ойодиннице Хидромейеоролошке службе СФРЈ，СХМЗ，Беойрад，с刘．115－ 120.

Ђорђевић，Н．，Јовановић，С．，1966：Прогноза пролећног дотицаја у акумулацију ХЕ＂Ба－ јина Башта＂，Инсӣиийиу $\overline{\bar{u}}$＂Јарослав черни＂，Беог̄рад，саойийиена бр．36，сӣр．1－6．
Hershfield，D．M．，1965：On the speacing of rainganges，Syimp．Design of Hidrologycal Networks Publ．No． 67 Int．Ass．for Scientific Hyidrology，Bruxeless．
Lorenz，E．N．，1963：The preditability of hydrodynamic flow，Trans．of Science，Ser．2，Vol，25，pp 409－432．
Odenthal，Al，Spangemacher，K．，1959：Der Kühlturm im dampfkraftprocess，Brennstoff－Warme－ Kraft（BWK）Bd． 11.
Pasquill，F．，1961：The estimation of the dispersion of windborne material，Met．Mag．，90，1063，pp 33－49．
Плазинић，С．，1968：Резултати мерења атмосферског електричног пражњења помоћу бројача на територији СР Србије，IX Сйиручно саветоваъе ЈУHAKO CIGRÉ，Врњачка Бања，реф．41．09．
Плазинић，С．，1971：Мерења метеоролошких параметара потребних за прорачун атмос－ ферске дифузије загађености ваздуха код ТЕ Косово，I Конг̄рес за хемијско

Плазинић，С．，1975：Beitrag zur Untersuchung der Verteilung der zahl der Atmosphärischen elec－ trischen entlandungen auf dem teritorium der SFR Jugoslavien，XIII Interrnationale blitzschutz konferenz，Venezia，R．1．4．
Плазинић，С．，1985：Техничка метеорологија，Научна књийа，Беойрад．
Плазинић，С．，Миљковић，Н．，1973：Инструментална осматрања грмљавинских непогода у мрежи метеоролошких станица у СР Србији，XII Међународна г̆ромобранска конфер－ енција，Пор $\overline{\bar{u}}$ орож．
Плазинић，C．，Миљковић，H．，1982：Damages of Structures due to Ice and Wind in Yugoslavia
（Serbia），First International workshop on atmospheric Icing of Structures （Serbia），First International workshop on atmospheric Icing of Structures，Hanover，New Hamp－ shire，USA，pp．225－237．
Плазинић，С．，Миљковић，H．，1983：Анализа метеоролошких услова хаварија далековода на територији СР Србије，XVI Савейоване елекӣироенерг̄ейичара Југ̄ославије ЈУНАКО CIGRĖ，Oйа̄̄иија，реф．22．13．
Плазинић，С．，Вучковић，З．，Милановић，Д．，1988：Failures of Overhead transmission lines due to polluted Ice accretions on insulator strings，Fourt International Conference on Atmospheric Ic－ ing of Structures，Paris，sept．，pp．305－309．
Плазинић，С．，Вучковић，З．，Здравковић，З．，1990：Effect of polluted Ice and Snow accretions of higvoltage transmission line insulators，Fift International Conference on Atmospheric Icing of Structures，Tokyo．
Пойовић，Т．，1991：Увођење бројача атмосферског електричног пражњења типа 10 kHz у мрежи ГМС РХМЗ РС，Друг̄а југ̄ословенска конференција о модификацији времена， Маврово，кг．ІІ，сйр．135－138．
Reinbird，A．F．，1967：Methods of estimating areal average precipitattion，Report on WMO／IHD Projects，Reports．No．3，WMO，Geneve．
Warnick，C．C．，Denton，V．E．，1971：New methods of measuring water equivalent of snow pack for automatic Recording at Remote mountain location，Journal of Hydrology，13．，pp．201－215．
WMO，1969：Manual for deptarea－duration analysis of storm precipitation，No．237，pp．129，WMO Geneve．
Вучковић，З．，Плазинић，С．，Николић，И．，1996：Failures of Overhead lines due to Ice and Wet snow in a part of Balkan peninsula（Serbia），International workshop on atmospheric Icing of Structures，Kvebek，Kanada．
 ＂Јарослав черни＂，Беойрад，1975：Студија организације хидрометеоролошке активности за потребе југословенске електропривреде， 5 књиг̈а．

МЕТЕОРОЛОШКА АКТИВНОСТ У ЕЛЕКТРОПРЕНОСНОМ СИСТЕМУ

Др Драйомир М. Ћукановић, дийл. мей.
11080 земун, Данила Медаковића 4/6
Слободан М. Плазинић, дийл. мей. 11070 Нови Беог̈рад, Јурија Гаг̆арина 187/95
Тихомир А. Пойовић, дийл. мей.
СХМЗ, 11000 Беогррад, Бирд́анинова 6

Abstract

Meteorological activity in electricity supply system includes the studies of the meteorological conditions for the following: ice formation, wind, atmospheric electric discharges and air pollution at the present and future routes for overhead power lines' conductors. This is of great significance for selecting the most convinient and the most economical routes, appropriate project dimensioning and protective measures. The long-term collaboration between the Meteorological Service and the and protective measures. The long-term collaboration betweenes
companies integrated in the electricity supply system has resulted in numerous scientific works presented at the domestic and international conferences and contributed to a compilation of the presented at the domestic and international conferences and contivate the meteorological activity
technical regulations, too. At the present, it is necessary to reactival technical regulations, too. At the present,
through the mutual cooperation among The JUKO CIGRÉ Research Committee 22 for overhead power lines' conductors and The Republic Hydrometeorological Service of Serbia and our electricity industry.

Меииеоролошка акйивносии у елекииройреносном сисииему обухвайа йроучавање меииеоролошких услова залеђивања, вейра, аймосферской елекйирично̄ йражњења и
 је од значаја за избор најйовољнијих, економски ойравданих йраса, исйравно димензионисање у йројекииовању и одређивану зашиииииних мера. Из вишегоддинъе сарадње

 дойринос и у изради миехничких норматива и йойиса. Акйуелно је реакииивирање ме-
 CIGRÉ и сарадъе између Рейубличкой хидромейиеоролошког̆ завода Србије и елекйрройризреде.

Увод

Савремено друштво постаје све више зависно од времена и климе, али не само као пасивни посматрач. Неке људске активности траже економске процене неповољнних и штетних метеоролошких процеса и климатских промена. У том смислу, историјски посматрано, неколико догађаја је било значајно за однос човека према вре-

менским и климатским утицајима: лансирање метеоролошког сателита успостављање светског метеоролошког бдења, редовно издавање нумеричких прогноза времена, глобални и регионални програм загађености ваздуха, програми модификације временских стања и програми примењене метеорологије и клима-

ологије за потребе пројектовања, из- товање, изградњу и експлоатацију елек градње и експлоатације великих објеката. тропреносног система.
У програмима примењене метеорологије и климатологије, у складу са схватањем да се ради о делу стварања националног блага, налазе се и метеоролошка истраживања, подаци и информације у електропреносном систему СР Југославије.

Метеоролошка активност у електропривредној групацији електроенергетског система и преносне мреже, односно елек тропреносног система се, као и у осталим групацијама електропривреде, одвија у правцу истраживачког рада и у пројектовању појединих објеката, као и у оквиру њихове изградње и експлоатације у јединственом систему.

Проблеми који су везани за метеоролошку активност у обезбеђењу сигурности рада електропреносног система, су следећи:

- залеђивање проводника надземних водова,
- дејство ветра на проводнике надземних водова,
- атмосферска електрична пражњења и испади далековода и
- загађеност ваздуха и испади далековода.
-

Бројни стручни метеоролошки радови, који су обрађивали све напред наведене проблеме, већ више од 45 година су у нас разматрали теоријске карактеристике и практичну примену у обради сваког од наведених проблема.

Саветовања електроенергетичара у југословенској електропривреди, Југословенског комитета Међународне конференције за велике електричне мреже - ЈУКО CIGRÉ и Саветовања метеорологаклиматолога су, у више махова, била места где су се излагали резултати и давале препоруке, у складу са закључцима и препорукама Међународне CIGRE, Међународне електротехничке конференције EC, Међународне конференције залеђивање надземних предмета - IWAIS, залеђивање надземних предмета - IWAI
Светске метеоролошке организације WMO и JYC-а за њихову примену у изради техничких норматива и прописа за пројек-

O раду Меууиародие конфереиције за велике електричне мреже - CIGRÉ Југословенског комитета CIGRÉ. Развојем и израдњом електроенергетских система све веће снаге и на већим пространствима дошло је до шире међународне сарадње у размени техничких искустава и оснивања једног међународног тела, које би се бавило организацијом техничких међународних конференција, посвећених, у првом реду, размени искустава у пројекто вању, изградњи и експлоатацији електропреносних система.

У Паризу је 1921. године одлучено да се оснује организација под називом CIGRE (Conférence Internationale des Grands Résaux Electriques). Задатак организације је да окупља стручњаке свих земаља света, који су заинтересовани за велике електричне мреже, како би на саветовањима и конгре сима размењивали своја искуства. Рад у овој организацији се одвија у студијскй комитетима, чији су чланови врхунски светски стручњаци.

У октобру 1949. године Савез инжењера и техничара Југославије прихвата предлог Међународие CIGRÉ да се оснује одбор Југословенског националног комитета CIGRÉ. Нешто касније формирана је управа југословенске секције CIGRÉ. До JУHAKO CIGRÉ долази после XIII Заседања међународне CIGRÉ у Паризу, 1951. године.

Од првог саветовања ЈУНАКО CIGRE одржаног у мају 1953. године мете оролошка активност је присутна кроз реферате о проблемима наших прописа за далеководе и електропривредна постро јења уопште. Сва следећа саветовања имала су по неколико реферата, у којима су посредно или непосредно третирани метеоролошки подаци за потребе електропреноса.

С обзиром на вишегодишњи активан рад метеоролога у Студијском комитету во дови, на XI Саветовању JУHAKO CIGRÉ,

одржаном у мају 1972. године, у оквиру Студијског комитета надземни водови, основана је радна група метеорологија. Ова група, у континуираном раду, дала је значајан допринос сарадњи електропреносних организација и Хидрометеоролошке службе у коришћењу података из постојеће мреже метеоролошких станица, са увођењем специјалних мерења и експерименталних водова, објављивању више стручних реферата на саветовањима JУHAKO CIGRÉ и саветовањима метеорологаклиматолога о утицају залеђивања и ветра, атмосферских електричних пражњења и загађења ваздуха на далеководе. Објављени радови су имали и програмски карактер у вези са израдом техничких норматива и прописа за пројектовање, изградњу и експлоатацију електропреносне мреже на свим нивоима.

И последње, 23. Саветовање ЈУКO CIGRÉ одржано у Херцег Новом у мају 1997. године, имало је два реферата, која су третирала метеоролошка питања: Ударнос产 кошаве и Хаварија далековода 220 κB на йодручју IIIарӣана у јануару 1997. године. Закључци Студијског комитета 22 - надземни водови обухватили су потребу обнављања сарадње електропривреде и Хидрометеоролошке службе и израду предлога савремене методологије за обраду и прорачун метеоролошких параметара за надземне водове.

Пре него што се прикажу поједини метеоролошки феномени, који се јављају као узроци поменутих проблема при пројектовању и експлоатацији електропреносне мреже, корисно је да се изложе основни правци метеоролошке активности у овој области.

За проучавање штетних утицаја метеоролошких фактора, било да се ради о залеђивању и дејству ветра, атмосферским електричним пражњењима или загађивању ваздуха дуж траса далековода, метеоролошка активност обухвата истраживања путем мерења свих метеоролошких елемената који се јављају у одређеним атмосферским условима на одређеној територији. Анализе добијене

опсервационе документације са резултатима и закључцима се користе у прописима за пројектовање и каснију експлоатацију електропреносне мреже (Ђукановић, Д., 1961, 1963; Ђукановић, Д., Плазинић, С., 1969).

Овде се подразумева коришћење стандардних података са најближих метеоролошких станица, а затим података, добијених из стандардних и специјалних мерења, успостављених дуж траса далековода, путем специјалних и експерименталних станица, укључујући и маршрутна мерења, по могућству у карактеристичним временским ситуацијама.

Поред метеоролошких истраживања у фази предпројектовања, практикују се и постхаваријска мерења на најближим трасама постојећих далековода, у циљу провере претходних пројектних елемената и коришћења за пројектовања будућих далековода.

Залеђивање проводника надземних водова Проблем залеђивања у електропреносној мрежи је у жиховоі штетности за конструкцију и погонску сигурност далековода, а њихово решавање се усмерава на избор најповољнијих, економски оправданих траса, исправно димензионисање у пројектовању далековода и примену одређених заштитних мера (Ђукановић, Д., 1963, 1973: Ђукановић, Д., Плазинић, С., 1966).

Методи мерења залеђивања су различити и на међународном нивоу и веома се често допуњују. Визуелна и непосредна мерења залеђивања не захтевају већа материјална улагања, али постоје одређене тешкоће у њиховој примени на терену. Сличан је случај и са индиректним мерењем дальиномером. Различита региструјућа мерења, непосредно на проводницима далековода, су тешко остварива на терену, па се у свету и код нас користе испитни уређаји за мерење залеђивања на метеоролошким станицама (Плазинић, С., 1985., стр. 1617).

Визуелна осматрања залеђивања се сматрају као допунска истраживања на далеководима у појединим случајевима и код прелиминарних проучавања терена у оквиру прикупљања општих орографскоклиматских података за будуће трасе далековода и података о хаваријама.

Непосредна мерења залеђивања, у недостатку специјалних мерних инструмената, су једноставна. Узимањем узорка ледене наслаге са одређене дужине проводника, долази се до његове тежине, а уз коришћење прикладних номограма, и до додатног оптерећења проводника услед леда. Примена овог метода, непосредно на проводницима, или на експерименталним распонима проводника, на различитим висинама, је отежана, јер је условљена близином становања осматрача, висинама и често при неповољним метеоролошким условима, а и у примени након хаварија наилази се на промењене стварне услове. На експерименталним станицама ова мерења се сматрају допунским.

Индиректна мерења ледених наслага се најчешће обављају у неприступачним крајевима или код проводника у напону. Она се заснивају на мерењу пречника ледених наслага помоћу далиномера, уз познавање распона стубова, материјала, пресека проводника и основних метеоролошких елемената. Осетљивост у руковању даљиномером представља тешкоћу у примени овог метода изван сталних мерних места са обученим особљем.

Регистрирна мерења омогућују добијање непрекидних података о залеђивању на већ постојећим водовима или експерименталним распонима, без обзира на приступачност терена, са смањењем субјективног утицаја осматрачког особља. Динамографи су регистрирни инструменти за континуирана мерења залеђивања и додатног оптерећења проводника, уз упоредна мерења температуре ваздуха и ветра. Они могу бити са механизмом или електричним уређајем за регистровање напрезања проводника услед ледених наслага, са уградњом динамометра на

месту напињања проводника или иза висећих изолаторских ланаца.

Тололедограф Бучинског је један од најстаријих уређаја који је радио на принципу мерења тежине наслаге леда или иња помоћу опруге, уз могућност одређивања врсте наслаге и времена таложења од стране осматрача.

Ледограф Бургсдорфа је у виду високонапонског проводника, дужине $200-300$ м повезаног са динамометарском опругом и регистрирним делом апарата.

Насбергов апарат за непосредна мерења максималних тежина ледених наслага на проводницима у погону је заснован на принципу стварања отисака куглице на челичној подлози, а монтира се на далеководу као чланак носећег изолаторског ланца.

Савремена истраживања залеђивања односе се на мерења додатних оптерећења на проводницима водова под напоном, са упоредним праћењем метеоролошких елемената и појава. Један од најновијих система биће приказан 1998. године на састанку AWAIS-a, у Рејкјавику (Исланд) Оваква мерења и испитивања улазе у мрежу метеоролошких мерења залеђивања према препорукама IEC-а.

Осматрање појаве м мерења параметара залеђивања проводиика у мрежи мете оролошких стаиица. Средином шездесетих година озбиљно је разматрано увођење осматрања и мерења залеђивања на главним метеоролошким станицама у Србији. Залагањем метеоролога, који су развијали сарадњу са електропреносним организацијама (С. Плазинић, Д. Ђукановић и Д Вукмировић) крајем шездесетих година ва мерења су уведена као вид специјалних мерења на ГМС. Она су се заснивала на једноставним испитним уређајима који су постављани, углавном, у кругу постојећих метеоролошких станица и неким локацијама, као што су Мајданпек и Црни Врх, под условима који се разликују од стварних код далековода у погону, уз коришћење упутстава за рад (Плазинић,
С., 1965.) и Атласа залеђивања Бучинског (ХМЗ СРС, 1965). Зато је уведено коришћење корелационих фактора са специјалних, експерименталних станица.

Експериментална станица, са комплексним меренима у стварним условима рада далековода, као неопходна чврста веза са мрежом испитних уређаја, омогућује добијање корелативних веза у различитим метеоролошким условима (Ђукановић, Д., Плазинић, С., 1969). Програм рада овакве станице обухвата истраживањ залеђивања проводника и стубова и де ство ветра на далеководе, помоћу неколико експерименталних распона, нормалних дужина и висина изнад тла, уз упоредна мерења са специјалним уређајима на метеоролошким станицама. Програм истраживања залеђивања и дејства ветра на проводнике и стубове на експерименталној станици обухвата испитивања утицаја висине и пречника провод ника на дебљину ледених наслага и њихов тежину, са одређивањем корекционих фактора, испитивање интензитет стварања наслага на различитим проводницима и стубовима и односа димензија тежине, трајања и честине јављањ залеђивања и метеоролошких параметара у карактеристичним синоптичким времен ским ситуацијама и др.

Ова истраживања обухватају лаборатори ска мерења и микроскопска испитивања стварања и структуре ледене наслаге, проучавање утицаја напона и струје у проводнику, фототеку врста и подврста наслага и израду атласа залеђивања. Н експерименталној станици могућа су и ос тала испитивања из области механичких динамичких, а нарочито термичких и других појава и утицаја на далеководе.

Резултати рада експерименталне станице се користе, с једне стране при пројектовању и експлоатацији електропреносне мреже, док, с друге стране, добијене ко релационе везе додатног оптерећења и ме торолошких услова служе у предузимањ превентивних заштитних мера. У оквиру рада експерименталне станице долази у обзир и испитивање утицаја загађености

ваздуха на прескоке и испаде далековода у индустријскохемијским и рударским локалитетима.

Погодност појединих ГМС у погледу испитивања појаве залеђивања и перманентна присутност професионалних метеоролошких осматрача коришћена је, на предлог метеоролога из РХМЗ СРС, за реализацију потребних истраживања. Као резултати таквих пројеката, који су се састојали из предлога организације, постављања, реализације, контроле и верификовања специјалних мерења - каква су нпр. градијентна мерења на различитим проводницима, биле су драгоцене информације о променама параметара залеђивања у функцији врсте проводника (Поповић, Т., Миљковић, Н., 1991). У другим земљама овакви пројекти су се реализовали на експерименталним станицама. Са задовољством се може констатовати да се на ГМС реализовала истраживачка активност која је задовољавала потребе електропреноса.

Прикази теоријских разматрања процеса и механизма залеђивања проводника надземних водова и методологије осматрања и мерења залеђивања и прорачуна додатног оптерећена, примери метеоролошких анализа хаварија на територији Републике Србије, описи синоптичких временских ситуација са аеролошким подацима и радарским осматрањима су детаљно изложени од стране С. Плазинића 1985. године (стр. 10-113).

у оквиру рада стручне групе метеорологија у Студијском комитету надземни водовш JУКО CIGRÉ разрађена је методологија прикупљања и обраде метеоролошких података при утврђивању узрока и степена хаварија на електропреносној мрежи у СФРЈ (Ђукановић, Д., 1973; Тукановић Д., Плазинић, С., Ханџић, M., 1979).

Дејство ветра иа проводнике надземиих водова

За потребе пројектовања и експлоатације електропреносне мреже неопходно је

безбедити довољно квалитетних мерних података о ветру, као величини која непосредно улази у прорачуне оптерећењ далековода (Ђукановић, Д., 1963, 1973).

За непосредно мерење притиска ветра у метеоролошкој служби се употребљава више система за мерење ветра, добијањем величине брзине ветра, зауставног притиска, кинетичке енергије, снаге или учинка, пређеног пута и др.

Према прописима за градњу далековода о посебне важности су максималне брзине ветра и вероватноћа њихове појаве из периода од најмање 5 година, које се могу добити из мерења разних врста анемојрафа, који су, углавном, неповољно лоци рани у односу на потребе електропреноса. Познавање додатног оптерећења далековода услед дејства ветра је важно у широком распону брзина ветра, како за ароводнике са наслагом леда или иња, или ез њих, тако и за далеководне стубове. Такође је од важности испитивање додат ног оптерећења далековода услед дејства ветра код различитих експозиција проводника, посебно у односу на преовлађујуће правце ветрова, затим корекционих кое фицијената за прорачуне са променама висине изнад земљиног тла, отклона изо латорских ланаца и корелационих вез појединих врста залеђивања и учестаности праваца, односно брзина ветра у одређеним временским ситуацијама, као и испитивања галопирања, вибрација, њихања и увијања проводника (Ђукановић Д., Плазинић, С., 1969; Ђукановић, Д. Киригин, Б., Плазинић, С., Ханџић, М., 1977; Ђукановић, Д., Плазинић, С., Ханџић, М., 1979).

Од важности је међусобни утицај дејства леда и ветра и прорачун додатног комби нованог оптерећења далековода, у завис ности од јачине ветра и пречника залеђеног проводника. Овде, такође, треба поменути, неопходност експерименталне станице за проучавање залеђивања и дејства ветра на далеководе у карактер истичним физичкогеографским условима, при различитим временским ситуацијама (Ђукановић, Д., Плазинић, С., 1969).

Метеоролози, који су радили на обрадама ветра за потребе електропреноса нису се задовољавали препорукама из Техничког правилника за изградњу надземних водова. Пратећи стручну литературу радили су на допунама методологија како би се пројектантима пружиле што поузданије полазне вредности за потребе различитих прорачуна. Овде се могу навести два прилаза: ииви - пробабилистички прилаз пројектовању далековода, кроз припрему метеоролошких параметара у РХМЗ СРС, практично је прихваћен средином осамдесетих година, а тек после 1997. године се преузимају стандарди са оваквим приступом, на основу којих тек треба да се иновира Технички правилник за изградњу надземних водова; друг̃и иириа - ири радшия при а, као штто је био прелаз Дунава код ТЕ Дрмно, са висином вешања проводника на 116 m , када су прелиминарни предлози датих вредности за ветар, након специјалних мерења и прорачуна, прихваћени као коначни, јер је установљено одступање од само 5 процената.

У протеклом периоду је од стране домаћих аутора објављено више радова на појединим саветовањима и конгресима, не само у земљи него и у иностранству, који су третирали проблеме залеђивања и дества ветра на проводнике надземних водова (Ђукановић, Д., Плазинић, С., Вукмировић, Д., 1967; Плазинић, С., Вукмировић, Д., Стаматовић, М., 1968; Плазинић, С., Миљковић, Н., 1982, 1983; Плазинић, С., 1984; Плазинић, С., Вучковић, З., Милановић, Д., 1988; Плазинић, С., Вучковић, З., Здравковић, З., 1990; Поповић, Т., Миљковић, Н., 1991; Вучковић, З., Плазинић, С., Николић, И., 1996. и др.).

Атмосферска електрична пражщена и

испади далековода
За пројектовање, изградњу и одржавање електропреносне мреже (далековода и трафостаница), за које удар муње и атмосферски електрични пренапони представљају опасност, веома су важни подаци о броју атмосферског електричног

пражњења на јединицу површине и о њи－ ховој просторној и временској расподели на локацији објекта или дуж трасе далеко－ вода（Плазинић，С．，1985，стр．250）．

Увиђајући недостатке визуелних осма－ трања појаве атмосферског електричног пражњења за потребе електропреноса，у РХМЗ СРС је извршен избор и реализо－ вана прва израда бројача атмосферског електричног пражњења，којим су 1968. године започета инструментална осма－ трања на подручју Србије．Био је то бројач типа РХМЗ，израђен на основу сличних совјетских и чешких инструмената．Иако је имао релативно сложену процедуру （Поповић，Т．，1983）за прорачун Ng （густина пражњења типа облакземља по једном км ${ }^{2}$ у току године）овај бројач је омогућио добијање првих информација о броју укупног атмосферског електричног пражњења на подручју Србије，које су приказане и на међународним конферен－ цијама за електрицитет и громобране （Плазинић，С．，1968；Плазинић，С．，Миљк－ овић，Н．，1973；Плазинић，С．，1975）．Иначе， Југославија је међу првима у Европи успоставила мрежу бројача атмосферских електричних пражњења са пратећим ви－ зуелним и радарским осматрањима．Анал－ изе погонских догађаја са овако добијеним информацијама су，такође први пут，ука－ зале на проценат испада далековода због атмосферских пренапона．

Почетком осамдесетих година започета су разматрања потреба за израду новог бројача．Ослањајући се на стечено искуство，а имајући у виду потребе корис－ ника и одговарајуће препоруке CIGRÉ，у РХМЗ СРС су 1986．године израђена два успешна прототипа нових бројача．Били су то адаптирани бројачи CIGRÉ са вертикал－ ном антеном и пиковима пријема на 500 Hz и 10 kHz （Поповић，Т．，Гаврић，М．，1987）． После једногодишњег тестирања и одго－ варајућих анализа изабран је бројач 10 kHz за иновирање и квалитативно по－ бољшавање ове врсте инструменталних осматрања（Поповић，Т．，1991）．Развој и израду прототипова нових бројача，по до－ бијеним захтевима，реализовао је Елек－ тротехнички институт＂Никола Тесла＂из

Београда．Комплетан развој и израду прве серије од 10 комада бројача финансирало је предузеће＂Електроисток＂из Београда． Инструменти су уступљени РХМЗ СРС，а по својим карактеристикама представљали су видно побољшање．Оно се огледало у поузданијем раздвајању типова атмосфер－ ског електричног пражњења и задржавању исте осетљивости током целе године，што је коначно имало за резултат добијање веродостојнијих вредности за Ng．Такође， уз финансијску подршку＂Електроисток＂－а на старим бројачима побољшане су њи－ хове перформансе．

Плодна сарадња метеоролога，првенствено из РХМЗ СРС，и Електропреноса је осла－ била почетком деведесетих година． Имајући у виду да је она била обострано корисна и да нема разлога да таква поново не буде，треба настојати да се она што пре реактивира．На 23．Саветовању ЈУКО CIGRÉ 1997．године ово питање је актуел－ изирано у облику одговарајућих закључака и препорука．

Загађщваше ваздуха и испади далековода

Загађивање ваздуха у свом штетном де－ јству се јавља и у електропреносној мрежи код загађивања изолаторских ланаца на проводницима надземних водова у индус－ тријским зонама．Овај феномен се повре－ мено јавља у нашим крајевима，када до－ лази до испада далековода．

Забележени су испади ДВ услед загађености ледених наслага и промене проводних карактеристика．Обрађен је случај испада ДВ 400 kV на превоју Попа－ дија код Доњег Милановца，при чему су вршена и лабораторијска испитивања сас－ тојака скинутих узорака ледених наслага （Вучковић З，Плазинић， $\mathrm{C}_{\text {，Милановић }}$ （Вучковић，З．，Плазинић，С．，Милановић， Здравковић，З．，1990）．Ови радови，први пут у свету，су приказали овај проблем и редовно се цитирају у страној стручној литератури．

На 23．Саветовању JУKO CIGRE 1997 године донети су закључци да се због све израженијег проблема аерозагађења

између осталог，утврде нивои и врсте загађености у појединим подручјима．

Резиме

Метеоролошка активност за потребе Хидрометеоролошке службе и електро－ електропреносног система，као и код ос－преносних предузећа，из које су талих групација електропривреде，одвија проистекли бројни стручни реферати на се у области пројектовања，изградње и ек－ сплоатације појединих објеката．

На погонску сигурност преноса елек－ тричне енергије утиче више мете－ оролошких фактора．Упознавање мете－ оролошких услова залеђивања，дејства ветра，атмосферских електричних пражњења и загађености ваздуха на пос－ тојећим и будућим трасама проводника надземних водова је од значаја за избор најповољнијих，економски оправданих， траса，исправно димензионисање у пројек－ товању и одређивање заштитних мера． многим домаћим и страним саветовањима енергетичара и метеоролога．Тиме је цат активан допринос и у изради техничких норматива и прописа у домену пројекто－ вања，изградње и експлоатације електро－ преносног система у нашој земљи．

Актуелно је реактивирање метеоролошке активности преко стручне групе метеоро логија у Студијском комитету 22 надземни водови JУKO CIGRÉ и реали－ зације програма сарадње Републичког хидрометеоролошког завода Србије и Електропривреде Србије．

Досадашња метеоролошка активност се карактерише вишегодишњом сарадњом

Литература

Бучински，В．Ј．，1965．，у йреводу М．Радошевића：Атлас залеђивања，ХМЗ СРС，Беойрад，

Ђукановић，Д．，1961：Хидрометеоролошка активност у домену електропривредне проб－ лематике，Елекӣиройривреда，бр．11－12，сйир．578－582．
Ђукановић，Д．，1963：Залеђивање и удари ветра као утицајни фактори код далековода， Заједница југ̄ословенске елекйройривреде，Беог̄рад，I Савейовање о ексйлоайацији далеководне мреже и йрафосиианица 110 и 220 kV Југ̄ославије，Пориорож，сйр．1－20．
букановић，Д．，1973：Систематизација података о хаваријама на електропреносној мрежи，Заједница југ̄ословенске елекйиройривреде，Беойрад，V Савейовање о йреносној мрежи у СФРЈ，Ойа̄ииија．
Ђукановић，Д．，Плазинић，С．，1966：О проучавању залеђивања далековода у Србији， JУНАКО CIGRÉ，VIII Савее̄оване енерг̄еййичара Југ̄ославије，Мос竝ар．
Ђукановић，Д．，Плазинић，С．，Вукмировић，Д．，1967：Резултати претходних изучавања залеђивања надземних проводника у Србији，Зборник радова йоводом 20－ойодиињице Хидромейеоролошке службе СФРЈ，Беоӣрад，СХМЗ，сйр．207－230．
Ђукановић，Д．，Плазинић，С．，1969：Експериментална станица за проучавање залеђивања и дејства ветра на далеководе，Зборник III Савейовања о ексйлоа̄̄йији и изі̄радњи йреносне мреже СФРЈ，Примошйен；VII Савейовање климайолог̈а Југ̄ославије，Будва， с商p．1－28．
Ђукановић，Д．，Киригин，Б．，Плазинић，С．，Ханиић，М．，1977：Обрада података о ветру за потребе пројектовања и изградне далековода，XIII Савейовање елеккйроенергее＂йичара потребе пројектовања и изградње далековода，
Букановић，Д．，Плазинић，С．，Ханиић，М．，1979：Метод прикупљања и обраде мете－ оролошких података при утврђивању узрока и степена хаварија на електропреносној мрежи у СФРЈ，XIV Савеӣовање елекӣроенерг̄еӣичара Југ̄ославије，ЈУНАКО CIGRÉ， Сарајево，с烏p．133－148．

Плазинић, С., 1965: Привремено упутство за осматрање и мерење залеђивања проводника у мрежи метеоролошких станица, РХМЗ СРС, Беог̈рад, $c \bar{u} p .1-30$.
Плазинић, С., 1968: Резултати мерења атмосферског електричног пражњења помоћу бројача на територији СР Србије, IX Сиручно савейовање ЈУНАКО CIGRÉ, Врњачка Бана, реф. 41.09.
Плазинић, С., 1975: Beitrag zur Untersuchung der Verteilung der zahl der Atmosphärischen electrischen entlandungen auf dem teritorium der SFR Jugoslavien, XIII Internationale blitzschutz konferenz, Venezia, R. 1.4.
Плазинић, C., 1984: Damages of structures due to Ice and Wind, XIII International Conference for Alpine Meteorology, Opatija, pp. 247-252.
Плазинић, С., 1985: Техничка метеорологија, Научна къийа, Веойрад
Плазинић, С., Миљковић, Н., 1973: Инструментална осматрања грмљавинских непогода у мрежи метеоролошких станица у СР Србији, XII Међународна а̄ромобранска конференција, Порйорож.
ениија, Поршорож.
Плазинић, С., Миљьовић, H., 1982: Damages of Structures due to Ice and Wind in Yugoslavia (Serbia), First International workshop on atmospheric Icing of Structures, Hanover, New Hampshire, USA, pp. 225-237.
Плазинић, С., Миљковић, Н., 1983: Анализа метеоролошких услова хаварија далековода на територији СР Србије, XVI Савейовање елекйироенерг̄ейичара Југ̄ославије ЈУНАКО

Плазинић, Сл, Вучковић, З., Милановић, Д., 1988: Failures of Overhead transmission lines due to polluted Ice accretions on insulator strings, Fourt International Conference on Atmospheric Icing of Structures, Paris, sept., pp. 305-309.
Плазинић, С., Вучковић, З., Здравковић, З., 1990: Effect of polluted Ice and Snow accretions on higvoltage transmission line insulators, Fift International Conference on Atmospheric Icing of Structures, Tokyo.
Плазинић, С., Вукмировић, Д., Ситамайовић, М., 1968: Сарадња електропривредних организација и Хидрометеоролошке службе у СР Србији на прикупљању и обради података потребних за пројектовање електричних водова, $I X$ Савейовање елекйроенерг̄е"̄иичара Југ̄ославије JУHAKO CIGRÉ, Врњачка Бања, реф. 30.05.
Пойовић, Т., 1983: Прорачун броја атмосферског електричног пражњења типа облакземља, CAPEH, Беойрад, сі̄р. 263-266.
облакземља, САРЕН, Београд, сыр. 263-26б.
Пойовић, Т., 1991: Увођење бројача атмосферског електричног пражњења типа 10 kHz у Пойовић, Т., 1991: У вођење бројача атмосферског електричног пражњења типа 10 kHz у
мрежи ГМС РХМЗ Р Србије, Друг̄а југ̄ословенска конферениија о модификацији времрежи ТМС РХМЗ Р Србије, Друг̄
мена, Маврово, кн. ІІ, сйр. 135-138.
Пойовић, Т., Гаврић, М., 1987: Бројач атмосферског електричног пражњења са вертикалном антеном, Зборник радова са XVII Савейовања елекйироенерӣеӣичара Југ̄oславије ЈУКО CIGRÉ, Будва, сйр. 131-140.
Пойовић, Т., Миљковић, Н., 1991: Додатни терет од залеђивања на проводницима надземних водова у облику самоносећег кабловског снопа, $X X$ Савейиовање елекйироенерӣеӣичара Југ̄ославије ЈУКО CIGRE, Неум.
Вучковић, З., Плазинић, С., Николић, И., 1996: Failures of Overhead lines due to Ice and Wet snow in a part of Balkan peninsula (Serbia), International workshop on atmospheric Icing of Structures, Kvebek, Kanada.
Вучковић, З., Николић, И., Сшыојилковић, Ј., 1997: Хаварија далековода 220 kV бр. 203/1 и бр. 206/1 на подручју Шаргана у јануару 1997. године, 23. Саве"̄овање JУКО CIGRÉ, Херцег̄ Нови, реф. 22-09.
Вукмировић, Д., Ункашевић, М., Тоиић, И., 1997: Ударност кошаве, 23. Савеӣоване JУКО CIGRÉ, Хериег̄ Нови, реф. 22-03.

ТЕМПЕРАТУРЕ КОЛОВОЗНЕ КОНСТРУКЦИЈЕ У БЕОГРАДУ

Предраг̄ Пейиовић, мей. $\overline{\text { иехн. }}$

Рейублички хидромейеоролошки завод Србије, Кнеза Вишеслава 66 11030 Беог̄рад, Jуz̄ославија

Abstract

The discussion of the road construction temperature is important in civil engineering, because the data on road construction temperature characteristics in real weather conditions are available and thus the existing indirect methods of determination temperature parameters can be reevaluated.
Knowing the conditions for low road surface temperatures is very important in traffic. Low temperatures directly influences the conditions of icing or maintaining new snow layers of the road surface.
The discussion of the road construction temperatures is also important in meteorology, especially for urban area climate studies. Its influence on air temperature in various weather conditions must not be rejected because this type of surface prevails in urban areas.

Абсйракйи

 йодцци о йемйерайчрним каракйиерисииикама коловоза у реалним временским условима, йа се
 иракси.

 снег̈а на йовриини коловоза.
Познавање ииемйерайуре коловозне консйррукије је важно и за мейеоролоӣију, нарочийо за ироучавање климе урбаних йодручја. Како ова врсйа йодлоге иреовлађује у урбаним обласииима, не сме се одбацииии њен уиицај на ииемйерайуру ваздуха у разним временским условима.

О МЕРЕЊУ

Исйорија"и мерена

Ойис инсиирумен"̄иа

Температура коловозне конструкције у Београду се мери од 1986. године. У почетку су мерења вршена према потреби, да би се 1988. године установила свакодневна мерења која су одржана до данас. До прекида мерења услед неисправности инструмента долазило је до 1990. године, када је обезбеђен континуитет мерења. Мерења се врше у Пастеровој улици, недалеко од зграде Опсерваторије.

Инструмент за мерење температуре коловозне конструкције се састоји из следећих делова (слика 1):

Пријемни део са сондама је у облику штапа дужине око 1.2 m . Штап је постављен вертикално у коловозној конструкцији тако да се један крај налази непосредно испод саме површине коловоза. Дуж штапа се налази

Слика 1. Схема пријемног
дела инструмента
шест сонди за температуру, ширине по 4 cm . Средине тих сонди се налазе на дубинама 4 cm , $15 \mathrm{~cm}, 30 \mathrm{~cm}, 50 \mathrm{~cm}, 70 \mathrm{~cm}$ и 100 cm и налазе се у различитим слојевима коловозне констру кције. Сонде су термоелементи за позитивним температурним коефицијентом. Сонде су са мерним делом инструмента повезане проводницима, који се налазе на дубини од око 1 m .

Мерни део инсиируменйа је универзални ин струмент за мерење електричних величина нодешен за мерење електричног отпора. Ин струмент има тачност од 1%. Вредност електричног отпора се очитава са тачношћу од 0.1Ω.

Табла са ушичницама за мерење се налази непосредно поред инструмента. Ова табла има седам утичница. У једној се стално налази едан крај парица за мерење електричних величина и представља фиксирани крај отпора који се мери. Остале утичнице су слободне за мерење електричног отпора сонде на одређеној дубини, где је за сваку дубину обезбеђена по једна. Ове утичнице предтављају слободни крај електричног отпора који се мери.

Посиуиак осмашрања: По укључивању инструмента проверава се тачност његовог показивања на начин који је предвиђен упутством за употребу. Мерење се врши тако што се слободни крај парица редом поставља у сваку од утичница за мерење почев од најмање дубине $(4 \mathrm{~cm})$ према највећој дубини $(100 \mathrm{~cm})$ и очитава вредност електричног отпора са очитава вредност електричног отпора са
тачношћу показивања мерног дела инструмента. Очитавање се врши оног тренутка када се на показивачу инструмента бројке задрже на једној сталној вредности. Приликом сваког очитавања бележи се вредност електричног отпора, док се температура одређује после завршеног очитавања и искључивања мерног дела инструмента. За то одређивање користи се посебна таблица која је сачињена на основу једначине промене електричног отпора у зависности од температуре

$$
R=R_{0}(1+\alpha T)
$$

где је $R_{0}=160.8 \Omega$ електрични отпор сонде при температури $0^{\circ} \mathrm{C}, T$ је температура сонде, а $\alpha=0.1345^{\circ} \mathrm{C}^{-1}$ је температурни коефицијент сонде.

Тачност мерења зависи од тачности одређивања електричног отпора. Како је тачност очитавања инструмента 0.1Ω, а називна тачност инструмента 1%, добијамо да је тачност мерења око $0.2^{\circ} \mathrm{C}$. Управо се из тог разлога на таблици за одређивање температуре налазе вредности у интервалима температуре од по $0.2^{\circ} \mathrm{C}$.

Прогррам мерења
Редовна мерења температуре коловозне конструкције обухватају мерење на пет одређених дубина, и то $4 \mathrm{~cm}, 15 \mathrm{~cm}, 30 \mathrm{~cm}, 50 \mathrm{~cm}$ и 100 cm . Мерења се врше пет пута дневно, и то у 5,7 , 14,19 и 21 час.

Ванредна мерења се спроводе само према потреби. Она се најчешће односе на часовна мерења на свим дубинама, где се понекад укључууу мерења температуре површине коловозне конструкције контактним електричним термометром непосредно изнад саме сонде

ОБРАДА ПОДАТАКА

Обрада података о температури коловозне онструкције врши се на исти начин као обрада података о температури земљишта. То бухвата одређивање средњих и екстремних вредности температуре за сваку дубину и за сваки термин. Средња дневна температура на свакој од дубина је израчуната као аритметичка средња вредност температуре из тр климатолошка термина (7,14 и 21 час). Дневна колебања (амплитуде) температуре одређена су као разлика између највише и најниже тем пературе измерене у било ком термину осма трања у току дана.
 сйрукције

Ради одређивања дневног тока температуре коловозне конструкције, спроведена су ванредна часовна мерења у периоду од 23. јула до 11. августа 1992. године. Овај период је од абран због очекиваних великих дневних коле бања температуре као последице интензивног загревања и хлађења површине коловоза. У овом периоду је дошло и до веома високих температура ваздуха. У табели 1 дате су средње часовне вредности температуре за ваку од дубина, као и за температуру ваздуха у току вршења ванредних мерења

Дневна колебања температуре указују на количину топлоте која пролази кроз слој на одређеној дубини. Приликом загревања, количина топлоте коју прими слој на мањој дубини једним делом се троши на загревање самог слоја, док се други део преноси на слоеве на већој дубини. Послешица овакве распоеле топлоте је интензивииј загреване хлађење површинских слојева у односу на слојеве веће дубине, што се одражава као смањење амплитуда температуре са повећањем дубине

Из добијених података може се запазити да је дневно колебање температуре на 4 cm дубине око два и по пута веће него на дубини од 15 cm . Већ на 30 cm дубине имамо двоструко мање амплитуде у односу на претходну мерну дубину, односно пет пута мање у односу на намању мерну дубину. На 50 cm оне су око 20 уута мање у односу амплитуде на дубини од

4 cm , док су на 100 cm дубине реда величине тачности мерења (до $0.2^{\circ} \mathrm{C}$), па можемо сматрати да их практично нема. Ови односи ам плитуда нису равномерни, што је последиц нехомогеног састава подлоге, а самим тим и различитих термичких особина сваког од слојева.

Минимална дневна температура се на дубини 4 cm јавља око један до један и по час по изласку Сунца (у периоду када су вршена ова мерења то је око 5 часова ујутру). Максимална дневна температура се јавља око један до један и по час по доласку Сунца до највише тачке изнад хоризонта (око 14 часова). Примећује се готово иста временска разлика између дневних екстрема температуре на најмањоі дубини и услова који су до тих екстрема довели. Идући

Табела 1 . Средње часовне вредности температуре коловозне конструкције и ваздуха у време ванредних мерења (С), Београд, 23.7.
11.8.1992.

ras	4 cm	15 cm	30 cm	50 cm	100 cm	2 m
7	28.5	30.5	31.3	30.1	23.6	23.0
8	29.4	30.2	30.9	29.9	23.6	25.7
9	32.4	30.3	30.7	29.8	23.7	28.0
10	37.6	30.7	30.6	29.6	23.7	29.9
11	42.3	31.8	30.6	29.6	23.6	31.4
12	45.8	33.1	30.9	29.6	23.6	32.4
13	47.0	35.2	31.5	29.6	23.6	32.6
14	47.3	36.4	32.0	29.7	23.7	33.5
15	46.8	37.4	32.8	29.8	23.7	33.9
16	43.9	37.9	33.3	29.8	23.7	33.2
17	41.3	38.0	33.8	29.8	23.6	32.3
18	38.7	37.6	34.2	29.9	23.6	30.5
19	36.1	37.1	34.5	30.1	23.6	28.6
20	34.7	36.4	34.5	30.2	23.6	26.6
21	33.6	35.6	34.4	30.4	23.6	25.6
22	32.7	35.2	34.2	30.5	23.6	24.8
23	31.2	34.6	33.9	30.5	23.7	24.0
24	30.7	33.9	33.7	30.6	23.7	23.1
1	29.9	33.4	33.3	30.7	23.7	22.1
2	29.4	32.7	32.9	30.8	23.7	21.4
3	28.7	32.1	32.6	30.7	23.7	20.7
4	28.2	31.7	32.3	30.6	23.7	19.7
5	27.7	31.2	32.0	30.4	23.7	19.1
6	27.6	30.8	31.8	30.5	23.7	19.8
7	28.0	30.2	31.5	30.4	23.7	21.8
sr.	35.2	33.8	32.6	30.1	23.7	26.5
max	47.3	38.0	34.5	30.8	23.7	33.9
\min	27.6	30.2	30.6	29.6	23.6	19.1
amp	19.7	7.8	3.9	1.2	0.2	14.8

ка већим дубинама, време јављања дневних екстрема температуре "касни", тако да се на 15 cm дубине дневни екстреми јављају око три часа касније, на 30 cm дубине око шест часова касније, а на 50 cm дубине десетак часова касније у односу на дубину од 4 cm .

Из овога се намеће закључак да екстремне дневне температуре касне са дубином око јеадн час на свака 4 cm промене дубине. Имајући ово у виду, можемо закључити да се екстремне температуре на површини коловоза јављају један час раније него на дубини од 4 cm . То значи да се минимална температура површине коловоза јавља око пола часа по изласку Сунца, а максимална око пола часа по достизању највишег упадног угла Сунчевих зрака на хоризонталну површину, односно око 13 часова.

Температуре најмањих дубина коловозне конструкције су током целог дана знатно више од температуре ваздуха. На 4 cm дубине разлика је између $5^{\circ} \mathrm{C}$ ујутру до $15^{\circ} \mathrm{C}$ у раним поподневним часовима. Интересантно је уочити да су времена појављивања дневних екстрема температуре ваздуха и температуре коловозне конструкције на 4 cm дубине приближно иста, што може бити последица једнаке брзине транспорта топлоте од површине подлоге до ових нивоа.

Годииниииок йемииерайчре коловозне кон-

сйррукције
За одређивање годишњег тока температуре

коловозне конструкције коришћени су подаци који се односе на период од 1991. до 1996. године. У овом периоду постоји континуитет мерења на наведених пет дубина.

Према добијеним подацима (табела 2), у већем делу године слојеви мање дубине топлији од слојева веће дубине, док у периоду мањег трајања сијања Сунца (од октобра до фебруара) температура расте са повећањем дубине. Једна од карактеристика годишњег тока средњих месечних вредности је и та да се смена хладнијих и топлијих слојева врши за веома кратко време, у току једног месеца, и то на свим дубинама. Највише средње месечне температуре се на скоро свим дубинама јављају у јулу, а најниже у јануару. Екстремне вредности средњих месечних температура се на дубини од 100 cm јављају око месец дана касније.

Годишње колебање средњих месечних тем пература на дубини од 4 cm износи $29.3^{\circ} \mathrm{C}$ и са повећањем дубине се скоро равномерно смањује. На 50 cm оно износи $22.4^{\circ} \mathrm{C}$, а на 100 cm скоро двоструко мање у односу на најмању мерну дубину ($15.4^{\circ} \mathrm{C}$). Уколико узмемо у обзир да су дубине на којима престаје дневно и годишње колебање у сразмери $\sqrt{1}: \sqrt{365.24} \approx 1: 19$ (Вујевић, 1948), овде можемо сматрати да, ако дневно колебање достиже дубину од 100 cm , годишње колебање престаје на дубини од око 19 m .

Средње дневно колебање температуре из тер мина осматрања је најмање у децембру, месецу

Табела 2. Средње месечне и годишње вредности температуре и дневне амплитуде температуре коловозне конструкције и ваздуха (${ }^{\circ}$ С $)$, Београд, 1991. - 1996. год

Sredwe vrednosti							Ampl it tude						
	4 cm	15 cm	30 cm	50 cm	100 cm	2 m		4 cm	15 cm	30 cm	50 cm	100 cm	2 m
1	2.9	3.4	3.9	5.0	8.3	1.6	1	4.1	1.3	0.6	0.1	0.0	6.0
II	4.5	4.8	5.0	5.6	8.2	2.4	11	6.8	2.2	1.1	0.3	0.0	7.5
III	11.1	10.9	10.7	10.6	11.0	7.1	III	10.0	3.6	1.8	0.3	0.1	9.1
IV	18.0	17.1	16.4	15.5	13.8	12.4	IV	12.3	4.5	2.4	0.5	0.1	9.8
V	25.5	24.3	23.4	21.9	18.1	17.7	V	14.2	5.0	2.6	0.5	0.1	10.6
VI	29.7	28.3	27.3	25.3	20.9	21.1	VI	14.8	5.2	2.8	0.6	0.1	10.7
VII	32.2	30.7	29.5	27.4	22.8	23.2	VII	15.9	5.7	2.8	0.5	0.1	11.6
VIII	31.1	30.1	28.7	27.2	23.6	23.2	VIII	14.3	4.9	2.2	0.5	0.0	11.2
IX	24.0	23.7	23.3	22.5	20.8	18.0	IX	11.6	4.1	2.0	0.3	0.1	10.9
X	16.6	16.8	16.9	17.1	17.4	12.7	X	8.2	2.9	1.2	0.4	0.2	9.7
XI	8.5	9.2	9.5	10.4	12.7	6.8	XI	4.7	1.7	0.6	0.2	0.1	7.1
XII	3.3	4.1	4.7	5.8	9.4	2.0	XII	3.0	1.0	0.4	0.1	0.1	5.6
god.	17.3	17.0	16.7	16.2	15.6	12.4	god.	9.9	3.4	1.7	0.3	0.0	9.2

са најмањим трајањем сијања Сунца, а највеће је у јулу. Такође, из описане анализе дневног тока температуре, може се закључити да осматрања у утврђеним редовним терминима довоъно добро репрезентују стварна дневна колебања температуре. Тако се добијени резултати из терминских осматрања могу сматрати поузданим. У прилог исправности овакво разматрања иде и скоро исти однос дневних амплитуда за мање дубине у свим месецима На већим дубинама, однос дневних амплитуда се мења, али се ту ради о малим колебањима температуре током дана које су реда величине тачности мерена, што је још један показатеп већег утицаја годишњег од дневног тока температуре на њену вредност на већим дубинама.

у поређењу са одговарајућим вредностима температуре ваздуха, уочава се да су температуре коловозне конструкције током целе године више и то на свим дубинама. Изузетак чине средње месечне температуре на 100 cm дубине у јуну и јулу, што је од малог значаја за њихов однос са температуром ваздуха. Разлике у овим температурама је најмања у децембру и ануару, када је загревање подлоге најслабије, а температуре најниже. У то време, разлика у температури је скоро иста у свим дневним терминима. Највеће разлике јављају се у августу, када је загревање подлоге веома јако, али не и најјаче у току године, а температуре ваздуха остају и даље високе. Као што је већ напоменуто, разлике су тада најмање пар сати после изласка Сунца, а највеће у време најинтензивнијег загревања подлоге.

Ексииремне вредносиии ииемйерайуре коловозне констирукције

Апсолутни максимуми температуре коловозне конструкције забележени су на мањим дубинама у јулу, а апсолутни минимуми у јануару. На већим дубинама ове екстремне вредности касне око месец дана тако да се апсолутни максимуми јављају у августу, а минимуми у фебруару. У датим подацима може се уочити једна мања аномалија: апсолутни минимум температуре на 50 цм јавио се у децембру. Ова аномалија је последица дуготрајних мразева који су претходили појави овог минимума, а уочава се због релативно кратког низа година осматрања. Иначе, оваква расподела апсолутних екстрема потврђује тврдњу да је

преовлађууући утицај дневних промена тем пературе заступљен ва дубинама до 30 цм, док.

Табела 3. Аисолуини максимуми, минимууии ия амилииуде иемиераиуре коловозне кон

Apsolutni maksimumi (${ }^{\circ} \mathrm{C}$)						
	4 cm	15 cm	30 cm	50 cm	100 cm	2 m
1	15,6	12,6	11,2	10,6	11,5	20,4
II	25,5	17,0	14,0	12,5	12,0	21,4
III	33,8	26,0	21.0	17,8	15,4	27,2
IV	41,2	32,6	27,2	23,4	17,8	28,6
V	47,8	36,6	34,4.	30,2	22,0	34,9
VI	51,2	38,4	35,2	31,3	24,3	36,4
VII	52,8	41,4	38,0	32,8	26,4	39,6
VIII	51,5	41,2	37,6	33,6	26,8	38,9
IX	48,4	37,8	35,1	31,6	25,6	35,8
X	37;9	30,4	27,1	25,8	22,2	30,6
XI	23,0	19,4	17,6	17,2	16,6	26,1
XII	15,9	13,2	13,0	11,4	13,1	19,7
god.	52,8	41,4	38,0	33,6	26,8	39,6
	4 cm	15 cm	30 cm	50 cm	100 cm	2 m
1	-7,9	-4,2	-2,6	1,0	6,2	-12,2
II	-6,8	-3,5	-1,1	1,1	5,8	-14,1
III	-5,0	-2,2	-0,4	1,8	7,1	-7,1
IV	2,6	5,4	7,0	8,6	10,2	-1,1
V	10,0	11,6	12,5	13,8	14,0	4,5
VI	15,0	16,8	17,8	17,1	14,7	9,3
VII	18,0	20,0	20,4	20,8	19,6	10,2
VIII	14,6	16,0	17,2	18,2	19,2	10,2
IX	9,7	11,2	15,4	15,3	16,5	4,7
X	2,6	1,6	7,2	9,0	13,0	-2,3
XI	-3,4	-0,4	1,0	3,0	8,0	-6,4
XII	-6,4	-3,0	-1,8	0,2	6,8	-11,8
god.	-7,9	-4,2	-2,6	0,2	5,8	-14,1

	4 cm	15 cm	30 cm	50 cm	100 cm	2 m
I	23,5	16,8	13,8	9,6	5,3	32,6
II	32,3	20,5	15,1	11,4	6,2	35,5
III	38,8	28,2	21,4	16,0	8,3	34,3
IV	38,6	27,2	20,2	14,8	7,6	29,7
V	37,8	25,0	21,9	16,4	8,0	30,4
VI	36,2	21,6	17,4	14,2	9,6	27,1
VII	34,8	21,4	17,6	12,0	6,8	29,4
VIII	36,9	25,2	20,4	15,4	7,6	28,7
X	38,7	26,6	19,7	16,3	9,1	31,1
X	35,3	28,8	19,9	16,8	9,2	32,9
XI	26,4	19,8	16,6	14,2	8,6	32,5
XII	22,3	16,2	14,8	11,2	6,3	31,5
god.	60,7	45,6	40,6	33,4	21,0	53,7

је на већим дубинама њихов утицај мањи од утицаја међудневних промена у годишњем току температуре

Апсолутно колебање температуре неправилно опада са дубином. Тако је, на основу ових података, апсолутно колебање на 4 cm дубине $60.7^{\circ} \mathrm{C}$, да би на 50 cm било скоро двоструко мање ($33.4^{\circ} \mathrm{C}$), а на 100 cm троструко мање $\left(21.0^{\circ} \mathrm{C}\right)$. Апсолутно колебање температуре ваздуха $\left(53.7^{\circ} \mathrm{C}\right)$ је нешто мање у односу на дубину од 4 cm , али је веће него на осталим дубинама. Апсолутни максимуми су на 4 cm виши него апсолутни максимуми температуре ваздуха, осим у периоду фебруар-октобар. Тада је трајање сијања Сунца најмање, а апсолутни максимуми температуре на 4 cm дубине су нижи од апсолутних максимума температуре

ЗАКЉУЧАК

Из добијених података можемо закључити да Веће амплитуде и самим тим већа промен су температуре коловозне конструкције сразмерно више од температуре ваздуха. Иако се запажа сличност температура коловозне конструкције и земљишта, анализа упоредних мерења може дати одређен однос режима температуре ових подлога. Такође се може извести закључак да су температуре коловозне конструкције више од температуре земљишта.

ЛИТЕРАТУРА

Вујевић, Др. Павле - Метеорологија, Научна књига, Београд, 1948
Ивановић, Драгољуб В. - Метеоролошка статистика, Хидрометеоролошка техничка школа Београд, 1976.
Милосављевић, Др Марко - Климатологија, Научна књига, Београд, 1982 Начин коришћења мултиелементне сонде (упутство за осматрача).

ваздуха. Апсолутни минимуми температуре ваздуха су увек нижи од апсолутних минимума температуре коловозне конструкције.

Коловозна конструкција има веома мали садржај воде, али се ипак не сме занемарити проучавање дубине продирања нулте изотерме. Негативне температуре се могу јавити у најхладнијем делу године (период новембар март) када су могући умерени мразеви. Оне се јављају углавном у слојевима мање дубине, где преовлађује утицај дневних промена температуре. у ређим случајевима, током дужих мразних периода, негативне температуре се јавају и на нешто већим дубинама. Највећ дубина на којој се јавља температура за бележена је у децембру, скоро 50 cm

веће амплитуде и самим тим вена променкказује на мањи топлотни капацитет ове подлоге у односу на земљиште. Међутим, остаје да се установи тачан однос температурних режима ових подлога њиховим упоредним разматрањем.

ИСТОРИЈСКЕ МАКСИМАЛНЕ ПАДАВИНЕ У БЕОГРАДУ И НИХОВ УРЕАНИ АСПЕКТ

Др Мирослав Очокољић, Геойрафски инсииийиуй САНУ,
 Кнез-Михаилова 35, 11000 Беорад, Јуїославија

Abstract

In this work, the historical maximal daily precipitation-s are discussed. A period of 100 years of Belgrade observations of the maximal daily precipitation-s is analyzed. It is conclude that the historical daily precipita-tion-s are yet not appear in the instrumental period, and the range of 100 years of observations cannot be

 used for examination of probability daily maximal precipitation-s.
Айсииракй

У раду су йроучене максималне дневне йадавине у Беогрраду у йериоду за йоследних 100 г̄одина са асйек亠ийа нихове меродавностии и йримене у йроцесу дале урбаннзације гррада, имајући у виду хешерогену рељефну сиирукииуру ужег̆ їрадског̆ йодручја. Закључено је да се исиоријске макси малне дневне йадавине у Беог̄раду нису йојавиле у инсйруменйианом йериоду, йа садашни низ не може да буде меродаван за добијање йоузданих веровайиних максималиих йадавина, из чейа следи закључак да је нужно корисиииийии йоайике са друйих сианациа из ближег̆ окружена.

У $_{\text {boд }}$

У изучавању плувиометријских режима, посебно место заузимају екстремне вредности које се испољавају у виду јаких киша чије су последице поплаве. По својој јачини и штетном дејству, јаки пљускови се убрајају у елементарне непогоде. Максималне падавине се најчешће везууу за временску јединицу, сат или минут; међутим, изучавају се јоп дводневне и тродневне максималне падавине које узрокују ноплаве ширих размера, а у оквиру тога, израчунавају 5 иннутие 10 мивуне, на апалиярај 5-мннене, 10-мнуне, у нашем случају шручене су максимаме мо. у надавине трајана 24 часа ноје се у Беораяу дре 1888 године. Највена вредност од 940 мм осмотрена је 14.061994 и 92.4 мм, 15.07 . 1890. годише За нима следе 1951, са 88,4 мм и 1926. са 87,5 ми У 10 година су забенежене
 треко 20 година те вредности су биде ниже од 30,0 мм Изразито велике дневне падавине су биле у првој половини овог века, тј. до 1950 . године. У шериоду 1951-1987, само су три године. периоду 1951-1987, само су три већим од $70 \mathrm{mм}$, 1967. са $84,8 \mathrm{mм}, 1985$. (75,6 мм), 1971. (72,6 мм). Како су у последње две до три деценије релативно највеће, односно то је

авлажнији период, произилази да се јаки пљускови чешће јављају у сушнијим пери одима (већа загревања), па имајући у виду то, ааступајућем сушнијем периоду, после 1982 одине, могли бисмо да очекујемо већи бро дана са маки алим вреднослма мед 80 ак 100 мм

Вероватноћа максималних дневних падавина

у изучавању режима падавина и решавању бројних водопривредних проблема, на пример од пројектовања отвора канализације, из радње насипа, одбране од поплава, увек се ализирају максималне падавине прим рачуна вероватноће. Ово се чини из разлог тто су осмотрени низови кратки и њима дајчешће не налазе историјске максималн адавине или оне падавине које се ретк јављају, на пример, једном у 100 и више годин оришћењем краћих низова и неке од мена татистичке прерасподеле, осмотрен пода сыиа утврђују 50 -годишње, 100 -годишњње или 150 годишње падавине. Ово правило важи и за станице које имају дуге низове осматрања уко лико се и на њима нису појавиле историјске

вредности. За случај Београда, вероватноћа аадавина је обрақивана углавном у кослера тадавине за часове и минуте обрадом интен дадана за се могло мостићи захра уіући нетремидом регистровану падавина помону ом брографа после 1950, године. Коришћењем података о максималним дневним падавинам 100-годишнем периоду (РХМЗ, 1989),
урађена је вероватноћа дневних падавина,

Слика 1. Крива веровайноһе максималних дневних йадавина у Веойраду (Log Pearson pacйодела)

добијене су вероватне максималне дневне падавине за $2,10,50,100$ и 500 година (Табела 1).

вероватноћа	године	мм
$0,5 \%$	500	120
1%	100	107
2%	50	94
10%	10	65
50%	2	38

Табела 1. Веровайноћа максималних дневиих йадавина у Беойраду
Резултати показују да је досадашња највећа дневна сума од 94,0 мм приближно 50 -годишња вредност (2\%), мебутим, 100-годишње и ајавиле у Бограду иако је прова 100 годиа непрекидних осматрања и мерена. He само што се нису појавиде кише ређе учестаности појава, него се још нису појавиле ни историјске максималне падавине, какав је случај са неким другим кишомерним станицама у Србиіи Под
појмом историјске максималне падавине по-

прхменом Log-Pearson III расподеле која је показала најбоље прилагођавање осмотреном бијене су средье максималне дневне падавине од 427 мм са природшим врерностима коефи цхјјнта варијачије ои 0,40 и коефичијешта асиметрије оп Сs-1,14. Анализом киша јаког асиметрије од Cs $\underset{\substack{\text { Pmox } \\ \text { (mml }}}{\substack{150 \\ \hline}}$

дразумевамо знатно већу вредност од до сада појављених максималних падавина, обично је то $1,5,2,0,3,0$ и више пута већа количина падавина. Ако је то у београду 94,0 мм, онда би историјска била негде између 150 и 200 мм Када би се она уврстила у рачун вероватноће, вероватне максималне падавине биле би веће него што су приказане у Табели 1 . Произилази да вероватноће нису увек мерило стварних максималних падавина, већ само једна оријентација у заштити од штетног деловања атмос ферских вода. Да је то тако, показују регион алне анализе осмотрених падавина у Србији. Када се упореде подаци м.с. Београд са другим падавинским станицама, резултати говоре да су максималне дневне количине у Београду доста ниске, на пример, дневни максимум је у Рупнику 1471 мм Таору (Јајковну 170,4 ми Јазарени 173,6 Сурчин 1684 мм ин у Раковом Доу (саив Власиче) када 1988 године бина катастро
 бела 2).

Станица	мм
Смедеревска Паланка	129,3
Сењски Рудник	147,1
Гоч	141,0
Азања	130,9
Велика Крсна	136,5
Грошница	1369
Крива Феја	129,5
Таор-доњи	187,2
Сурчин	168,4
Брежђе	136,1
Мратишић	145,5
Лајковац	170,4
Лазаревац	173,6
Раков Дол	220,0

Табела 2. Осмойрене највеће максималне невне йадавине у неким месйима Србије

Имајући у виду да је република Србија једно омогено географско подручје када су у пиању појаве киша јаког интензитета проузрокваних од познатих облика кумулонимбус тационарног стања и великог вертикално развоја, сигурно је да и у Београду треба очекивати јаке пљусковите кише чија би вредност могла да буде далеко већа од оних које су (Табела 1). Стогодишње падавине су 107 мм, етстогодишње 120 мм. Према томе закључак би могао да следи: историјске максималне нневне падавине за последњих 100 година Београду се нису појавиле; оне се могу чекивати у наредним периодима, а сулећи по већ сада осмотреним вредностима у поједини местима Србије, сигурно је да би та количин могла да достигне бројку од преко 150 мм или чак 200 мм. Ово се свакако односи на уже по дручје града где се налази м.с. Београд у којем е хетерогена рељефна конфигурација са ур анизованом средином којом су некада текли потоци и речице, па се рачуна да ће коефициент отицања у таквим срединама бит единица. Садашња изграђена кишна канали зација је недовољна да прими ни 10 -годишш јаке кише (65 мм), па није тешко закључит какве би град све последице доживео са поја вом не само кише од 120 мм, него и 150 мм Ова се научна чињеница мора имати у вид риликом доношења будућих планова развој веограда са новим пројектима евакуациј увишних атмосферских вода, нарочито ижим деловима града, поред Саве и Дунава Вероватноће максималних падавина у Сурчину

Метеоролошка станица Сурчин основана ј 967. године, на којој се, уз друге елемент етаљно мере и осматрауу и падавине. Од ин ереса је било упоредити податке ове станиц

са Београдом, с обзиром да је раздаљина између њих 30 км. У 30 -годишњем периоду, највећа осмотрена дневна висина је 168,4 мм која се појавила 28.08.1985. године и за 2,05 пута је већа од претходне појављене максималне дневне количине од 82,0 мм (4.07.1987), а за 1,8 пута већа од исте максималне вредности израчунате су вероватне максималне падавине применом Log Pearson III расподеле која је исто тако показала најбоље прилагођавање осмотреним подацима са вредностима Цв $=0,61$, Цс=2,07 и По=44,2. На овај начин добијена је стогодишња максимална висина дневних падавина од 210 мм, 50 -годишња од $140 \mathrm{mм}, 20-$ годишња од 95 мм и 10 -годишња од 67,0 мм (Табела 3).

вероватноћа	1%	2%	5%	10%
Београд	107,0	94,0	80,0	65,0
Сурчин	210,0	140,0	95,0	67,0

Табеа 3. Веровашиоћа максиианит дневних йадавина у веоа̄раду и Сурчину (мм)

Види се да су вредности неупоредиво веће у Сурчину него у Београду у којем је обрађен 100 -годишњи низ. Стогодишња максимална дневна падавина већа је за два пута у Сурчину него у Београду, а 50 -годишња за 1,5 пут Закључак би овде могао да следи да је, када су у питању екстреми падавина, исправније користити падавине м.с. Сурчин него Београда што важи и за многа друга места у Републици у којима се још нису појавиле историјске мак сималне падавине. Да би се званично потврдило о коиим се срединама ради, нужно ј сачинити регионалну студију појављених мак сималних дневних падавина у Србији која би осим научне, имала и велику практичну при мену. Уз то, када је реч о неповољном дело вању атмосферских вода и њима проузроко ваним поплавама, неопходно је проучити и ефекат рељефа који може да повећава ово неповољно дејство својом енергијом, какав је случај код Београда који је вододелницом која иде од Калемегдана, Булеваром Револуције, Црвеним Крстом и даље до Звездаре подељен на два дела, дунавски и савски, па ће најбржа концентрација великих вода бити у најнижим деловима, поред Саве и Дунава.
У погледу других истраживања интензитета јаких киша за краће периоде, на пример, за часове и минуте, постоји више расправа које разматрају ову научну проблематику. Аутори Зеленхасић Е. и Бугариновић Н. (1979) проучили су вероватне максималне кише за

Београд за период 1951-1977. Издвојене су Осим проучавања режима падавина, пре свега падавине за временске јединице од 10 до 50 минута, 1, 2, 6 и 24 часа, као и дводневне и тодневне падавине. Када се једнодневне падавиие упореде са раније одређеним за Београд, добијају се мале разлике; у првом случају падавине су 113 мм, а у другом 107 мм. Према подацима за Неготин, 100 -годишње једнодневне пақавине су 180 мм, а за Београд, као коба речено, само 187 мм. И овом приликом ром истом да су и веоград и Неготин у једом а пом пувиометријском режиму, па се п вде потвруује правило да се историјске мак у Београду нису у инструменталном периоду да оне у Београду буиле. Може се још истаћи дима јер је ураду буду веће него у другим месјаким загреранању велико урбано подручје са за развој облака, велиу уоривома позва. за развој облака великог вертикалног развоја.

Најчешћи датуми појаве максималиих падавина

њихове количине и распореда, у климатологиј се проучавају и датуми појаве јаких киша. Познато је да је њихово штетно деловање највеће у вегетационом периоду, када се пољопривреди наносе највеће штете. Јаке кише могу да захвате један шири регион, па је оси просторног распореда, значајно проучити и којем се делу године оне јављају. На ов начин се могу даба сасарати оуство поплава када треба спасавати Јудство
 мулонимбусе локалног развоја, могу да се јаве и уз фроннаме имаіу посебан значај Ко
 ристени датууена је статистика појављивана падавина, ура и пентадама за проучавани период па се за београдско подручје може реєи риод, па се за максимуми најчешће јављаіу у ролене и дето, из чега произилази да су пљусковитог карактера (Табела 4).

Месец	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Број дана	0	1	2	11	16	14	13	14	12	5	6	1

Ретко се појаве у зиму, свега два случаја, док је месеце, време појављивања екстремних мролећни месец мај са највише појава (16), затим су то јуни и август са по 14 дана, септембар са 12, април са 11. Изузетно максималне падавине, њих преко 10 по величинии (од 70-92 21 V 30 IV, падавина посматрана је и по пентадама којих је било укупно 73 у години. Овим прилазом долазимо до прецо јаиих киша, што је са аспект
 давања прогноза и упозорења веома битно.

Слика 2. Дайуми йојавливања максиналних дневних иадавина у Веойраду - Враз́ар за йенйоде у иеериоду 1889-1986. ̄̈од

Према резултатима са Скице 2, највећи број 32 пентади године (156-160 дани), или од 5.VIдана са максималним дневним падавинама је у 9.VI, затим су то пентаде од 141-145 дана, 146

150, 186-190, 226-230 дана у години. Према подацима са исте скице, постоји одређено груписање тачака током године, најчешће између 120-160 дана у години, затим између $180-200$ дана и од $220-250$-ог дана (19.VII-23.VII) само по један случај, док је у јесен то период од 260-

Општи закључак

Београд као велико урбано подручје, посебно његово уже градско језгро, изложено је дејству многих елементарних непогода, међу којима јаке пљусковите кише заузимају посебно рењефом града кога чине две основне целие рељефиалне равни норе Дунава ц Саве алувијалне равни поред Дунава и Сав побрђе са изуженим иосама, повијама брлим и брежуљцима, просечне висине око 200 м Анализим киша јаког интензитета на ужем Аодручіу града дошло се до заклучка да се историјске максималне дневне падавине нису

Литература:

Ракичевић, Т. (1983): Секуларне йромене климе Беойрада, Гласник СГД, св. LXIII/2, Београд; РХМЗ (1989): Резулийайии осмайрања мейеоролоике ойсервайорије у Веойраду у йериод 1887-1986, Београд;
Зеленхасић, Е., Бугариновић, Н. (1979): Учесйалосй висина йадавина у Србији, Водопривреда, бр. 62, Београд;
СХМЗ (1985): Мейеоролоики йодишњаии у йериоду 1951-1985, Београд.

појавиле у инструменталном периоду, осмо трене вредности су доста ниже у односу на падавине других места у околини или Репуб лици Србији. Стога није тешко закључити јаке кише од на шример 150 по повом једн Ова се научна чиненица мора да има у мм Ова се научна чињеница мора да има у виду Београда са новим пројектима еракуачј сувишних атмосфеских вола нарочито ншжи деловима града, поред Саве и Дунав ижим деловима града, поред Саве и Дунава

- д дана, такође са по једном појавом чешће максималне падавине се кош јављају змеђу 106-110 дана, 136-140, 151-155, 191-195 ог дана.
1.V, 30.IV, 4. IX, 12.IX, 3.VI, 31.VII. Осим за

HЗОKEPAУHMUKM HMBO HA TEPИTOPИЈИ СР ЈУГОCJIABMJE
 - ОД ОСМАТРАНА ДО СТАНДАРДА -

Тихомир Пойовић, дийл.мей, Оливера Јовановић, дийл.ме"и
Савезни хидромейеоролонкии завод, Беог̆рад

It is necessary to know the characteristics of lightning, which proved to be a dangerous meteorological event, for the purpose of its protection dimensioning. Beside a short review of the convective clouds electrization factors which might result in discharge process, the paper presents quantitative character istics of atmospheric electrical discharge as a result of continual functioning of meteorological network in FR Y..These data have been used for preparation of JUS N.B4.803 - Map of isoceraunic level for FRY standard. This paper also contains some results of instrumental detection of lightning in the territory of the Republic of Serbia

Абсӣракиеи
За иооиребе йројекйовања и реализацје заийииие од аймосферских елекииричних иражњена, која йредсииввају ойасну мейеоролоику йојву, неойходно је йознавање нихових каракииерисииика. Ураду се, йоред крайког̆ осерйа на чиниоце елекйиризиије конвекииивних облака који за резулиайи нойу да имају ироцес ииражнена, наводе кваниииииаииивне каракииерисииике аймосферских елекйричних йражњења као резулйиайи конииинуираног̆ функционисања мреже мейеоролоиких сиианица у СР Југ̄ославији. Ови йодпци су уйойребъени за израду сйиндарда ЈЈی N.B4.803- Изокерауничка карйиа Савезне Рейублике Југославије. Рад садржи и неке резулйиайе

$У_{\text {bod }}$

Скоро да ни једна природна појава својом импозантношћу не изазива већу пажњу, па и страх човека, од муње. Последице појаве муња, разарања, пожари и људске жртве, наметнуле су потребу за проналажењем неког вида заштите. За савремено друштво је коришћење електричних и електронских уређаја, осетљивих на дејство муње, нормална свакодневна појава. У многим технолошким процесима су присутне материје екстремно осетљиве на дејство муна. Није мали број других објеката, различите намене, које треба обезбедити од евентуалног дејства ове природне појаве. За реализацију савремене заштите од муње неопходно је познавање квантитативних и квалитативних карактеристика појаве (ІЕС, 1993.). Метеоролошка де-

латност је усмерена на праћење и изучавање квантитативних карактеристика. Део резултата систематских метеоролошких мерења и осматрања у мрежи метеоролошких станица СР Југославије омогућио је израду стандарда JUS N.B4.803 за потребе одређивања нивоа заштите од атмосферских електричних пражњења.

Нฉелектрисање конвективних облака

Процес наелектрисања конвективних облака везан је за поједине хидрометеоре - водене капљице, ледене кристале, велике кишне капи, снежне пахуље, крупу, зрна града и прехлађене водене капљице. Интеракција хидрометеора услед интензивних вертикалних ваздушних

струјања, силе теже и електричног поља доводи до раздвајања наелектрисања у облаку и формирања области са преовлађујућим наелектрисањем једног или другог знака (Маson B.J., 1971.). Процес раздвајања наелектрисања успорава турбуленција и електрична проводљивост облака.

Информације о наелектрисању конвективних облака, нарочито Cu cong, Cb , добијају се мерењима електричног поља са тла, авионским мерењима, и сондирањима облака. Pe ализација оваквих мерења и њихова анализа су сложен задатак јер је грмљавински облак веома динамичан систем, нарочито у стадијуму зрелости. Међутим, установљено је да већина добро развијених Cb -а имају биполарну, или сложенију структуру расподеле наелектрисања. У горњим деловима зрелог грмљавинског облака преовлађује позитивно наелектрисање а у нижим деловима негативно. Испод области са преовлађујућим негативним наелектрисањем може се налазити мања област са преовлађујућим позитивним наелектрисањем. Облак са оваквим распоредом наелектрисања назива се позитивно поларизован. У ретким случајевима осмотрени су и негативно поларизовани облаци

Муња

Атмосферско електрично пражњење, у виду џиновске варнице, између: облака вертикалног развоја и подлоге, делова облака који су различито наелектрисани, или између два облака назива се муња. Процес се одвија у три етапе: лидерна, главна и финална (Никандров В., 1981.). Пражњење је обично иницирано унутар грмљавинског облака и постаје видљиво када се бледи, негативно наелектрисани канал, степеничасти лидер појави из базе облака. Током лидерне фазе, чије је трајање реда милисекунде, настаје пробој растојања између облака и земље, као резултат постепеног продужавања проводног високотем пературног канала лидера. Напредовање лид ера према тлу одвија се дисконтинуирано, корацима од 50 до 100 м за време од једне микросекунде, после чега настаје пауза од око 50 микросекунди. Лидер савладава растојање до земље у десетини милисекунде, што зависи од кривудавости стазе којом се креће. Када стигне до тла лидер има око 5 C негативног

наелектрисања на себи и носи веома јак електрични потенцијал у односу на земљу од око $10^{8} \mathrm{~V}$. Када лидер дотакне површину земље почиње главни стадијум муње. Наелектрисање лидера се неутралише и почиње повратни лидер, који се види као интензиван бљесак вветлости. Нагло ширење канала муње изазива јак звучни талас - гром.

По правцу савлађивања растојања између облака и тла или објеката на тлу разликујемо силазне и узлазне муње, а по знаку наелектрисања које носи позитивне или негативне муње. Најчешће су силазне негативне муње.

При пролазу наелектрисања кроз канал муње долази до стварања промена у електричном и магнетном пољу које се радијално шире из свих сегмената канала укљученог у струјни ток. Промена поља имају електтостатичку, индуктивну и радијациону компоненту. Свака компонента има флуктуације различитих фреквенција. Промене поља су функције радијалне удаљености од канала муње. Детаљна структура електричног и магнетног поља у првих неколико микросекунди, услед повратног удара, је од суштинског значаја у инструменталној детекцији муња.

За проблематику заштите од атмосферских пренапона најинтересантнија су пражњења између облака и земље, односно објеката на њој, која се називају пражњењима типа облакземља.

Осматрање атмосферских електрич-них пражњења (АЕП) у мрежи метео-ролоиких станица СР Југославије

Различити програми метеоролошких мерења и осматрања на територији Савезне Републике Југославије спроводе се на преко 700 метеоролошких станица. Скуп станица које реализууу исти програм мерења чини мрежу станица, па тако говоримо о мрежи падавинских, климатолошких и главних (синоптичких) станица. Појава атмосферских електричних пражњења, са различитом поузданошћу, се осматра у свим мрежама метеоролошких станица.

Квантитативне карактеристике АЕПП на ос нову визуелиих осматрања

Из резултата визуелних метеоролошких осматрања могу се добити информације о број дана са грмљавином и трајању грмљавине.

Број дана са грмльаиином

Број дана са грмљавином у току месеца, топлије половине године (април-септембар) и године су наједноставнија информација о грмљавинским активностима. Основни недостаци су јој што ништа не казује о трајању и интензитету појаве. Међутим она има и предности. Због своје једноставности она је расположива за скоро сва копнена подручја. Познавајући везу између броја дана са грмљавином и густине пражњења, могу се извести процене густине пражњења за географски најразличитија подручја.

Број дана са грмљавином се добија сабирањем свих дана када је осмотрена грмљавина. Информације о визуелно осмотреним грмљавинама се могу добити из резултата осматрања главних и климатолошких станица. Узимајући у обзир површину СРЈ и број климатолошких станица, просечно растојање са које се може добити оваква информација је око 30 км Просечно растојање са кога се може добити информација по подацима ГМС-а је око 55 км. При томе треба имати у виду да мрежа мете оролошких сганица нема геометријски прави лан распоред.

Трајаве грмљавине

Информације о трајању грмљавине се могу добити само по подацима осматрана гпавних метеоролошких станица (СХМЗ,1974). Осматрање грмљавине подразумева одређивање: појаве (грмљење, грмљавина у даљини и севање), интензитета, времена јављања (почетка и завршетка), времена када је појава била најближа осматрачу, правца кретања, при чему се тражи и информација да ли је појава прешла преко осматрача (станице).

Из резултата оваквих осматрања може се добити трајање грмљавинске активности за поједине месеце или годину. Трајање грмљавин ске активности, у континенталном делу СРЈ, у току године је око 40 сати, а у екстремним случајевима може износити и преко 100 сати

Квантитативне карактеристике АЕП на основу инструменталних осматрања

Под инструменталним осматрањима појаве ат. ел. пражњења подразумевају се осматрања инструментима, уређајима и системима за детекцију и одређивање густине пражњења, првенствено типа облак-земља. Она се врше ројачима ат ел. пражнена, метеоро врше радарима и савременим системима за детекцију муња као птто су LLP. LPATS, SAFIR, TOA, (WMO, 1993.)

Главна одлика оваквих система је лоцирање подручја на коме се налази грмљавинска активност и добијање информација, у реалном времену, о броју пражњења према земљи. На нашем подручіу, за сада, нема оваквих система у употреби.

Употреба метеоролошких радара као уређаја за инструментално осматране ат. ел. пражњења заснива се на вези радарских карактеристика облака вертикалног развоја (висине облака, висине зоне акумулације, $\log Z$ и др.) и емпиријске вероватноће појаве грмљавине (Максимовић С., 1973.).

Бројачи атмосферских електричних

пражњења

Када се говори о инструменталном осматрању ат. ел. пражњења на нашем подручју, обично се мисли на резултате добијене бројачима ат. ел. пражњења (Плазинић С., 1985.).

Бројачи атмосферских електричних пражњења представљају, по начину функиционисања, модификовани радио пријемник. Састоје се од улазно-антенског дела, филтера и механизма за регистрацију.

При употреби било ког типа бројача битно је познавање два параметра: ефективног полупречника пријема и степена раздвајања. $\mathrm{R}_{\mathrm{ef}} \mathrm{j}$ е полупречник круга, у чијем центру је инсталиран бројач, унутар кога је број регистрованих импулса једнак броју пражњења. Задаје се конструкцијом филтера а проверава се из расподеле регистрованих импулса по растојанима од бројача (Поповић Т., 1983.). Степен раздвајања показује који део од укупно регис-

трованих импулса потиче од пражњења типа облак-земља.

новог бројача, ГРОМ 10 kHz (Поповић Т., 1991.).

Са оваквим осматрањима у ГМС РХМЗ Ре публике Србије започето је 1968. године (Поповић Т., 1980.). Почетком осамдесетих јављају се први покушаји иновирања постојећих инструмената. Након израде прото типова, детаљног праћења током сезоне 1986 год, прва серија од 10 бројача типа 10 kHz , у домаћој варијанти названа ГРОМ инсталирана је током 1987. год. тако да се од 1988. осматрања врше и овим бројачима.

Слика 1. Прорачунайе вреднос郶 Ng на йо дручју Србије за 1990. г̄одину

Због различитог третмана ових осматрања у Покрајинским хидрометеоролошким заводима (док су они постојали), данас се располаже континуираним низовима обрађених инструменталних осматрања, за период 1968-1990., само за подручје тзв. уже Србије. У целом периоду, 1968-1990. главни корисник информација добијених инструменталним осматрањима атмо-сферских електричних пражњења био је "Електроисток" - Београд тачније погони преноса електричне енергије ове организације. "Електроисток" је сносио и део трошкова вршења осматрања и обраде инструменталних осматрања ат. ел. пражњења у мрежи ГМС РХМЗ Републике Србије, а комплетно је финансирао развој, израду и увођење

Као пример, на слици 2. дата је расподела прорачунатих вредности Ng на подручју Pe публике Србије током 1990. године
(РХМЗ РС, 1991).
Када се располаже вишегодишњим резултатима инструменталних и визуелних осматрања може се одредити њихова функционална веза

Расположиви подаци чине солидну основу за реализацију једног таквог пројекта. Нажалост овакви подаци нису расположиви за цело подручје СР Југославије.

Од резултата добијених обрадом вишегодишњих инструменталних и визуелних осматрања наводи се приказ дневног хода матрања наводи се приказ дневног хода грмљьавинске активности на МО Београд
(Поповић Т., Боројевић М., 1987.) у периоду (Поповић Т., Боројевић
1971-1985. година., сл. 2.

Инструментална осматрања показују најмању вероватноћу појаве грмљавине у периоду од 5 до 8 сати, а највећу у периоду $15-17$ сати.

Слика 2. Дневни ход і̀рмљавинске ак- иивносйи у Беойраду, йериод 1971-1985.

Јаке грмљавине, преко 100 регистрованих импулса у једном сату, се најређе јављају у периоду од 7 до 10 сати. Најинтензивније грмљавине се најчешће јављају у интервалу од 14 до 18 сати.

Изокерауничка карта СР Југославиј

Стандард је, према JUS ISO IEC Упуству, "до кумент установљен концензусом и потврђен од признате организације у којем се за општу и вишеструку примену утврђују правила, смернице или карактеристике за активности или њихове резултате у циљу остваривања оптималног степена реда у погледу датог контекста" (Танасковић В., 1995). У нашој пракси број стандарда, који третирају метеоролошке параметре, није адекватан потребама и интересовању за познавањем метеоролошких оптерећења, а још је ређи случај да су у припреми стандарда биле укључене надлежне институције. Пример који се овде наводи може се сматрати позитивном променом.

Просечан број дана са грмљавином у току године, у инжењерској пракси најчешће називан изокераунички ниво, је по захтеву Савезног завода за стандардизацију, обрадио Савезни хидрометеоролошки завод (Поповић Т., Јовановић О., 1995). Обрадом су обухваћени подаци са територије СР Југославије у периоду 1951-1980. година. Картографски приказ тери торшјалне расподеле овог параметра сл 3 торијалне распо назива се "Изокерауничка карта Савезне Ре публике Југославије". Она има ознаку JUS N.B4.803 и представља стандард са обавезном применом.

$N g=0.04 T d^{L .25}$,

датог у JUS N.B4.801 се прорачунава вредност просечаног броја пражњења типа облак-земља у току године по $1 \mathrm{~km}^{2} \quad(\mathrm{Ng})$ за потребе реализације заштите од атмосферских електричних прежњења

На основу датих вредности просечног број дана са грмљавином у току године
(Td) и израза

Слика 3. Изокерауничка карйа СР Југ̄ославије, йериод 1951-1980.

Поповић Т., 1983.; Прорачун броја атмосферских електричних пражњења типа облак-земља, САРЕН, РХМЗ СР Србије, Београд

Плазинић С., 1985.; Техничка мете-орологија, Научна књига, Београд, стр. 287-291.
Поповић Т., Гаврић М., 1987; Бројач атмосферских електричних пражњења са вертикалном антеном; XVIII Саветовање електроенергетичара Југославије, P 22.15; Будва

Поповић Т. , Боројевић М.1987; Неке карактеристике атмосферских елек-тричних пражњења у Београду; Зборник метеоролошких и хидролошких радова Бр. 14, СХМЗ, Београд

Поповић Т., 1991; :Увођење бројача атмосферских електричних пражњења типа 10 kHz у мрежу ГМС РХМЗ Републике Србије; Друго Југословенско саветовање о противградној заштити, Маврово

РХМЗ РС, 1991.; Атмосферска ел-ектрична пражњења на територији Републике
Србије у току 1990. године (обрађивач Т. Поповић), Београд

WMO, 1993; Overview of Real-time Lightning Detection Systems for use by Meteorological Services, WMO/TD No 570, Geneve

IEC, 1993.; Lightning protection, Geneve
Танасковић В., 1995: Основни принципи стандардизације у остваривању заштите од атмосферских пражњења; Технички факултет Чачак, Савезни завод за стандардизацију, Факултет заштите на раду у Нишу, Институт безбеднисти "1 Мај" : Зборник реферата са семинара Заштита од атмосферских пражњења у новој југос-ловенској регулативи, Књига II, стр. 1 - 5 ; Технички факултет Чачак, Чачак

Поповић Т., Јовановић О., 1995: Квантитативне карактеристике атмосфе-рских електричних пражњења на подру-чју СР Југославије; Технички факултет Чачак, Савезни завод за стандардиязацију, Факултет заштите на раду у Нишу, Институт безбеднисти "1 Мај": Зборник реферата са семинара Заштита од атмосферских пр-ажњења у новој југословенској регула-тиви, Књига ІІ, стр. 27-49; Технички факултет Чачак, Чачак

ЛИТЕРАТУРА

Mason B. J., 1971.; The Physics of Clouds, OUP, pp. 520-557
СХМЗ, 1974; Упуство за осматрања и мерења на Главним метеоролошким станицама, Београд
Максимовић С., 1973; Коришћење радарских осматрања у анализи и прогнози времена; РХМЗ СР Србије, Београд

Поповић Т., 1980.; Прилог проучавању атмосферских електричних пражњења над територијом СР Србије, РХМЗ СР Србије, Београд

Никандров В., 1981.; Метеорологическиј аспект електризации конвективного облака, Гидрометеоиздат, стр. 35

ОЦЕНА МОГУТНОСТИ КОРИЩНТЕНЫ ЕНЕРГИJЕ СУНЦА И BETPA HA TEPИTOPИJM СР ЈУГOCJABUJE

Оливера Јовановић, диилл. мей.
Тихомир Пойовић, дийл. мейи.
Даница Сйасова, дийл.мей.
Савезни хидромейеоролоики завод, Бирчанинова 6
Беӧ̈рад, Јуд̈ослаєија

Ab:cisi
This paper analyzes the possibilities of Sun and wind energy use on the territory of FR Yugoslavia. The values of mean wind speed at 50 m altitude and average calm frequency have been processed with the aim of assessing the possibility for wind energy use. Wind data analysis implies that there are some regions in FRY which offer the possibility for wind energy use. The values of mean sunshine duration and global radiation have been processed for Sun the possibility of Sun energy use assessment. Sunshine duration data analysis points at considerable possibilities for Sun energy use on the territory of FR Yugoslavia

Абсииракии

У овом раду, анализиране су мойућносӣи кориићена енерг̄етйской йотинцијала Сунца и вейра на иодручуу СР Југославије. За оцену мойућносиии кориићења енерйетиской йоиенцијала вейра обрађене су вредносиии средњих брзина вейра на 50 m надлорске висине и йосечна учесйалосй иииина. Анализа йоаиака о вейру указује да на иодручју СРЈ иосиоје обласиии које йружају моӣућносиии за коришћене енере̄ейской иойенциала вейра. За оцену мойућносиии кориићена енере̄ешиског̀ йойенциала Суниа обрађене су вредносииии средњей йрајања сијања Сунца и ӣлобално̄ зрачена. Анализа йодайика о ӣрајану сијаюа Сунца указује да на йодручју СРЈ йосииоје значајне мойућносиии за кориинене енерйейской иоойенциала Сунца.

увод

Обновљиви енергетски потенцијали Сунца и 1951-1970 са 34 станице и тридесетогодишњи ветра, уз савремену технологију, представљају низови осматрања трајања сијања Сунца за еколошки чист и економски исплатив извор енергије.

у овом раду анализиране су могућности коришћења енергетског потенцијала Сунца и ветра на територији СР Југославије. Оцена енергетског потенцијала Сунца и ветра је дата као климатска карактеристика подручја

Циљ рада је био да се на основу анализе климатских резултата укаже на потребе даљег ангажовања у овој веома значајној области.

Подаци

у овом раду обрађени су двадесето-годишњи низови података осматрања ветра за период

период 1951-1980 са 36 станица на подручју СР Југославије.

Ветар

Стандардна висина, на којој се налази пријемни део инструмената за мерење брзине ветра, је 10 m изнад тла. Да би се добиле вредности брзине ветра на већим висинама врши се одго варајућа екстраполација. у конкретном случају екстраполација је извршена на висину 50м изнад тла
Висина од 50 m изнад тла је изабрана као најчешйа висина на којој се постављају пријемни делови ветрогенератора (WMO TN. No
575). При обради и анализи коришћена је степена зависност следећег облика

$$
V_{50}=V_{10} *\left(\frac{h}{h_{0}}\right)^{c}
$$

gde su:
V1о - измерена брзина вейра на 10 m ,
V_{50} - йрорачунайа брзина вейра на 50 m
th - висина 50 m ,
ho - висна йријемног̃ дела анемойрафа,
a коефицијений храйавос $\bar{u} и$ (условље топографијом околине)

По обрађеним подацима, просечне годишње брзине ветра на висини 10 m изнад тла крећу се од $1.7 \mathrm{~m} / \mathrm{s}$ u U`icu do $4.3 \mathrm{~m} / \mathrm{c}$ y Жагубици. Средње вредносйи брзине верира израчунайе су без учешћа йииина.

Коефицијент храпавости, односно локални топографски утицај, при екстраполацији брзине ветра на 50 m изнад тла утиче знатно на промену брзине ветра са висином. Прорачуната брзина на 50 m изнад тла има вредности веће од $5 \mathrm{~m} / \mathrm{s}$, по обрађеним подацима, у Жагубици, Вршцу, Подгорици, Херцег Новом и Димитровграду. Средње годишње брзине ветра веће од $4 \mathrm{~m} / \mathrm{s}$, по обрађеним подацима, забележене су у Неготину, на Злати бору, у Зрењанину, Новом Саду, Врању, Приштини, Краљеву, а потом у Кикинди, Београду, Смедеревској Паланци, Сјеници, Зајечару и Великом Градишту, Бару, Никшићу, Пљевљима и Улцињу.

Учесталост тишина, односно временских ситуација када је брзина ветра мања од $0.5 \mathrm{~m} / \mathrm{s}$, обрађена је за исти двадесетогодишњи период 1951-1970. Територијалн расподела просечне учесталости тишина (процентима) приказана је на слици 1 . На слици 1. извучене су еквидистантне изолиније на 10%, у интервалу од 10 до 30%. Вредности на основу којих је извршена анализа уписане су спод сваке коришћене метеоролошк станице, великим бројевима.

Карта територијалне расподеле тишина урађена је као пратећа информација, за анализу средње годишње брзине vetra. Израчунавање средњих годишњих брзина без учешћа тишина, даје информацију о самој

брзини ветра, када је ветар регистрован. При каз просечне учесталости тинина, даје слику временских стања без ветра. При анализи по датака и доношењу одлука о избору локације за коришћење енергетског потенцијала ветра треба користити оба податка.

Локални топографски услови се не могу де таљно представити на карти, тако да на слици 1. нису дати подаци за Жагубицу, где је изражен утицај котлине, проценат тишина 51%. Доношење одлука о евентуалној експлоатацији енергетског потенцијала ветра на овој локацији, само на основу вредности средње годишње брзине ветра од $6.4 \mathrm{~m} / \mathrm{s}$, било би погрешно.

Мањи број тишина регистровак у Врицду даје овом подручју значајну предност у погледу могућности коришћења енергетског потенцијала ветра у односу на Жагубигу. Повољан број тишина (мање од 10%), по обрађеним подацима, има: подручје Војводине, Браничева и приморја са залеђем.

Слика 1. Просечан йроценай ииииина (дана без веӣра) на йерийорији СР Југ̄ославије, йе

риод 1951-1980
Оцена могућности коришћења енергетског потенцијала ветра

Према напред наведеној прелиминарној анал изи података о просечним брзинама ветра на исини од 50 m изнад тла и просечној честасти тинина, на територији CP Југо честа иы подручја на којима би постојала могућност коришћења енергет ског потенцијала ветра:

- шира облас \bar{u} кошавской йодручја

ииодручје йланина југ̄озайадно од Димийровӣрада

- йодручје Сйаре йланине
- исйочна сйрана Койаоника
- йодручје Злайибора и Пеш"иера
- зайадни делови Црне Горе
- Приморје са залеђем
- локалииеиеиии йланинских йрееоја на надморским висинама чзнад 800 м

Шематски приказ подручја на територији СР Југославије, на којима, према општим показатељима постоје могућности коришћења енергетског потенцијала ветра дат је на слици

Слика 2. ІІемайски йриказ йодручја на йерииорији СР Југославије, на којима, ирема оиишиим иоказашељима иосиоје могућносӣи кориићена енера̄ейской йоииенцијала вейра

трајање сијања Суица

Трајање сијања Сунца је дужина периода у току кога интензитет директног Сунчевог зрачења прелази одређени праг, а предмети обасјани Сунчевом светлошћу бацају оштре сенке. По препоруци Светске метеоролошке организације, минимална вредност интензитета директног Сунчевог зрачења, при ведром времену, када почиње регистровање трајања сијања Сунца износи $120 \mathrm{~W} / \mathrm{m}^{2}$.

Инструмент за бележење трајања сијања Сунца зове се хелиограф.

У метеоролошкој служби СР Југославије су у употреби хелиографи са стакленом лоптом, по Кембел - Стоксу, и то два типа: обичан и универзални. Основни део код оба хелиографа је масивна стаклена лопта, која скупља у жижу Сунчеве зраке, тако да прогоревају картонску траку постављену иза сатклене лопте. При кретању Сунца у току дана, на картонско траци подељеној на часове остаје траг од про горевања. Хелиографке траке су од картона гоброг квлитета обоне црном бојом рания доброг квалитета, обојене црном бојом ради бољег упијања топлоте. Уздужно, средином траке налази се бела линија, а попречно, по деле на сате и делове пуног сата што омогућује прецизније одређивање трајања сијања Сунца.

Регистровање трајања сијања Сунца врши се, по Правилнику о утврђивању мрежа и програма рада метеоролошких станица од интереса за целу земљу, на свим Главним климатолошким станицама

Тако добијени подаци, уз одговарајуће контроле и обраде, могу послужити не само за до бијање информација о вредностима и облику територијалне расподеле трајања сијања Сунца на подручуу СР Југославије вен и за до бијање информација о другим параметрима Сунчеве радијације.

Варијација годишње суме трајања сијања Сунца по станицама је од 5 до 9%. Генерално, годишње суме трајања сијања Сунца расту у правцу север - југ, уз напомену да су за годишњу суму веома значајани локални утицаји, експозиција терена - присуство сенки виших планина и појаве магле, итд.

Анализа екстремних вредности трајања сијања Сунца, посматрано за целу земљу, показује да је распон осмотрених вредности прко 1000 сати годишње: од минималних 1555.1 сати забележених 1989. год. у Крушевацу до максималних 2714.9 сати, забележених 1977. год. у Подгорици.

Најмању просечну годишњу вредност трајања сијања Сунца има Пожега 1566.1 сат (котлина са честом појавом магле), а највећу Улцињ 2557.8 сати (географски југ, са повољном експозицијом околног терена)

Територијална расподела годишње суме трајања сијања Сунца, Шу сатимаЋ дата је на слици 3. Изолинијама на 50 сати у интервалу од 1900 до 2100 сати приказано је просечно годишње трајање сијања Сунца на већем делу територије СР Југославије. Локалитети Куршумлија, Пљевља и Пожега су издвојени изолинијом 1800 сати. Велики градијент пораста трајања сијања Сунца у правцу Приморја дат је изолинијама на 100 сати од 2100 до 2500 сати.

Слика 3. Просечне годииње суме йрајања си јања Сунца, IIIу сайимаЋ на йерийорији СР Југ̈ославије, йериод 1951-1980

Глобално зрачење Сунц

Глобално зрачење Сунца представља суму директног зрачења Сунца и дифузног зрачења атмосфере. Мерења глобалног зрачења Сунца врше се у Мрежи специјалних метеоролошких станица од интереса за целу земљу. Метеоролошке станице на којима се мере параме три Сунчеве радијације називају се актиноме тријске станице. По препорукама Светске ме теоро-лонке организације растојање између актинометријских станица може да буде 150 - 200km.

Мерења глобалног зрачења Сунца се обично врше на хоризонталну површину. За ова мерења користе се инструменти који се зову пиранометри. На вредности глобалног зрачења Сунца утичу астроном-ски, метеоролошки, географски и геометријски фак тори, тако да је неопходно вршити дугогодишња мерења на истој локацији.

За подручје СР Југославије располаже се измереним подацима глобалног зрачења Сунца на актинометриіским станицама Београд, Не готин, Златибор, Приштина и Бар.

На актинометријским станицама на којима се мере параметри Сунчевог зрачења, мере се и други метеоролошки елементи, који омогућууу изналажење међусобне везе. На основу тих међусобних веза може се затим, помоћу различитих метода, извршити израчунавање одређених метеоролошких величина. На актинометријским станицама осматрају се поред различитих метеоролошких елемената и по јава, дефинисаних одговарајућим програмима рада, још и компоненте Сунчевог зрачења и трајање сијања Сунца.

Истраживања су показала да постоји чврста веза између релативног глобалног зрачења (однос измереног глобалног зрачења Сунца и максимално могућег глобалног зрачења Сунца за одрђену локацију) и релативног трајања сијања Сунца (однос измереног трајања сијања Сунца и максимално могућег трајања сијања за одређену локацију), (WMO TN. No. 172).

По истраживањима домаћих аутора, Гамсер (1972), ова веза се са задовољавајућом тачношћу може написати у облику

$$
G=G_{0}(a+b * S)
$$

где су: G глобално зрачење које стварно прима земљина површина, чију вредност добијамо директним мерењем или га желимо израчунати за одређено место, ако нису вршена мерења, G_{0} - екс-тратерестично зрачење у сатима S релативно трајање сијав Сунца, а и b коефицијенти који се одређују на основу података стварног трајања сијања Сунца, највећег могућег трајања сијања Сунца, измереног глобалног зрачења у току потпуно облачног дана и измереног глобалног зрачења у току потпуно ведрог дана.

За добијање територијалне расподеле глобалног зрачења Сунца расположиви подаци актинометријских станица нису довољани Мађутим, како постоји задовољавајући број метеоролошких станица које мере трајање сијања Сунца, вредности глобалног Сунчевог зрачења су одређиване на основу трајања сијања Сунца. При том су коришћене вредности

коефицијената a i b одређене на основу података са актинометријских станица.
Глобално зрачење Сунца на хоризонталну површину (GZ), на територији СР Југославије, период 1951-1980 у ватчасовима по метру квадратном за дан (Wh/dan m^{2}) прорачунато наведеним поступком приказано је на слици 4.

Минимална вредност глобалног зрачења Сунца на хоризонталну површину је 3418.8 $\mathrm{Wh} /$ dan m^{2} у Пожеги, максимална вредност je у Улцињу $4574.1 \mathrm{~Wh} /$ dan m^{2}.

Територијална расподела глобалног зрачења Сунца је аналогна територијалној расподели трајања сијања Сунца.

Анализа података о трајању сијања Сунца и глобалном зрачењу, у поређењу са вред ностима истих параметара у земљама где се енергетски потенцијал Сунца већ користи, Палз (1984), указује на значајан енергетски потенцијал Сунца на подручју СР Југославије.

Закључне напомен

Метеоролошка подлога за разматрање актив ности у области развоја обновљивих извора енергије на територији СР Југославије, обухвата податке за оцену: потенцијала ветра и енергије Сунца.

Могућности коришћења енергетског потенцијала ветра:

- Према обрађеним подацима о брзини ветра и учесталости тишина на подручју СР Југославије постоји могућност коришћења енергетског потенцијала ветра.
- Избор локације и избор начина коришћења енергетског потенцијала ветра (за потребе наводњавања, ветрогенератори: појединачини или фарме) захтевају детаљне анализе карактеристика ветра. Неопходност оваквих анализа је условљена великом локалном ироменливошћу

превоји - експозиција терена, каналисање ветра..)

- Техничке карактеристике изабране опреме су неопходне за одређиване: среди брзине ветра на висини пријемног дела уређаја, овде је анализирана висина 50 m , и дужине трајања средње брзине ветра преко неопходног прага (за покретање елисе стационарног стања радаШІ)

Могућност коришћења енергетског потенцијала Сунца:

- Анализа података о трајању сијања Сунца и глобалном зрачењу указује на значајан енергетски потенцијал Сунца на подручју СР Југославије
- Степен коришћења је првенствено одређен начином акумулирања енергије Сунца (па сивно или активно).

Слика 4. Просечно а̄лобално зрачење Суниа, на ииерийорији СР Југ̄ославије, на нивоу г̄одине у [Wh/dan m^{2}], иеериod 1951-1980.

Литература:

Gamser F. - 1972: Прилог методици обраде глобалног зрачења, VIII Саветовање клима толога Југославије, СХМЗ, Југославија, Златибор
Метеоролошки годишњак И - 1951-1980, СХМЗ Југославија
Palz W. - 1984: European Solar radiation Atlas, Volume I, Germany, K - in
WMO-1981: Meteorological aspects of the utilization of solar radiation as an energy source, Technical not No. 172, Geneva, Switzerland
WMO-1981: Meteorological aspects of the utilization of wind as an energy source, Technical note No. 575 Geneva, Switzerland

ДЕСЕТОГОДИШНА ПРИМЕНА ФОТОНАПОНСКИХ ПАНЕЛА У ХИДРОМЕТЕОРОЛОЩКОЈ СЛУЖБИ СРБИЈЕ

Слободан Кайунац, дийл.инәж.
Рейублички хидромейеоролошки завод Србије, Кнеза Вииеслава 66,
11030 Беог̈рад, Јуїославија

Abstract
Significant experience was gained during the ten years application of photovoltaics used for the elecrical supply of means and instruments necessary for the efficient performing of meteorological activity in order to provide reliable and real time data.
The paper contains a short presentation of the results concerning the use of solar energy as an infinite source, showing the actual development phase and further possibilities of the hydrometeorological activity in Serbija

Абсииракй

Током десейогоддиъе иионирске йримене фоиионайонских йанела - "PV ћелија" за на йајање шехничких средсйава и уређаја неойходних за шйо боље и ефикасније обавлане меииеоролошке делаиносиии кроз обезбеђиваъе йрвовремних и иоузданих йодаӣака и њихове размене, сиечена су значајна искусиива.
Овим радом дай је крайак йриказ резулииаийа коришћења сунчеве енерг̄ије као неииресуиног извора, који недвосмислено указују на ком се сииейену развоја налази и колике су мойућносиии службе хидромеииеорлошке делайносйии у Србији.

Увод

Хидрометеорлошка служба Србије, у оквиру своје делатности, користи велики број различитих мерних инструмената, чији рад и поузданост зависе од стабилног напајања електричном енергијом. Карактеристичан пример потребе за поузданим напојним системом је служба сузбијања града јер се комуникација и рад са радио путем преко репетиторских станица постављених на неприступачним местима. Овај начин остваривања радиовезе садржи бројне проблеме од којих се истичу:

- Привођење дистрибутивне електричне мреже је веома скупо.
- Рад са дизел агрегатима за пуњења акумулаторских батерија, уз ангажовање спољних сарадника, прате чести кварови условљени пре свега људским фактором

Ветро-генератори захтевају поуздана и веома скупа конструктивна решења

Наведени проблеми су основни разлог због кога је техничка служба Завода и пристуши пионирској употреби фотонапонских панела

2. КАРАКТЕРИСТИКЕ "PV-ЋЕЛИJE"

 ФОТОНАПОНСКОГ ПАНЕЛАОсновне карактеристике "PV ћелије" које су навеле пионире ове службе у нас, да им поклоне посебну пажњу у трагању за новим поузданим извора напајања радиорепетитора садржане су у следећем:

Могућност директног претварања Сунчево рачења у електричну енергију
Рад без икаквих покретних делова
Одсуство било каквих загађујућих продуката.

- Теоријски неограничен век трајања. -Изузетно мала маса генератора за произведену снагу.
- Једноставност примене електричног склопа Рад са непресушном енергијом Сунца, као једна од најглавнијих карактеристика.

Већ на први поглед уочено је да наведене карактеристике не поседује ни један други извор енергије. То је био основни разлог да се, у трагању за новим извором енергије, овом извору посвети пуна пажња. Резултати даљег истраживања су то и потврдили.

3. ДИМЕНЗИОНИСАЊЕ ЕЛЕКТРИЧНИХ

И МЕХАНИЧКИХ ВЕЛИЧИНА

"PV-GEJИJA
За сваки уређај, коме је потребна електрична енергија за рад, прибављају се тачне радне карактеристике вредности напона напајања, струје у потрошњи и време рада током целе године. На тај начин се тачно одређује дневна потрошња електричне енергије, из које се поступним прорачуном добијају вредности за потребном енергијом, просечном енергијом и средњом енергијом, у односу на географску ширину и дужину места постављања уређаја.
Из енергетског биланса се добија потребна површина "PV ћелије". Познавањем техничких карактеристика за технологију израде "PV ћелије" тј, коефицијента корисности примењене технологије, дефинише се и потребна електрична снага

За ускладиштење потребне резервне количине електричне енергије за рад уре方аја у ноћним условима, или код више дана без осунчаности, користе се акумулаторске батерије. На основу пребног капаритета врика батерие и породни рануца о шрилагоћ се избор багерие, "PV ћелију".

Начин постављања и оријентације "PV ћелије" одређује се анализом захвата Сунчевог зрачења за оптимални нагиб непокретне кон трукције. Наиме, ефекат "сунцокрета" не даје жељене ефекте за вршне снаге "PV ћелије" ис од 100 (WP). Код засемения "рV локациа по требно је оријентисати "PV ћелије" више ка уго-истоку - до 30° ако то дозвољавају услови терена. Ово се ради у циљу "хватања " јутар њег зрачења, јер су тада плоче панела хладне а име је и ефикасност "PV ћелија" већа у односу на подневно осунчење када температур знатно могу утицати на њихову ефикасност.
4. ПРИМЕНА СВЕТЛОСНЕ КОНВЕРЗИЈЕ PV-ЋЕЛИJА" У СРБИЈИ

Вишегодишњи проблеми у напојним системима које користи хидрометеорлошка служба у Србији условили су одлуку о постављању пробног постројења на репетиторској станици "Липовача". Основне прорачуне и пројектовање за пионирску примену "PV ћелија" вршила је стручна служба Завода, током јесени и зиме 1988. г.

Пробна инсталација, позајмљена од фабрике "ЕЛИНД" - Ваљево, монтирана је и пуштена у рад 12.04 1989. године, а у циљу стицања првих искустава о могућој примени у датим условима. Садржала је панел са 2 секције од по 6 "PV ћелија", врнне снаге 40 (Wp). Стечена искуства о пробном раду првог фотонапонског панела у Србији, обједињена су и објављена у стручном раду групе аутора - пионира на овом послу, пубникованом на Саветовању о алтернативним изворима електричне енергије у Југославији - Чачак 1989. године.

Изванредни резултати током деветомесечног пробног рада условили су убрзану одлуку стручне службе Завода да се на свим репети торским пунктовима дизелагрегатско напајањ замени фотонапонским панелима. Током 1990 . године, на 6 најкритичнијих места замњени су дизел агрегати PV ћелијама" да би на осталим локацијама била извршена замена током нар едних 10 година. Исте 1990. године, октобра месеца, урађено је и пилот постројење на хидролошкој станици "Раковица"- Топчидерска река. После добијених резултата пробног рад од 8 месеци, одлучено је да се оваквим пос тројењем опреми укумо 44 хидролошких станица распоређених на свим реонским хидролошким станицама у Србији. Целокупан пројекат опремања хидролошких станица "PV ћелијама" је завршен у периоду септембар октобар 1991.

5. РЕЗУЛТАТИ ПРИМЕНЕ

ФОТОНАПОНСКАО НАПАЈАЊА

Током вишегодишњег рада "PV ћелија" на ре петиторским пунктовима и хидролошким станицама уочене су следеће карактеристике којим се овај начин напајања издваја у односу сесодадаи рад без ика
Зиркораирад без икаквог одржавања
Знато смањење кварова на електронским го година 20 година.

Потпуни изостанак механичких кварова на Апсолутна поузданост током свих годишњих доба тј. поуздан рад и у најтежим зимским условима и у време летњих жега.

Овде је неопходно нагласити да је гарантни рок произвођача од 5 година знатно је премашен. Наиме, тек после осам година примене регистровани су први недостаци код панела направљених по тадашњој пионирској технологији.

6. ЕКОНОМСКА ОПРРВДАНОСТ УПOTPEEE "PV - TE

Сагледавањем техничко-оперативних резулта примене фотонапонских панела за напајање уређаја на репетиторским пунктовима и хидролошким станицама, приступило се анализи економске оправданости и остварених уштеда за период њиховог коришћења од 10 година. Остварени резултати уштеде од више десетина милиона US долара, запањили су и аутора овог пионирског подухвата у нас и иницирали идеју о изради "Студију о десетогодишњој примени сунчеве енергије у службама Хидрометеорлошког завода Србије." са детаљним описом остварених уштеда. Студија је штампана 1997. године, у издању Pe публичког хидрометеорлошког завода Републике Србије.

Овде је неопходно и нагласити да су остварени ефекти уштеде знатно допринели да се обављање хидрометеорлошке делатности одржи виталним и у периоду изолације наметнуте санкцијама.
За успехом без премца, у примени нових техноилогија у последњих 50 година, резултате примене "PV ћелија" од стране стручне службе Завода, верификовали су и други кроз примену панела у своиим службама и то : Нй

- Јигопетрол, ЕДБ Србије, РМУП, Служба одржавања путева и други.

7. ДАЉИ ПЛАНОВИ РАЗВОЈА СОЛАРНОГ СИСТЕМА У ХИДРОМЕТЕОРОЛОГИЈИ

Драгоцена искуства и остварени ефекти у примени соларних панела "PV ћелија" условило је, не без основа, израду веома амбициознол програма развоја коришћења супчеве енергије у оквиру плана модернизације хидрометеоролошког бдења и осматрања, и модерни зације модификације времена.

Основни изводи из програма садржани су у следећем:

- Развити и применити соларни систем напа јања аутоматских меторолошких станица. - Развити и применити соларни систем напа јаьа свих уређаја службе прогнозе времена. Развити и применити соларни систем напа јања за све телекомуниокационе центре.
- Развити и применити соларни систем напа јања аутоматских аквизиционих хидролошких станица.
Развити и изградити преносни систем солар ног пуњења батерија за ручне радиостанице. Развити и пројектовати систем соларног аутономног напајања радарских уређаја.
На иницијативу Министарства за пољопривреду, шумарство и водопривреду, са Елекгротехничким факултетом у Београду и Винча-Соларом дефинисан је задатак за израду Пројекта лабораторије за истраживањ рачења Сунца и могућност примене у енер Локација Лабораторије била би у оквиру лграде Републичкох хиярометеорлошког за вода Србије.

Као круна свега изложеног, представља пројекат изградње фабрике за производњу "Р елија" од домаћих сировина, што представль надградњу чињенице да је још пре 20 година Винчи направљена прва домана $P V$ ћелија На овај начин, освојио би се програм серијск производње лабараторијски направљење "РУ ћелије" и оствариле вредности електричне снаге од више (MWp). С друге стране обезбеђењем алтернативне електричне енер гије коришћењем непресушне енергије Сунц дало би огромне економске ефекте у цело земљи уз пуну еколошку заштиту.

8. ЗАКЛУУपА

У оквиру прославе врло богате историје 150 година метролошког бдења, па до 30 година рада Система одбране од града, занемарено је 10 "скромних " година корачања путем "Invicti Solis" (непобедивог Сунца). Много развијенија и богатија друштва са поносом истичу и много мање резултате на овом пољу. Располагати са разуђеним системом напајања професионалних техничких система у оваквом обиму је прилика да се и на овај начин исправи грешка и убудуће са поносом и на сваком месту истакне чињеница да је Републички хидрометеорлошки завод Србије једап од пионира масовне примене фотонапонских панела код нас и у свету.

УТИЦАЈ МЕТЕОРОЛОШКИХ УСЛОВА НА РАСПРОСТИРАНЕ СУМПОР-ДИОКСИДА ЕМИТОВАНОГ ИЗ ТО "ВРЕОЦИ"

мр Славко Косйоски, дийл. мейи.
Радмила Војновић-Кљаић, дийлл 。меій
Рейублички хидромейеоролоики завод Србије, Кнеза Виииеслава 6б,
11030 Беоӓрад, Јуёославија
др Драйан Уроиевић, дийл。 инй
Рударски иисйийу Земун, Ваииајнички иуии бш.
11000 Веойрад, Јуд̈осливија

Complex surface and micro-sounding meteorological measurements have been performed in the area influenced by the heating plant Vreoci for several years. The obtained results were used to analyse the atmosphere stability and to study turbulent, diffusion and other thermodinamical characteristics of the atmosphere in observed area.

For the needs of calculations of released SO_{2} spatial distribution, a mathematical model with input meteorological data obtained with corresponding processing was applied as well as with the input data on SO_{2} emissions and imissions, being the result of simultaneous measurements and meteorological measurements.

Айсииракйи
На йодручју уиищцаја ТО" Вреоџи" су иоком виие година вриена комйлексна йриземна и микросондзкна нешеорогоика мерена и осиаиирана. Добијни резу айаиии су искрринени за анализу сииабилносииии аииносфере и ироучаване дифузионих и йермодинамичких каракйерисииика аиимосфере размаиираной йодручја.

За иоииррбе йрорачуна йросииорне расиоделе емийованог̆ СО де јириненен майенаииички модел са уаизнин нейеоролоикии йодчина, добијенин наведеном обрадом као и уаазним йодачина о

УВОД

Развој рударства, индустрије и енергетике, односно индустријских и термоенергетских постројења као и нагли развој урбаних целина и саобраћајних структура на подручју Колубарског басена условили су нагло погорпање квалитета ваздуха. Загађење ваздуха у Обреновцу, Лазаревцу, Вреоцима и другим мањим местима овог басена достигло је такве размера да захтева успостављање система управљања и контроле квалитета ваздуха.

За потребе успостављања система управљања и контроле квалитета ваздуха неопходно је сагледати утицаје великих извора, група извора или свих извора овог подручја у завис-

ности од емисија загађујућих материја, мете ролошких услова и процеса дисперзије, трансформација и депозиција загађујућих ма терија.
У том циљу су за потребе сагледавања утицаја термоенергетског комшлекса "Колубара прерада", односно ТО"Вреоцх" на околину вршена вишегодишна стандардна приземна мерења и етапна висинска метеоролошка мерены, мерења емисија и имисиј загађујућих материја.

кључивањем ових вредности у математичк модел рачуната су поља концентрација

загађујућих материја при карактеристичним условима стабилности атмосфере.
2. МЕТЕОРОЛОГИЈА ЗАГАЂЕЊА

Дисперзија и транспорт сумпор-диоксида (SO_{2}) и других загађујућих материја пореклом из ТО "Вреоци" зависе од термодинамичких услова граничног слоја атмосфере. Комплексност термодина мичких процеса који утичу на дисперзију загађујућих материја се огледа кроз утицај ветра, температуре ваздуха, стабилност атмосфере, атмосферске турбуленције, висине слоја мешања и др (3).

Најзначајнији метеоролошки параметар у погледу степена дифундовања сумпор-диоксида одмах после емисије из ТО "Вреоци" је ветар. Као што је познато понашање димне перјанице, степен њеног подизања и дисперзије дима у атмосфери зависи од брзине ветра.Тачније степен подизања димне перјанице и дисперзија дима унутар димне перјанице је обрнуто сразмеран брзини ветра у делу атмосфере где се димна перјаница шири. При чему излазна брзина дима мора бити најмање два пута већа од брзине ветра на висини извора.
у слоју мешања брзина ветра се повећава са висином уз истовремено варирање његовог правца. Појава вертикалних градијената брзине ветра је условљена орографијом терена, храпавошну подлоге и термодинамичким процесма у амосфери. Када се брзиа вепра повенава са висином, загађуууке материје емитоване из димњака 10 Вреоци уводе се у већу запремину ваздуха за јединични времен који обухвата ширене и самим тии
 разблаживање конщентрација SO_{2} и других аганог мајоранти фак равац њиховог преношења, мајорантни ф тор је турбуленција

Други значајни метеоролошки параметар који утиче на просторну и временску расподелу аерозагађења је атмосферска турбуленција. Инсолација Сунца, храпавост тла, евапотранспирација и други процеси у приземном делу атмосфере су узроци сложених турбулентних кретања у атмосфери. Термички условљена турбуленција атиосфере показује изражену дневну променљивост при великим над адапри јахим инверзијама (3,4)

У анализама и прорачунама расподела применом дифузионог модела сматра се да је турбу-

ленщиа хомогена и стационарна и предпостављено је да су карактеристике дифузије SO_{2} константне у интарвалу времена и разматраном простору.

Концентрамија загађења у хоризонталној и вертикалној равни унутар димне перјанице је нормално распоређена па је зато могуће концентрацију у некој тачки ($\mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})$) приказати у фуккцихји стандардних девијација (дисперзионих коефкцијената) $-\sigma_{y}$ и σ_{z}. Стандардне девијације дефинишу капацитет дифузије атмосфере у којој су загађујуће материје налазе, и ове могу бити одређене у односу на турбулентне карактеристике атмосфере. Оне карактерину временске и просторне промене стања атмосферске турбуленције и репрезентују слој мешања и атмосферске процесе који се одигравају у њему а који утичу на механизам дисперзије $(3,4)$.
Степеп подизања димне перјанице зависи од вредности механичког и термичког потисног момента који директно зависи од односа тем пературе дима на излазу из димњака и тем пературе околног ваздуха као и градијената температуре ваздуха у слоју подизања.
У граничном слоју атмосфере градијент темщературе се значајно мења са висином у завис ности од степена загревања тла.

Током ноћи и веома често током касних вечерњих и раних јутарњих сати долази до по-
 по појаве мнверзија температуре вазпухя. Ин верзија температуре је битна за шоучавање аерозагауева јер се јавља унутар слоја ат мосфере у коме се емитују загађујуће ма терххе. Йвверзију углавном шрати слабо изражешо попе ветра па је због тога мала спо изражежо поље ветра, па је због тога мала спо-
собност атмосфере да дифузијом, спирањем и собност атмосфере да дифузијом, спирањем и
струјањем разблажи концнтрације аеросгрујавем разблажи концентрације аеројању инверзије са врхом изнад висине димњака јању инверзије са врхом изнад висине димњака ТО "Вреоци" у дужем временском периоду, трамија SO_{2} и других загађууућих материја.

Анализирани вертикални профили температуре, ветра, притиска и влажности су били основа за параметризацију граничног слоја атмосфере. Овим поступком су добијени параме три коыи дефинвиу термодинамичке карактеристике пранкчног слоја атмосфере, које битно утичу на цроцену дифузије и дисперзије Параметар стабилности $S=(\mathrm{g} / \mathrm{t})(\Delta \Theta / \Delta \mathrm{z})$ може се разматрати као вредност која је пропор-

ционална износу којом стабилност сузбија генерисање турбуленције.

Ричарасонов број-R $\mathbf{R}_{1}(1,2)$ је параметар који описује утицај хидростатичке стабилности на турбуленцију, а који је дефинисан односом узгонских ефеката и ефеката смицања ветра

Користећи утврђену стабилност помоћу параметра \mathbf{S}, рачунате су вредности стандардних девијација σ_{y} и σ_{3}, користећи утврђену зависност стандардних девијација и коефицијената који дефинишу појаве турбулентности и конвеквије у атмосфери, као и утицај подлоге (1,2).
2.1 МЕТЕОРОЛОШКА МЕРЕЊА И ОСМАТРАЊА НА ЈОКАЛИТЕТУ ТО "ВРЕОЦИ"

Предмет метеорлошких истраживања у периоду 1987.-1990. год. био је гранични слој атмосфере у зони утицаја "Колубара-прераде" у Вреоцима, односно ТО "Вреоци". У њему се врши интеракција између атмосфере и земљине површине, па се резултати приземних и висинских мерења и осматрањима могу искористити за праћење и описивање термодина мичких процеса који дефинишу расподелу сумпор-диоксида и других загађујућих материја емитованих из ТО "Вреоци".
У циљу праћења утицаја метеоролошких фактора на стање загађености ваздуха Колубарског басена 1976. године формирана је Специјална метеоролошка станица (СМС) "Тамнава" са скраћеним стандардним програмом осматрања. Коришћешњем

комплекса приземних метеоролошких осматрања сваки термип осматрања одређивана је фере \longrightarrow

Поред приземних осматрања за потребе испитивања термодинамичких карактеристика граничног слоја атмосфера испитиваног локалитета, вршена су етапна микросондажна мерења. Ова мерења су вршена у свакој од
наведених година, у етапама од по 5 дана два до четири пута годишње, при чему су обавезно обухваћени зимски и летьи период. Микросондажна мерења су вршене на свака три сата од 01.00 па надаље. Највећи број осматрања остварен је до висина $700-1000 \mathrm{~m}$, чиме је обухваћен слој мешања, који је од значаја за анализу дифузионих и турбулентних карактери -стика слоја мешања
2.2 ОБРАДА РЕЗУЛТАТА МЕРЕЊА

Приказ карактеристика ваздушних струјањ над подручјем колубарског басена, који је по требан за проучавање утицаја временских услова на аерозагађење, садржи информациј о правцима и брзинама ваздушних струјања Из одговарајућих терминских вредности брзини и правцу ветра, осмотрених на СМС Тамнава" у периоду 1987.-1990.год., су одго варајућом обрадом добијене расподеле сре њих брзина и честина правца ветра- Слика 4.

За потребе анализа поља основних и изведених метеоролошких елемената извршене су различите систематизације (по терминима, по класама стабилности и др.).

Обрада микросондажних мерења је вршена на тај начин што је за сваки термин мерења по јединачно одређивана класа стабилности ат оссфере по Касквил-Тарнеровој класифи ацији. На тај начин су сва мерења сврстана седам категорија, у зависности од класе стабилности, а затим је вршен прорачун вред ности температуре и ветра дуж вертикални профила.

За сваку сондажу појединачно и за све сис ематизоване по класама стабилности анализирана је појава, тип, дебљина висина баз и врха инверзије, као и градијент температуре.

вредности брзине и правца ветра дуж верти калних профила, сваке од класа стабилности атмосфере, добијене су векторском анализом систематизованих измерених вредности. Добијене вредности послужиле су као улазн подаци у моделу, прорачуп дисперзионих кое фицијената, параметризацију граничног слоја тмофере, и других параметара који су омогућиле детаљну анализу структуре граничног слоја атмосфере и који су неопходни у примени дисперзионих модела за потребе прорачуна просторно-временских расподела загађууућих материја у посматраном локалитету.

За сваки термин микросодажних мерења одређивана је стратификација атмосфере преко параметара стабилности, а затим су св мерења систематизована по класама стабил ности. Рачунате су вредности σ_{y} и σ_{z} за сваки од вертикалних профила и за сваку групу систематизованих профила. Из тако система тизованих профила (таб̈ела1), коришћењем методе регресионе анализе, добијене су регресионе криве за σ_{y} и σ_{z}, облика $y=A x^{a}$, по кла-

сама стабилности на висини извора, са високим коефицуентом корелациіе
23. АНАЛИЗА РЕЗУЛТАТА ОБРАДА

На подручју утицаја топлане у Вреоцима преовладавају ваздушна струјања из ESE, W и мау највеће средве брзине.

Анализа стања стабилности атмосфере у периоду 1987.-1990. год., слика 1, показује да ј тмосфере у зони утицаја ТО "Вреоци" била ајчешие неутрално стратификована. D класа је у овом периоду бина заступвена у 31.4% случајева, са доминантнвм струјањима из WNW, NW ии SE правца.

Најнеповољвији услови за дифузију загағујуфих матерхја су прии стабилној страти иканији атмосфере, која је веома често била касним вечерњим и раним јутарним сатим као и током нони. Поред D класе најчешие су биле заступъене класе које карактеришу ста билну стратификацију атмосфере, и то

G класа, у 25.9\% случајева, са доминантним струјањима из SE, ESE правца

F класа, у $1.5 .6 \%$ случајева, са доминантним струјањима из SSE к \mathbb{S} правца.

Нестабилно стратификована атмосфера, у ко ој доминирауу јаче илм слабије изражена тур буленција и конвективна кретања, се веом често јављала у овом периоду. Од нестабиних класа најчешие су доминирале
В класа, у 10.5% случајева, са доминантним етруjamoma са северозапада (NNW, NW WNW правца) ил југоистока (ESE и SE правац),

и

С класа, у 8.4% случәјева, са доминантним струјанжма из северозапада и југоистока

а сагледавава расподела сумпор-диоксида а других загађууућдвж материја емитованих из топлане у Вреоряма од значаја је позанаване поља температуре и ветра. у случају емисија има при јаким струјањыма и повенаној турбу ленциии атмосфере долази до интеракције између вертикапног млаза дима и комплексне циркулацріе у атмосфери, што доводи до бржег и јачег савијава димне перјанице према земьи а самим тим и до смањења ефективне брзине дима.

Испитивања термичке структуре атмосфере показује да до значајних промена у вертикалном профилу температуре долази током лета при нестабилној стратификацији атмосфере и током зиме при појави инверзија

Анализа појава инверзија у периоду 1987.-1990. год., на основу сондажних мерења, је показала:

да се најчешне јављају приземне инверзије са висинама врха од 100 до 200 метар,

да су градијенти приземних инверзија израженији у односу на придитнуте. Приземне инверзије са тако израженим градијентима су значајне препреке при подизању димне перјанице из 80 метарског димњака 1 О "Вреоци". Овакви термодинамички услови атмосфере су изузетно неповољни за дисперзију дима на већее висине, и омогућавају нагомилавање аерозагађења у слоју од земље до врха инверзије и појаву екстремно високих имисионих концентрација

Анализа поља температуре по класама ста бимности - (слика 2) и по правцима ветра(слика 3) показују да је нестабилна стратификација (класе А,В и С) често условљена релативно високом приземном температуром ваздуха која омогућава појаву изразите термичке турбуленције.

Израчунате вредност коефицијената A_{i} и $\mathrm{a}_{\mathrm{j}} \mathrm{y}$ једначкини $\sigma_{y, z}=A_{i} X_{j}^{a}$ за нестабилну и неутралну стратификамију су $\mathrm{A}=0.93, \mathrm{a}=0.79$ и $\mathrm{A}=0.58$, $a=0.79$, респективно. Резултати анализа вред ности σ_{z} и σ_{y} за посматрани временски период указују на одступања израчунатих вредности у односу на вредности добијених очитавањем са номограма $(2,3)$

У табели 1 су дати резултати параметризације граничног слоја атмосфере при умерено нес табилно стратификацији атмосфере-но нес табилно стратификацији атмосфере-класа в слоју од земље до висне од 150 m , су индикатор постојања конвективних и турбулентних струјања као и изразитог смцања ветра са виси ном који омогућавају дисперзију SO_{2} и других полутаната у атмосфери.
У слоју изнад 150 m вредности R_{i} броја теже ка нули. При чему предходно достижу критичну вредост ($\mathbb{R}_{\text {ics. }}=0.25$), која представља границу преласка ламинарног струјања у турбулентно.
3. РАСПОДЕЛА КОНЦЕНТРАЦИЈА СУМПОР-ДИОКСИДА (SO_{2})

Применом модификованог Гаусовог модела за подручје утицаја топлане "Вреоци" рачунате су средње 24 -сатне и краткотраје концентрације SO_{2}, за руж (С нестабилно (Слика 4) и неутрално стратификоване атмосфере.

За прорачун расподела SO_{2} коришћени су резултите предеходно наведених обрада приземних и висинских метеоролошких мерења и осматрања и од стране Рударског института- Земун, измерених вредности следећих техничкотехнолошких параметара:

- висине димњаке ($\mathrm{H}=80 \mathrm{~m}$), пречник светлог отвора димњака $(\mathrm{R}=3 \mathrm{~m})$, температура излазних гасова ($\mathrm{t}=164^{\circ} \mathrm{C}$) и излазна брзина гасова ($\mathrm{V}_{\mathrm{g}}=13.03 \mathrm{~m} / \mathrm{s}$).

Анализа израчунатих поља приземних имисионих концентрација SO_{2} показује да се високе концентрације средњих 24 -сатних кон центрација могу очекивати при изра
 (ГВИ $=150 \mu \mathrm{~g} / \mathrm{m}^{3}$) (ГВИ=150 $\mu \mathrm{g} / \mathrm{m}^{3}$)
Краткотрајне концентрације SO_{2} при изразитој нестабилности атмосфере, су веће од законом $300 \mu \mathrm{~m} \mathrm{~m}^{3}$ на растојанима од приблихно 1 kM
 и то у ESE SE S WNW и NW правцу.
При неутралној стратификацији атмосфере При неутралној стратификацији атмосфере

риземних кончентрација SO_{2} су мање од за коном дозвољених конщентрацији.

4. ЗАКЉУЧАК

поредна анализа прорачуном добијених вредности приземних концентрација SO_{2}, са ллазним подацима добијених на изложен ачин, и измерених приземних имисионих кон ьихов однос унутар фактора 2. Ово указује н добро слагање израчунатих и измерених кон центрација.

Међутим ако се примени модел са истим те хничко- технолошким подацима али про цењеним и номограмом добијеним улазним метеоролошким подацима онда долази до значајног одступања израчунатих и измерених вредности приземних имисионих концен трација SO_{2}.
Израчунате вредности концентрација SO_{2} су, у зависности од стабилности атмосфере, већ или мање од измерених за фактор 3-4, што је не прихватљиво за примену модела.

Ово указује на неопходност обавезно сачињавања метеоролошких подлога пр изради студија утицаја индустријских, термоенергетских и других извора на животну сре ину.

Табела 1. Вредности параметара стабилности и турбуленрије дуж вертикалниог проофила

$\begin{aligned} & \text { ПОДАЦИ О } \\ & \text { МЕРЕЩУ } \end{aligned}$			ПРИЗЕМНИ ПОДАЦИ		PAYYHATE ВРЕЕПНОСТИ			KJIACA СТАБИЛНОСТИ- В		
ГОДИНА: 1987 MECTO MEPE円A: ПОПИТИ			$\begin{aligned} & \hline \mathrm{P}_{\mathrm{O}}=1006.7 \mathrm{mb} \\ & \theta=292.9 \mathrm{~K} \\ & \mathrm{~T}=20.2^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=1.8 \mathrm{~m} / \mathrm{s} \\ & \mathrm{D}_{\mathrm{o}}=324 \\ & \mathrm{~V}_{\mathrm{a}}=0.19 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{R}_{\mathrm{I}}=-2.69 \times 10^{-3} \\ & \mathrm{~S}=.70 \\ & \mathrm{~L}=-34.47 \\ & \mathbb{Z} / \mathrm{L}=.0 .06 \end{aligned}$			$\mathrm{H}=464 \mathrm{~m}$		
$\begin{aligned} & H(m \\ &) \end{aligned}$	T $\left(^{\circ} \mathrm{C}\right.$	$\mathrm{V}(\mathrm{m} / \mathrm{s}$	DD	$\theta(\mathbf{K})$	$\Delta T / \Delta z$	$\Delta \mathrm{U} / \mathrm{z}$	R_{I}	S	R_{IB}	K
10	20.0	2.3	290	292.7	-2.1	5.26	-2.67^{-3}	-3.7^{-4}	0.70	0.92
20	19.8	2.7	292	292.6	-2.0	4.0	-2.14^{-3}	$3.35{ }^{-7}$	0.54	
30	19.7	3.0	312	292.6	-1.0	3.0	-8.24^{-5}	0.0	0.50	
50	19.4	3.3	313	292.5	-1.5	1.5	-0.01	-1.66^{-4}	0.65	
70	19.3	3.5	319	292.6	-0.50	1.0	0.02	$-1.66{ }^{4}$	0.74	
90	19.0	3.3	306	292.5	-1.5	-1.0	-0.02	-1.65^{-4}	0.66	
100	18.9	3.5	303	292.5	-1.0	2.0	-1.67^{-4}	0.0	0.38	
150	18.1	3.3	207	292.5	-1.0	-0.4	$-3.97{ }^{-3}$	0.0	1.21	
200	18.1	2.9	190	292.6	-0.60	-0.8	0.02	1.35^{-4}	2.24	
250	17.8	2.5	306	292.8	-0.60	-0.8	0.02	1.35^{-4}	3.06	
300	17.5	3.4	233	293.0	-0.60	1.8	3.98^{-3}	1.35^{-4}	1.68	
350	16.8	3.7	242	292.8	-1.4	0.6	-0.04	-1.35^{-4}	0.63	
400	16.6	3.2	253	293.1	-0.40	-1.0	0.02	2.03^{-4}	2.29	
450	16.6	2.3	331	293.3	-0.60	-1.4	0.01	1.35^{-4}	3.34	
500	16.0	2.9	20	293.5	-0.60	0.8	0.02	1.366^{-4}	2.53	
550	15.9	2.6	89	293.9	-0.20	-0.6	0.07	2.711^{-9}	4.09	
600	14.3	3.5	171	292.8	-3.20	1.0	-0.02	-7.49^{-4}	-1.59	
650	13.9	3.2	169	292.9	-0.60	-06	0.02	6.833^{-5}	2.04	
700	15.6	3.1	142	293.1	-0.60	-0.2	0.33	1.37^{-4}	2.6	
750	15.7	3.0	154	293.7	0.20	-0.2	1.0	4.10^{-4}	4.39	
800	14.8	2.9	167	295.3	2.20	-0.2	2.66	1.09^{-3}	0.60	

Слика 1 РАСПОДЕЛА ЧЕСТИНА ПАСКВИЛTAPHEPOBИX КЛАСА СТАБИЛНОСТИ ТОКОМ

ЛЕТА,ЗИМА И ЗА ЦЕО ПЕРИОД

Слика 4. РАСПОДЕЛА ЧЕСТИНА (\%) И СРЕДНИХ GPЗИНА ВЕTPA (m/s), ТАМНАВА, ПЕРИОД 1987.1990. ГОД.

5. ЛИТЕРАТУРА

Haugen D. A. (editor), 1973: Workshop on Micrometeorology, American Meteorological Sociaty, Boston.
Houghton D. D. (editor), 1985: Handbook of applied Meteorology, A wiley-Interscience Publication John Wiley\&sons, New York, 697-777.

Turner D. B., 1969: Woorkbook of atmospheric dispersion estimates, U S Department of helth, education and walfare, Cincinati.

Stern A. C., Duttionfor J. A., 1984: Fundamentals of Air pollution, Secon Engenering Application editions, A. Wiley interscence Publication, New York.

ОГЛЕДНИ СЛИВ ГОРНЕГ ТОКА РЕКЕ ТОПЛИЦЕ
 (хидролошко метеоролошка истраживања у периоду 1950-1998. год.)

Миодраг Дедић, дипл.граћ.инж.
Југословенско друитво за одводнавање и наводњавање

Abstract

The examination of the waterpower engineering problems for a river basins or for a some big region, must to be based on detailed quality facts. In the first place that is the weather conditions. This is in the specific case showed, through the planing of waterpower engineering problems and the project for Toplica river basins for the period of 1950-1998.

This is the period where the resolutions based on very meager facts, and with its largest and uality had been planed, improvement, and provided; quality and rational solution in using water, for the area of Toplica river
That is point out in the results "Experimental river basins" formed in the upper Toplica river basins.

Aпстракт

Изучавање водопривредних проблема за слив реке или већег региона мора да почива на обимним квалитетним подачима у првом реду су то хидрометеоролошки. То је у конкретном случају показан квалитетним подачима у првом реду су то хиорометеоролоики. То је у конкретном случају показано
кроз планирање водопроивредне проблематике и објеката за слив реке Топлице у периоду од 1950-1998 год.
То је период у коме су решета заснивана на врло оскудним поддиима, и са њиховом масовноићу квалитетом су планираъа побољшавана и обезбеђивала квалитетнија и рачионалнија решења у кориићењу воде за потребе подрччја Топличе.

У томе се указује и на резултате "Огледног слива" формираног у горњем току реке Топлице.

1. Историјат

Крајем лета 1950. године Хидротехнички на наводњавања башта и пашњака, тако да у Институт Српске Академије Наука у Београду отпочео је истраживања за израду типова малих сеоских хидро-електрана

У нади да ћемо имати повољне хидролошке услове простору којим се сливају воде са Јастребца у пироку Долину Топлице, изабрани су за ова испитивања мале речице између Плочника и Прокупља.

Међутим на терену нашли смо сува речна корита и спржена поља сушом која је те године завладала у целом овом крају. Из разговора са мешганима дознали смо да су све ове речице лети $2-3$ месеца бећ воде се вода још у најиишим деривима уртоши

Долину и не доспев

Осим тога и падавине за време лета (које је обично јако топло) врло су ретке, а како су земъишт понајчешие са порозном или стеновитом плитком подлогом, то чак и у влажним годинама, само ако кише не падну 15-20 дана, усеви редовно подбацууу.
При оваквом стању могло се закључити
да је електрификација села у Топлици малим хидро-електранама немогућа на оваквим водотоцима како их природа даје и дошини не може ни замисиии б даводнавана пола за рреме

Након тога требало је испитати начине добијања ноде ати нано се ва време нета осе申а нен недостатак у целом сливу, па чак и у самој недостатак у целом сливу, па чак и у самој могупност: да се потребне количине обезбеде оплемењивањем јесењих и пролетњих вода у пространа вештачка језера, која би створили израдом долинских преграда на погодним местима.

Овим језсрима поститли би највећу економију у водотривредном газдовању из више разлога

нито би она послужила за сакупљање потребне количине воде за летња наводњавања ббрадивих површина у пољопривреди целе долине,
њима бк изравнали отицања вода преко целе одине, те тако омогућили електрификаццју опличке Долине изградњом вейих хидролекрана на ноне шенокушу растоловив ву при најания дименэчјама хидропостројења
захвајьууући пространим резервоарима ових језера, могли би осигурати снаб̆девање водом Һћих насеља и индустрије у цепој долини Топлице и на крају
овим језерима постигли би смањивағе таласа великих вода и у вези са њим знатне уштеде инвестиција за регулисање Топлице од Плочника до Дољевца на дужини тока од 60 км.

Увияајуһи значај изградње акумулационих басена у топлици за режим вода Мораве као централне реке HP Србије, Хидротехнички Институт САН у београду потпомогао је овај подухват фвнансираюем теренских студхја у 1951 и 1952 годинн, али како су средства која је Институт могао ставити на расположење била јако скромна испитивана је само Горња Топлица, узводно од Куршумлије
Принућен тешким последицама понов.ъене суше 1952 године, Срески Народни Одбор у Куржумлији одлучио је, да у лето идуће 1953 године преузме на себе финансирање ових студија, како би убрзао добијање слике водопривредних могуйности целе Топице

Те године је, поред прикупљања и обраде топографских података за три главна акумулациона језера (Селова, Чунгула и Рудари), организовано и техничко одељење у Курнумлмји за стални рад на терену и контролу хидролошке службе свакодневних опажања падавина и отицања вода на целом подручуу слива Топлице од 2.100 км 2 са својих 25 кишомерних и 19 водомерних станица и хидрометријских профила.

Сталан рад ове важне установе почео је 1. октобра 1953 године.

У намери да у 1954 години код Државне Управ отвори потребне кредите за израду основно пројекта, формиран је Одбор за уређење Топличке Долине са седиштем у Куршумлији. Он јо атражио да се састави кратак приказ целокупног одопривредног уређења Долине који би садржа привредни значај пројект и обим радова које би ребало извршити за његово остварење.
Студија је завршена крајем 1953 године, добивени резултати, најсраће изражени, билии су следеии

Целокупно водопривредно уређеве Топлиядке Долине заснивало се на водама 6 акумулациона асена са укупном корисном затремином 86 Мио м 3 воде.

Пре него што се употреби за наводњавања, ова се вода користи у 16 хидро-електричних постројега појединачне јачине до 3.000 kw , чија је укупна инсталацина снага, по подацима ове студије, износила 19.500 kw . Предвиђало се да она може дати годишње за потребе електрификације иисоко-вредне електричне енергије в акумулационих басена и то још у доба летьих малих вода

захваљуууйи повољним топографским хидролошким условима слива, водене резерве само два акумулациона басена (Селова Чунгула") са приближно 48 Мио м ${ }^{3}$ корисне запремине воде, сматрало се да ће бити доволнн, да за време летьих суша наводњвају пространи омплекс земљишга у тоулл. Плочник - Блаце Мала Плана, затм равницу прокупье - Дољеван
 укупној површини од око 23000 Xa

Све штт је напред изнето остало би без своје овезаности ако се не би изнело то шта ре оплица са својим сливом представља у поппе вода за слив Јужне Мораве и за целу Србиуу.

Расподела годишњих падавина за период 1925 950 године, најбоље то указује, као и приказ ликовног подручја са карактеристикама

. Природа с

Топлица са својим сливом од 2. 218 км 2 по еличини је друга притока Јужне Морап пореняјуии поврнине она заузима $14,3 \%$ од укупног слива Јужне Мораве или 6% од слив

Велике Мораве, а по количини њене воде износе 11% од вода Јужне Мораве.
Топлица извире на источној страни Копаоника одкле тече у југо-источном правцу све до Куршумлије уском долином која се само местимично шщри у мања поља.

Низводно до Куршумлије, пошто прими две веће притоке: Бањску и Косаницу, Топлица скреће на северо-исток, пролази ужом долином све до Плочника одакле се долина отвара у пространу равницу - котлину - чији се бокови сасвим благо пењу на север према Јастрбцу, а знатно стрмије н Радану.

Овај део сачињава њен средњи ток који почиње код Куршумлије и завршава се у теснацу испод брда "Хисар" код Прокупља.

Од Прокупља низводно почиње доњи ток Топлице са изразито равничарским карактером који се огледа у јаком меандрирању реке и честом мењању корита. На том делу ближе Прокупљу уливају се у Топлицу са планине Пасјаче четири јака бујична тока (Растовница, Тамни поток, Лукомир и Речички поток), који услед кратког тока и великих падова за време јчих киша пустоше плодна земљишта.
Од основних карактеристика тока реке Топлице наводимо следеће:

њена дужина износи 124 км
висинска разлика од ушћа до извора је 725 m .
Ове две вредности дају просечан пад од $5,85 \%$ овакле се може закључити да је Топлица претежно брдска река.
ако посматрамо рашчлањен ток. онда би
падови имали следеће вредности;

горњи ток $7,6 \%$
 средњи ток $2,5 \%$
 доњи ток $\quad 1,3 \%$

3.Хидро - метеоролошка служба

Кишомерне станице у сливу реке Топлице почеле су рад 1924 године и то само две: Прокупље и Куршумлија. Постепено мрежа се појачавала тако да је 1935 године ово подручје имало пет кишомерних станица и то:

Курпгумлија (1924), Прокупље (1924), Блажево (1925), Петровац (Топлички) (1927) и Белољин (1935)

Данас у Топлици раде 27 кишомерних станица од којих 17 је основао Одбор за уређење Долине

Водомерне станице. Ова служба почиње на Топлици 1924 године успостављањем водомера у Дољевцу, нешто касније почињу осматрања водостаја у Прокупьу (1) а 193 године на овом подручју раде четири водомера
Дољевац (1924), Прокупље (1929), Куршумлија (1935) и Пепељевац (1935)

Хидрометријска мерења протока до почетка студија за уређење Топлице 1951 године вршена су врло ретко и најчешће при ниским водама, а било их је свега (19).

у раздобљу од 1951-1953 године вршена су серијска повремена мерења на местима предвиђеним за веће објекте и на хидрочворовима ради добијања коефицијената расподеле воде на саставне делове слива.

Систематска мерења почела су крајем лета 1953 године на 12 водомерних станица, које су све биле постављьене на местима будућ̆их водојажа и захвата воде.
Извршење овог посла и контролу од тог доба врши Техничко одељење Одбора за уређење Топличке Долине у Куршумлији, до успостављања огледног слива Горње Топлице.

Истовремено са мерењима протока 1. октобра 1953 год. прорадило је 16 нових кишомерних станица које су са 9 постојећих СУХМС-е могле дати сигурне податке о расподели падавина и отицајним коефицијентима у хидролошкој 1953/54 години.

Од 12 постављених водомерних станица 4 су водомерне летве у природном профилу већих река, а осталих 8 израђене су као ниски прагови са при свам хоризонталном круном, водени рачна д слободан, како би прели пошто одредимо коефищијент бочне контракције, добијати за овакав праг "Топличког типа" рачунским путем довољно тачне вредности за проток.
Преливи су радили 1953/54 године беспрекорне са малим чишћењим и оправкама које су се углавном сводиле на појачавања слашишта.
Касније су успостављена још 4 нова прелива на делу средње Топлице на рекама које се формирају на источним падинама Јастребца.
4. Наставак радова са израдом техиичке документациіе

Радови на припреми прикупьања хидромеРадови на поата су омогућили да се теоролошких података су омогућили да се у

наредној хидролошкој години 1953/54год. сагледају услови и отицање вода

Поред тога метеоролошка станица у Куршумлијии је попуњена кадровски са сталним дежурством и опремљеношй заједно са зградом.
На основу прикупљених података заједно са другим подлогама су обезбеыени услови и израйен је основни пројекат водопривредног уређеена "Топличке долине" у 1955 год.

Овај пројекат представљао је крајњи технички напор, да се на трасирана поља Топлице и Добрича обезбеди и доведе вода за време лета, јер је она недостајала да би се на њима добијала богата жетва.

Задатак пројектаната је био врло деликатан, обезбедити воду тамо где је то до тада изгледало немогуће.

Узевши у обзир да пројекат решава целокупну водопривреду једног краја и посматрајући функционалну рационалност објекта са његовом величином, коју треба да снабдева водом и
енергијом, у целини је добио посебну пажњу и енергијом, у целини је добио посебну пажњу и оцене од стране свих комисија и институција Републике Србије.

Прегледна корита - хидролошке службе за водопривредно уређеше Топличке долине илустративно јасно указује какве су све припреме извршене, да би се добио одговор о билансу вода и временској расподели

Наступио је период за даље радове и тражење организационих форми као и опремању слива.

Савезни Хидрометеоролошки Завод, је овако прпремљен слив прихватио да се стара о њему, проглашавајући га за огледни

То је територија узводно од в.с. Пепељевац на реци Топлици.

Површина Слива је 986 км 2, који обухвата три највећа тока и то реке Топлицу, Бањску и Велику Косаницу.

Прво је уграђ̆ен лимниграф на в.с Пипељевац, са жичаром и корпом да се може мерити количина воде при свим водостајима. После тога је то урађено за реку Топлицу на в.с "Доњи Селова" затим "Магово". У том хидро чвору је и река Луковска у Марћезу. Даља проширена су обухватила реку Бањску в.с Куршумлија и Велику Косаницу-в.с Висока

Осматрање отицања воде на делу огледног слива је вршшено преко 6 в.с, са комплетном опремом да се на њима може мерити проток у сваком времену.
Почетком 1957 год., се формира Топличка водна заједница са седиштем у Куршумлији. Њен задатак је да се стара и настави радове техничког одељка формираног при Одбору за уређење слива Топличке долине.

Извођени су радови на регулацији река, затим припреме и подлоге за проучавање објеката и система за наводњавање са низом других програм и задатака.

Остварена је потпуна сарадға измеюу стручњака С.ХМ завода који је преузео старање о огледном сливу и Топличке водне заједнице са испомагањем и координадијом радова.

У зону акумужадије селова, ради ктиматолошка станина са испаритељем са водене површине класе А и два поља са комплетном опремом за мерење ерозије односно ерозионих процеса.

Рад и старање за хидрометеоролошку службу у Топлици, реорганизацијом се стара Републички Хидрометеоролошки завод - до данашњег дана
И даље постоји шрисна сарадња у томе Д.П. за водоснабдевање подручја Топлице и Ниша "Селова" као инвеститора на изградњи акумулације селова.
5. ІІта су омогуһдли хидрометсоролошки подапи за слив P. Tопиице

Посматрајући и активно учествујући у описаним радовима од првих дана 1950 год., када смо приковали прву водомерну летву на в.с Доњ Селова и првих мерења, па касније кро проучавање и друге акције пројектаната нвеститора, покушайемо да то прикажемо крю следећє:

1951-год. Дипломски рад- Мелорација "Топличке Долине" - Мкодраг Дедий

1953-год. Кратак приказ целокупно водопривредног уређења Топличке Долине студија је указала на целокупно уребење долине са привредним значајем пројекта, обимом радова и друга усмерења и значај.

1955-год. Основни пројекат водопривредног уреюеша Топичке долине.
1954-1960. год. Више дипломских радова н грајевинском, пољопривредном и рударско геолошком факултету у Београду. Више малих

иддроцентрала за осветлење и мање погоне орњем току реке Топлице.

955-1960.год. Више пројеката за регулациуу реке миже и притока, са изведеним радовима. Податке за бројна пројектовања за потреб

1959-год. пет хидромелиорационих система наводњавања у површини од око 10000ха. (Гргуре Блаце, Облачина, Крајковац и Плочник).

960-год. Идејни пројекат Хидроцентрале "Барбатовац" са наводњавањем нето површина од 30000 ха, у средњој Топлици и Добричу
Изградњом предњег пројекта акумулација "Селова" је добила коначну величину језера и коте са вођенем воде правцем Селова-БарбатовацТопличе и Добрича Топлице и Добрич

енергије у ХЦ Барбатовцу- од око 27 мил. kwh.

1964-1965.год. Програм за уређјење слива Морав 1956-1985. год. који се односио на део Топлице
оришћење података за формирање и планирање објеката у суседним сливовима.

С-год. Израду главног пројекта акумулације Селова

1960-1986.год. Израда више студија и главних пројекат и нихова реалиација за водоводе акумулација Крајковачке реке, Облачина, Бресничке реке, Придворице, Бумбурека, Растовнице и дрр.

- Више пројеката за уређеше бујичних токова.

Главне пројекте и радове за реку Топлицу и
притоке на целој територији Топлице.
Студије и друга решења за снабдевање водом насеља у Топлици и Нишу.

1986-год.
акумулације
Новелирање главног по коришћенем појекта
Селе отребе водоснабдевања у Топлици и Нишу.

1991-год. Студија водопривредних проблема слива реке Топлице на територији С.О: Куршумлија.

1993-год. Студија- Коришћења вода реке Топлице из система "Селова" тунелским доводом на потезу Селова-Барбатовац са променом локације уређаја за пречишћавање воде.

Сматрамо да са побројаним пројектима, је највише указано на значај података за привредни развој Топлице у целини па и више
у погледу истражености Огледног слива реке Топлице у иновираном главном пројекту даје се следећа оцена.
"Обзиром на извршени обим и квантитет хидролошких истраживања и расположив документашшје о рожицајиа реге Топшше на профилюка хицропошших станииа обезбеђуј високи квалитет података о протицајима 39 профи бране "Селова" уз напомену да они одтовараіу и захтеванммстандардима главног пројекта."

На крају овог поглавља треба указати да са обиљем хидролошко метеоролошким подацима пројектовања и рационалности решења.

На примеру Топлице и система за наводњавање од првобитног решења са бројним мањим објектима и више пумпних станица, дошло се до решења да се то може постиии са једним објектом односно концентрацијом на једном месту. То решење се не заснива за потребе наводњавања на бројне захвате и пумпне станице, већ каналом преко кога се може да допреми вода до свих потрошача гравитацијом које је решене дато идејним пројектом и инвестиционим пројектом Х.Ц. Барбатовац и 1960год.

МЕТЕОРОЛОШКИ ПОДАЦИ У
 ФУНКЦИЈИ РАЗВОЈА МЕТЕОРОЛОЩКЕ НАУКЕ

Закљьччак

Значај хидролошко метеоролошких података у пољопривреде до сагледавања решења, са избором панирању водопривредних објеката је огроман. Њихова обимност и бројност омогућавају сагледавање више могућих решења, односно њихово свођење на оптималну меру мроз сагледавање како појединих потрсба тако и налажење одговарајућих решења

Огледни слив односно његови подаци су омогућили да се сагледа проблематика за водом од свих потрошача привреде, становништва и

одговарајућих објеката

Посебно се истиче та могућност код усклађивања потрошње воде за потребе наводњавања водоснабдевања кроз могућности доградње односно проширења кроз коришћење објекта целини од пробног погона до планираног рокадносно усклаиееем могуйности са потребама з планирани век трајања-коришћеюа

IIPOMEHE TEMMEPATYPE RAЗIYXA У WEOГPAДУ И

 ИНДЕКСА СОЛАРНО ГЕОМАГНЕТСКЕ АКТИBHOCTИ У ПЕРНОДУ 1958-1996. ГОДННЕСйоменко J. Михајловиһ, Миодрай Обрадовиһ,
Геомаг̈неииски инсиииииуй Провка
Мирослае Сииареевић
Рударско Геолошки факулииеши у веойраду
Владимир М. Пимиирријевиһ, Алексондар Ойра
Рейублички хидромемийеоролошкии зивод Срюије

The results of different solar - climate researches show that relation between changes of solar geomagnetic activity indices and changes of climate parameters (air temperature, humidity, precipitation) exist with at Sun's cycles.

In this work, the relation between changes of solar geomagnetic activity indices on Observato ocka and distribution of air temperature in Belgrade enviroment in the period 1958-1996. is shown.

Changes of these parameters can be seasonal, annual or longrange, which exist 11 or 22 years. The changes structure of solar geomagnetic activity indices and air temperature is different in each of exemined Sun's cycles. Dominant period at distribution of air temperature in seasons and years of minimum, or maximum solar geomagnetic activity is isolated and interpreted.

PEЗИME

Резулйайи различимих соларно-клинайолоиких исйииииваъа йоказууу да иосйоји йовезаносй измеуу иромена индекса соларно-іеомаг̈нешске акииивносиии и иромена климайолоиких иарамейара (йемйерайчра ваздуха, влажноси, йдавине...) у сунчевини 11-годииъим ииклусима

У овом раду је иириказана веза измеб̆у йомена индекса соларно-геомаг̄нейске акйивносиии на Ойсервайорији Гроцка и расйоделе шемииарайура ваздуха у околини Веог̄рада, у йери оду 1958-1996 годдине.

Промене наведених йарамейара мо̄̄у бииии сезонске, г̄одинне, или дуг̄ойериодичне, које
 йромена ииемйарайуре ваздуха је различийа у сваком од исйииииваних сунчевих циклуса. Изд војене су и инйериирейиране доминанйне йериоде у расйодели миемйерайире ваздуха у сезонама іодинама минималне, односно максималне соларно-йеомаг̄нейске акйивносиии.

1. УBOД

Сунчева активност у знатној мери утиче на особине горње атмосфере. То се објашњава варијацијама јачине сунчевог ултраљубичастог зрачења, које пада на Земљу. Промене јачине изазивају шромене нарочито сунчевог ветра, Као допуна атмосферским варијашијама, које су повезане са променама интензитета улсу повезане са променама интензитета улјављају се варијапије које се могу повести у везу са променама геомагнетске активности. Резултати многих испитивана указуіу да се за реме геомагнетске буре дешава тренутни по раст температуре и густине атмосфере у зони

ауроре. Енергија поремећаја се приближно 7 сати "предаје" нижим ширинама. Експери ментално је доказано да реакција атмосфер на геомагнетске поремећаје "касни" за 7.2 ± 0.5 сати, на ширини око 25° и за 5.8 ± 0.5 сати, н ширини 65° (Натнова, 1981.)
у литератури се наводе резултати ис траживања густине и температуре атмосфере у време регистрашшіе ичтеноирих геомагне ских поремећаја. Понашање температуре, при различитој соларно-геомагнетској активности мије било једнообразно, иако у већини случајева геомагнетски поремећаји изазивају

повећање температуре горње атмосфере (Герман, Голдберй, 1981.).

Истраживања показују да се температура мења у зависности од интензитета сунчевог зрачења, на таласној дужини $10,7 \mathrm{~cm}$ (означено је индексом F 10,7) на висинама $80-51 \mathrm{~km}$. Време кашњења између повећања интензитета зрачења $\mathrm{F} 10,7$ и повећања температуре ме зосфере, износило је око једног дана.
Веома су инетресантни резултати соларноклиматолошких истраживања, која се односе на ниже слојеве атмосфере. Испитивања показууу да је вероватноћа појављивања сушних мериода у области Западног Сибиа, у перия у од 1891. до 1972 . годипе била изражена у ости нама минималне сунчеве акмивносп. Кобира у надедено у области Занада ј Сибира, у наведеном гериоду иси зве године досизасу ма годину која је била одређена као у односу на годину која је би (у овим испити аиим сунева ажтивност се изражава Вул вавим бројем или релативним индексом фовнчеве активности R) минималне количине анавине у области Запашног Сибира, су регистроване у шестој години, у односу на годину максималне сунчеве активности, односно, то су биле године минималне сунчеве активности (Казимировскиу, 1976.).

Једанаестогодишњи циклус у расподели температуре ваздуха, био је запажен изнад Централне Енглеске, Северне Америке, затим у расподели зимске температуре ваздуха у околини Токиа итд...Резултати многих соларноклиматолошких испитивања, показују да је 22 годишњи циклус више изражен у атмолорновић, 1991.).

Зато је корисно цитирати: ... "да ефекти сунчеве ерупције, који условљавају и магнетне буре, настају кроз неколико часова после појаве сунчеве ерупиије, продужавају се у виду одређеног типа деловања у току један до три дана и изазивају, такве промене у атмосфери које се затим развијају у одрђеном правцу. Затим кроз 2 до 4 дана, настаје одређени тип циркулације, који изазива велики број међусобно повезаних атмосферских појава..."(Маккормак ,Селиги, 1982.) У прилог наведеним наводима може се дати и следећа констатација... " да ефекат сунчеве ерупције иницира и подстиче појаву блокирања зоналне циркулације. Узимајући у обзир знатну ста-

билност блокирајућих система, то произилази да једна сунчева ерупција може условити утицај на атмосферу у трајању од неколико не деља мада њено стварно деловање на атмосферу траје свега неколико часова..." (Маккормак ,Селиги, 1982.)

На Геомагнетској опсерваторији Гроцка урађена је анализа морфологије и структуре варијација индекса геомагнетске активности, у периоду од 1958-1996. године. Резултати испитивања указују на сложен спектар варијација које су биле регистроване у периоду испити вања, 19-22 сунчевог циклуса. Издвојене су и интерпретиране варијације геомагнетске ак тивности, од сезонских (са периодом од око 6 око 11 или 22 године.

Резултати ових испитивања су упоређени са расподелом температуре ваздуха, у околини Београда, у периоду од 1958-1996. године.

2. ПРОМЕНЕ ИНДЕКСА
 ГЕОМАГНЕТСКЕ АКТИВНОСТИ НА ОПСЕРВАТОРИЈИ ГРОЦКА, У ПЕРРОДУ 1958-1996. ГОДИНЕ

На Геомагнетској опсерваторији Гроцка урађена је анализа структуре варијација еле мената геомагнетског поља, у периоду 1958 1996. године. Посматране су промене средње годишњих вредности елемената геомагнетско оља и индекса соларно-геомагнетске актив ности, у 19, 20 и 21. сунчевом циклусу. У ироменама интензитета хоризонталне компоненте геомагнетског поља (H или X компо нента) доминантна је периода од 22 годин (слика 1.) у променама индекса соларно геомагнетске активности, у периоду од 1958 1990. године, изражене су периоде од око 1 одина. То су основне, карактеристичн ромене, које дефинишу соларно-геофизичк процесе у сунчевим циклусима. Треба навести а су екстремне вредности промена индекса соларно-геомагнетске активности у времену, фазно померене за око $12-16$ месеци, у односу на максимум, или пак м 12 мим, суни уве акмия ости. Редни бројеви испитваних сун (М)
 инима (х) слнов й ости су означени на слици 2

Међутим, у испитивањима динамике и структуре соларно-геофи-зичких процеса, геомаг нетска активност се изражава месечним вред ностима броја регистрованих магнетских бура
(фреквенција појављивања магнетских бура). циклусу био је у јулу 1970. године (9 магнет Месечне вредности фреквенције броја по- ских бура), а у 21. сунчевом циклусу, то је било јављивања магнетских бура показују зависност у јануару 1980. године (5 магнетских бура). То истрованих магнетских бура у 20. сунчевом наведеним циклусима (Мшхајаовић, 1993.). наведеним циклусима (Михајловић, 1993.)

19581960196219641966196819701972197419761978198019921984198619881990199219941996

 Геомайнейској ойсервайорији Гроцка у иеериоду 1958.-1996.

 исйрованих маг̈нейиских бура на Геомайнейској ойсервайорији Гроцка у йериоду 1958.-1990.

Поред анализе промена средње годишњих вредиости индекса соларно-геомагнетске ак вредности, урађена је анализа средњемесечних

ивности, регистрованих на Опсерваторији Гроцка, у периоду 1958-1990. године.

Према тим испитивањима, морфологија дуго-

геомагнетске активности је одређена периодо од $\mathrm{T}_{1} \approx 11.9 \pm 0.1$ година, у 20 . сунчевом циклусу и $\mathrm{T}_{2} \approx 10.4 \pm 0.1$ година, у 21 . сунчевом циклусу (Михајловић, 1993.).

периодичних промена индекса соларно-

Слика З.а Сйрукйира сйекйра секуларне варијачије индекса г̄еомаӥнейске акйивносйии у 20. сунчевом чиклусу на Геомайнейиској ойсервайорији Грочка

 сунчевом циклусу на Геомайнеейској ойсервайорији Гроика

На слици 3. приказана је структура спектра дугопериодичне (секуларне) варијације К индекса геомагнетске активности, регистроаних на Опсерваторији Гроцка, у периоду 1958-1990. године. Структуру спектра секуларних варијација K индекса геоматнетске активности одређују промене са периодама од T_{1} $=102.4$ месеца. Ако се посматра структура спектра секуларне варијације K индекса у 20 . сунчевом циклусу (Слика 3.a), могу се издвоити промене са периодама $\mathrm{T}_{1}=6.0$ месеци (сезонске промене), затим промене које трају око $\mathrm{T}_{2}=11.6$ месеци.

У делу спектра са дугопериодичним променама K индекса геомагнетске активности доминирају периоде $\mathrm{T}_{3}=42.7$ и $\mathrm{T}_{4}=85.3$ месеца. У спектру секуларне варијације K индекса геомагнетске активности , у 21 . сунчевом циклусу, постоји утицај сезонских промена са периодама $\mathrm{T}_{1}=6.0-6.8$ месеци (Слика 3б). Поред ових промена, у спектру варијација, издвојене су периоде $\mathrm{T}_{2}=11.6$ месеци, $\mathrm{T}_{3}=19.7$ месеци $\mathrm{T}_{4}=42.7-51.2$, и $\mathrm{T}_{5}=$ 85.3 месеца.

3. ПРОМЕНЕ TEMIEPATYPE
 ВАЗДУХА У БЕОГРАДУ, У

ПЕРИОДУ 1958-1996. ГОДИНЕ
Новија научна истраживања су била усмерена на изналажење и утврђивање корелационих веза између једанаестогодишњих циклуса сунчеве активности и промена основних метеоролошких елемената (температура, притисак, падавине и грмљавински процеси), као и глобалних типова циркулације атмосфере. Према радовима (Маккормака и Селиги 1982.), наводи се да при смањењу сунчеве активности, односно на силазној грани сунчевог цуклуса доминира зонална циркулација, а на узлазном краку сунчевог циклуса доминира меридијална циркулација. У зависности од тога која циркулација доминира, биће дефинисани различити климатски услови у појединим регионима на

Земљи. Тумачења утицаја процеса на Сунцу, односно космичких проџеса у спектру сунчево зрачења на атмосферу указују на постојање периодичних промена које се могу кретати од неколико дана до више хиљада година. Периоди знатно краћи али не мање значајни ефекти промена сунчеве активности могу да с односе на:

промене услова образовања грмљавинских процеса на вишим географским ширинама ($50-60^{\circ}$ г..ा.) ;

промене циклонске и антициклонске циркулације у хемисферским размерама

осфере (Гирс, Маккормака и Селиги 1960.)

Резултати испитивања соларно-геофизичких процеса и промена атмосферских параметара указууу на постојање карактеристичних, доми нантних периода и варијација у структури ат мосферских параметара. Могу се издвојити промене у расподели температуре ваздуха, од сезонских, годишњих, до оних које имају пери оде једног или два сунчева циклуса.

На слици 4. приказане су промене средње одишњих вредности температуре ваздуха, периоду 1958 - 1990. године. У расподели редње годишњих врдности температур ваздуха у Београду, доминира периода од око 2 године (одређена је минималним вред ностима забележеним 1962., односно 1985 године)

Резултати анализе сезонских промена средњ месечних вредности температуре ваздуха у Београду приказани су на слици 5. (максималне средњемесечне вредности температур аздуха - (Т); минималне средњемесечне вре ности температуре ваздуха (t))

 године у Беогрраду

На слици 5.а, приказана је расподела средње ним вредностима регистрованим 1959. и 1980 месечних вредности температуре ваздуха у Београду, у сезони зима (новембар, децембар, јануар, фебруар). У зимској сезони, доминира промена са периодом од 22 године, која је одређена са два минимума 1963. и 1985. године.

У летњој сезони (мај, јуни, јули, август) карактеристична је дугопе-риодична промена од 22 године (Слика 5.б) и одређена је са минимал

године.
Расподела температуре ваздуха у Београду, у испитиваном периоду, у сезони равнодневице, приказана је на слици 5.ц. У сезони равнодневице (март, април, септембар, октобар), доминира дугопе-риодична промена, која је одређена са минималним вредностима тем пературе ваздуха, забележеним у 1962. и 1985 години.

Саика 5. а Расйодела средье месечних вредносиии ииемйераииуре ваздуха у Беойраду, у сезони зина, у йериоду 1959.-1990. аподина

\bar{u} - $\bar{\imath} о д и н е ~ м и н и м а л н и х ~ с р е д њ е м е с е ч н и х ~ в р е д н о с и и и ~ \overline{и е м и ̆ е р а и ̆ и р е ~ в а з д у х а ~}$

Слика 5.б Расйодела месечних вредносйи ииемйерайчре ваздуха у Беойраду, у сезони лейо, у йериоду 1959.-1990. г̄одина

 ииериоду 1959.-1990. їодина

Минималне вредности средње месечних вредности температуре ваздуха у Београду, у зимској сезони, забележене су у годинама минималне соларно-геома-гнетске активности (1964 и 1985. година). Минималне вредности температуре ваздуха, у сезони лето, биле су регистроване у годинама максималне соларногеомагнетске активности (1959. и 1981. гддине).
Приказани резултати испитивања расподеле средње годишњих и средње месечних вредности температуре ваздуха у Београду, у периоду од 1958-1990. године, указују на по е, која има периоду око
22 године

На слици 6. приказан је спектар промена тем пературе ваздуха у Београду у периоду 1958. 1990.'године.

У спектру промена температуре ваздуха у Београду, у периоду од 1958.-1990. године изд војене су сезонске промене са периодом $P_{1}=4$ 8 месеци, затим годишње промене $\mathrm{P}_{3}=12$ месеци. Поред ових, издвојене су промене које имају периоду од $\mathrm{P}_{4}=16-19$ месеци. У дуго периодичном делу спектра, доминантна је промена у расподли температуре ваздуха, с ериодом $\mathrm{P}_{5}=36$ месеци.

22 године.

[^3]СОЛАРНО ГEOMAГHETCKA АКТИВНОСС И БРОЈ ДАНА СА ГРАДОМ У БЕОГРАДУ У ПЕРИОДУ 1949-1996. ГОДИНЕ

Испитивања наведена у (Маккормака и Селиги 1982.) указују на повезаност промена сунчеве активности и 22 -годишње расподел регионалних суша у западном делу Америке Познато је постојање 22 -годишњих циклуса сунчевих пега (Хејлови циклуси). Ови циклуси тичу на орјентацију међупланетарног магнет ног поља. Наиме, код трајања парних циклус супчеве активности линије сила међу0планетарног магнетног поља су усмерене од Земље ка Сунцу, а код непарних смер је обрнут. У току трајања непарних циклуса сунчеве активности дешавају се знатно "бурнији" процеси у атмосфери. Тренутно траје 23 уучев циклус, који је почео 1996. године.

Слика 7. Расйодела йрог̄одиињих вредносйи индекса сунчеве аккйивносйии и броја дана са йојавом іррада у сезони айрил-окийобар, у Беогрраду, у иериоду 1949.-1995. године (19, 20, 21, 22 сунчеви циклуси)

Такође, у овом циклусу јавља се секундарни максимум броја дана са градом у доносу на други минимум индекса соларне активности овог циклуса. Други минимум броја дана са градом јавља се 5 година после максимума индекса соларне активности;

На слици 7. приказане су трогодишње средине индекса соларне активности Ri и броја дана са градом N за сезону април-октобар. Резултати анализе показују да постоји фазни помак екстремних вредности криве индекса соларне активности и средњег броја дана са градом, и то:

- у 19. циклус максимум броја дана са градом фазно је померен за две године у односу на минимум индекса соларне активности ,а минимум броја дана у овом циклусу има фазни помак од две године у односу на макси мални индекс соларне активности.

максимум броја дана са градом у 20. сунчевом циклусу јавља се две године после минимума, а минимум броја дана са градом јавља се једну годину после максимума.

у 21. сунчевом циклусу максимум боја дана са градом поклапа се са минимумом вреднсоти индекса соларне активности. Први минимум броја дана са градом је фазно померен за 4 године у односу на максимум вредности индекса соларне активности, а други

минимум поклапа се са макисмумом вредности индекса соларне активности;

у 22. сунчевом циклусу издвојен је један максимум и минимум броја дана са гра дом. Максимум броја дана са градом поклапа се са минимумом индекса соларне активности а минимум је фазно померен за две године у односу на максимум индекса соларне актив ности.

абјашњење појаве, да је крива броја дана са градом у супротној фази са кривом активности сунца (сл. 7) постоји хипотеза о утицају космичког галактичког зрачења, које је такође супротној фази са кривом сунчеве акм високе енергије, деловањем на атмосферу, условљава образовање језгара кристализашије изнад нивоа утицаја језгара кристализације која потичу са поврпине тла (>8 км)

5. ЗАКЉУЧАК

Резултати спектралне анализе индекса со- структуру и динамику атмосфере. то је ларно-геомагнетске активности, у периоду од фреквенција појављивања дана са градом у 40 година, на опсерваторији Гроцка, указууу на постојање сезонских, годишњих и дугопериодичних промена. Трајање дугопериодичних промена индекса соларно-геомагнетске активности је различито у испитиваним сунчевим циклусима.

Поред тога, у спектру промена средње месечних вредности температуре ваздуха у циклуса ($19,20,21$), могу се издвојити сезонске, годишње и дугопериодичне промене. Тра јање дугопериодичних промена температуре ваздуха је различито у посматраним сунчевим циклусима и иде од $\mathrm{P}_{4}=36-52$ месеца.

Анализа дугопериодичних промена индекса соларно-геомагнетске активности на опсерва торији Гроцка и промена температуре ваздух у Београду, допуњена је још једним параметром који дефинише, одређује сложену

сезони април-октобар. Показано је да је нама минималне сунчеве активности, у односу на године максималне сунчеве активности. Честина појаве града је већа у узлазној фази или грани успоставе максимума сунчеве активности у циклусу (то су године које предходе максималној сунчевој активности) у односу на године силазне фазе или на грани успоставе минималне сунчеве активности у циклусу. Промене индекса геомагнетске активности су фазно померене у односу на сунчеву активности од 12-18 месеци. Због тога се промене параметара структуре и динамике атмосфере, сложена временска стања и ситуације, могу посматрати и доводити у везу са сложеним со-ларним-геофизичким процесима у систему Сунце-Земьа. Веома брзо не анализа промена индекса соларно-геомагнетске активности наћи примену у различитим областима метеоролошких испитивања.

תИTEPATYPA

Герман Л.Д., Голдберг,Р.А.,1981: Солнце, пагода и климата. Гидрометеоиздат, Ленинград.
Гирс А.А. 1960: Основи долгосрочних прогнозов погоди, Ленинград, стр. 159-171
Иванова, И.Н.,1981.: Влиание солнечној активности и геомагнитних восмушченија на атмосферу. Метеорологија верхнеи атмосфери Земли, Гидрометеоиздат, Ленинград.
Казимировскиј,Е.С.,1976: Измерение дрејфов в Е и F областјах јоносфери и значение их дл’ја физики јоносфери, Физика Солари-Терестрис ,1,67,1976.
Маккормак Б., Селиги Т., 1982: Солнечно - Земле свази, погода И климат, стр. 13-15, 290-293,152171.

Миловановић Ж.,1991.: Сезонски циклус јоносфере, атмосфере и геомагнетске активности. Електротехника,
Но. 40. 5-6,mा.400-404
Михајловић,Ј.С.1993.:Спектрална анализа секуларних варијација и магнетских бура на Геомагнетској опсерваторији Гроцка, Рударско-геолошки факултет- Београд, 1-153, Београд.
Михајловић,Ј.С. М. Старчевић. 1994.: Утицај геомагнетско-соларне активности на атмосферу, Зборник радова RGF, св. 32/33, 346-351, Београд, 1994

ПРИМЕНА АЛЕКСАНДОРСОНОВОГ ТЕСТА ЗА ИСПИТИВАЊЕ РЕЛАТИВНЕ ХОМОГЕНОСТИ ГОДИШЮЊХ СУМА ПАДАВИНА

Др Мирослава Ункашевић и Мр Ивана Тошић

Физички факултет, Ииститут за метеорологију, Добрачина 16, Београд, Југославија

Abstract

The original time series of meteorological elements are often unsuitable for climate change studies, so the production of a consistent and homogeneous dataset is one of main goals. The standard normal homogeneity test is selected for precipitation homogeneity testing. This paper presents a summary of experience gained by testing annual precipitation sums from 24 Serbian series of 46 years.

Anстракт

Оригиналне временске серије метеоролошких елемената често нису подесне за проучавање ктиматских промена тако да је продукиија конзистентних и хомогених низова приоритетан задатак. За испитиваъе релативне хомогености годииних сума падавина одабран је тзв. стандардан нормалан За испитиваъе релативне хомогености годииних сума падавина одабран је тзв. стандардан нормалан
тест. У овом раду су приказани резултати добијени кориићењем поменутог теста за испитивање рестативне хомогености годинии сума падавина са 24 метеоролоике станице у Србији у периоду од 4 релативне

Увод

Последњих година многи истраживачи почињу да посвећууу пажњу испитивану вишегодишњьи промена падавина, нарочито испитивању хомогености временских серија падавина (Potter 1981; Buishand, 1982; Alexandersson, 1986; Karl n Williams, 1987). Наиме, утврђивање хомогености падавина је први корак у испитивању дугорочних флуктуација и промена падавина.

Joum cy 1950. године Conrad и Pollak дефинисали релативну хомогеност: "Климатолошка серија је релативно хомогена у односу на синхрону серију на неком другом месту ако односи падавина пара одговарајућих средњих вредности чини серију случајних бројева који се понашају по закону грешака". То значи да варијације средњих вредности падавина имају сличне тенденције изнад великих области. Међутим, ово је редак случај код дугорочних временских серија. Нехомогености могу да се јаве због премештања метеоролошке станице, промене инструмента, замене осматрача, промене у околној вегетацији итд. Према томе, историја сваке станице и тестирање хомогености су основна средства за утврдивање флуктуација и трендова временских серија падавина.
У метеоролошкој литератури су често за утврђивање релативне хомогености коришћени

дво-параметарски тестови који су имали за циљ откривање промене у средњој вредности иститиваног параметра. Такав је тест Maronna и Yohaia (1978), који је Potter (1981) прилагодио за испитивање релативне хомогености вишегодишњих серија падавина. Последњих година је почео да се користи тзв. Стандардни нормални тест за испитивање хомогености (CHXT) који је установио и први применио на утврђивање релативне хомогености вишегодишњих серија падавина Alexandersson (1986). Тест је касније прилагођен и за примену код других климатских проблема. Основни циљ овог рада је идентификација хомогених или нехомогених станица применом овог теста, тј. стандардног нормалног теста за испитивање релативне хомогености падавина.

2. Примењен поступак

Стандардни нормални тест за испитивање релативне хомогености вишегодишњих серија падавина (Alexandersson,1986) заснива се на претпоставци да је однос (коришћен код падавина) између вредности тестиране станице (тест станица) и околне станице (референтна станица) скоро константан са временом. Нехомогеност у једној

серији биће откривена помоћу систематске промене тог односа. Однос q у некој години i може бити представљен помоћу:

$$
\begin{equation*}
q_{i}=\frac{f\left(P_{i}\right)}{g\left(Q_{i, j}\right)}, j=1,2, \ldots, k_{i} \tag{1}
\end{equation*}
$$

Овде f означава функцију од падавина P_{i} на тест станици, $Q_{i, j}$ су падавине на j-ој референтној станици, док је g функција од падавина на свих k_{i} референтних станица.

У овом раду су, према Alexandersson (1986), функције f и g дефинисане помоћу

$$
f\left(P_{i}\right)=\frac{P_{i}}{\bar{P}}
$$

$$
g\left(Q_{i, j}\right)=\frac{\sum_{j=1}^{k_{i}} V_{j}\left(Q_{i, j} / \bar{Q}_{j}\right)}{\sum_{j=1}^{k_{i}} V_{j}}, j=1,2, \ldots, k_{i}
$$

(3)

где су са \bar{P} и \bar{Q}_{j} означене средње падавине у посматраном периоду за тест и j референтну станицу, а са k_{i} укупан број референтних станица у i-тој години осматрања.

У једначини (3) V_{j} означава тежински фактор за референтну станицу j. у овом раду тежински фактор је рачунат као квадрат коефицијента корелације (ρ_{j}^{2}) између тест серије и j-те референтне серије:

$$
\begin{equation*}
q_{i}=P_{i} / \frac{\sum_{j=1}^{k_{i}} \rho_{j}^{2} Q_{i, j} \bar{P} / \bar{Q}_{j}}{\sum_{j=1}^{k_{i}} \rho_{j}^{2}} . \tag{4}
\end{equation*}
$$

Коефицијент ρ_{j} мора бити позитиван.
Идеалну референтну серију трєба да чине подаци високог квалитета са оних станица на којима су варијације климе сличне варијацијама климе на тест станици. Број референтних станица треба да буде довољно велики да маскира сваку евентуалну нехомогеност у подацима. Опималан број

Buer и Forland (1994) користили од пет до девет референтних станица за испитивање хомогености а територији Норвешке, док су Peterson asterling (1994) користили пет референтних саница у својим испитивањима релатив режи станица Наиме основна идгіа је бита да
 рефера ајбољој корелацији са тест станицом

Вишегодишње серије глиматолошких података често садрже неколико прекида хомогености рема Hanssen-Bauer и Forland (1994), серије бо од једног прекида хомогеносия се тect а један пренид помети но више узастопних делова сложене серије.

Стандардизована серија z_{i} дефинисана је као

$$
\begin{equation*}
z_{i}=\left(q_{i}-\bar{q}\right) s_{q}^{-1}, \tag{5}
\end{equation*}
$$

где су \bar{q} и s_{q} средња вредност и стандардна девијација величине q_{i} (Alexandersson, 1986).

Овде се претпоставља да за величину z_{i} важи нормалан закон расподеле, тј. средња вредност величине z_{i} је једнака 0 , а стандардна девијација 1. На основу реченог можемо дефинисати следеће хипотезе:
H_{0} : Цела серија је хомогена. То значи да је сваки део серије нормално распоређен, тј. са средњом вредношћу једнаком 0 и стандардном девијацијом еднаком 1
H_{1} : Серија је нехомогена. То значи да постоји нехомогеност у некој години m тако да првих m година стандардизоване серије има средњу вредност једнаку μ_{1}, док преостали део серије им редну вредност једнаку μ_{2}. Стандардна девијација је једнака 1 у оба дела серије

Параметар теста T се рачуна за сваку од могућих година промене у временској серији ($n-1$), тј.:
$T=a \bar{z}_{1}^{2}+(n-m) \bar{z}_{2}^{2}, a=1,2, \ldots, n-1,(6)$
где је \bar{z}_{1} средња вредност параметра z у првих m година, док је \bar{z}_{2} средња вредност у преосталом низу година ($n-m$). Вредност m је година могућег прекида хомогености.

Максимална вредност параметра теста T у посматраној временској серији означена је са T_{x} :
$T_{x}=\max \{T(m)\}, m=1,2, \ldots, n-1 . \quad$ (7)
Критичне вредности параметра теста T за нивое значајности од 5% и 10%, тј. T_{95} и T_{90} дате су код Alexandersson (1986). Овде претпостављамо да се нехомогеност јавља у оној години у којој максимална вредност параметра теста достиже или премашује критичну вредност T за већ поменуте нивое значајности.

3. Резултати и анализа

CHXT је примењен на годиишње суме падавина регистроване на 24 главне метеоролошке станице у Србији у периоду од 1926 до 1995 године заједно са историјом станица (слика 1)

у примени наведених тестова три до пет ререрентних сериіа је коришћћено како би се редуковао утицајј просторне промене и евентуалних нехомогености у референтној серији. Одабране су оне серије које су у најбољој корелацији са тест сериіом водећи рачуна о географској расподели станица. Серије падавина се класификоване као нехомогене ако је задовољен један од следећих критериіума (Hanssen-Bauer и Forland, 1994):
(1) Серија је нехомогена на нивоу значајности од 5% неколико година од једног од крајева серије,
(2)
(3) Серија је нехомогена на нивоу значајности од 10% што је објашњено метеоролошким подацима користећи историју станица

У Хидрометеоролошкој служби Србије постоји историја сваке станице, али је од 1980 та пракса заставъена Овакви подаци зајелно са подацим историји станина добијени из разговора с шефовима станица као и резултати тестова релативне хомогености коришћени су за класификацмју серија падавина.

Нехомогености код серија падавина могу бит уклоњене множењем вредности падавина периоду пре појаве нехомогености са фактором подешавава $A F$

$$
A F=\bar{q}_{a} / \bar{q}_{b} .
$$

Средње вредности величине q после (\bar{q}_{a}) и пре (\bar{q}_{b}) појаве нехомогености рачунају се употребом следећих једначина:
$\bar{q}_{a}=s_{q} \bar{z}_{a}+\bar{q}$,
(9)
$\bar{q}_{b}=s_{q} \bar{z}_{b}+\bar{q}$

Тестирањем временских серија годишњих сума падавина за 24 метеоролошке станице на територији Србије установљено је 19 хомогених и 5 нехомогених серија. Од поменутих пет, четири су имале по један прекид хомогености (Сомбор, Пожега, Крушевац и Призрен), док је на само једној серији уочено постојање више од једног прекида хомогености (Зајечар)

Слика 2 показује вредности параметра теста T добијене као резултат испитивања релативне хомогености временских серија годишших сума падавина за метеоролошке станице Сомбор, Пожега, Крушевац, Призрен и Зајечар. Серије за наведене четири станице класификоване током поступка тестирања као нехомогене са једним прекидом хомогености могле су бити поправљене употребом једначина 8, 9 и 10. За процену резултата коришћена је историја сваке метсоролошке станице.

Резултати теста временске серије падавина регистроване на метеоролошкој станици Сомбор (слика 2a) показују да је T_{x} једнако 8,91 док T_{95} износи 8,55. Разлог за појаву нехомогености у 1990. није ретистрован у историји станице што не значи и да није постајао. Резултати поновног тестирања поправљене серије годишњих сума падавина показууу да је нова вредност T_{x} једнака 7,65 .

Серија T вредности за метеоролошку станицу Пожега (слика 2б) има апсолутни максимум од 9,58 током 1952 . године. У историји станице је забележено да је она премештена у марту 1952. године. Поновљеним тестирањем поправљене серије годишњих сума падавина добијена је вредност за T_{x} од 5,29.

Тестирање временске серије годишњих сума падавина регистрованих у Крушевцу (слика 2ц) показује да вредност T превазилази вредност T_{95} током 1953. године. Историја станице не указује на могући извор нехомогености добијен тестом. могући извор нехомогености добијен тестом сума падавина показууу да је нова вредност T_{x} једнака 3,92 .

Слика 1. Карта Србије са кориићеним метеоролоиким станицама

Серија T вредности добијених тестирањем годишњих сума падавина измерених на максимум у врежности од 887 током 1958 године у историіи станице може се видети да је она ремештена 3 км у октобру 1957 гожне
 ротрана и добијена вретност за T је ј поправљена и добијена вредност за T_{x} једнака 1,94 указује да поменута серија има само један прекид хомогености на који је и тест указао.
Резултати тестирања временске серије годишшьи сума падавина регистрованих на метеоролошкој

4. Закључци

Примена Алксандерсоновог теста за испитивање хомогености. Међутим, треба нагласити да је релативне хомогености годишњих сума падавина измерених на 24 метеоролошке станице на територији Србије показала је да је овај тест моћно средство за утврђивање нехомогености. Наиме, поменутим тестом је откривено 75% регистрованих нехомогености на основу постојеће историје станица. Такође, овај тест је веома погодан и за поправку оригиналних серија годишњих сума падавина на оним метеоролошким станицама на којима је регистрован само један прекид

сваке станиц неопхадна за проверу теста и откривање могућих извора нехомогености.

Захвалшица

Аутори се захваљују РХМЗ Србије, који је уступио податке о падавинама у електронско форми, потребне за овај рад

Литература

Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661-675
Alexandersson, H., 1995: Homogeneity testing, multiple breaks and trends. Proceedings of the 6 th International Alexandersson, H., 1995: Homogeneity testing, multip
Meeting on Statistical Climatology, Galway, 439-441
Buishand, T. A., 1982: Some methods for testing the homogeneity of rainfall records. J. Hydrol., 58, 11-27.
Conrad, V. и L.W. Pollak, 1950: Methods in Climatology. Harvard University Press, 459 pp
Hanssen-Bauer, I. и E. Forland, 1994: Homogenizing long Norwegian Precipitation series. J. Climate, 7, 1001 1013
Karl, T. R. и C. N. Williams, 1987: An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Climate Appl. Meteor., 26, 1744-1763
Maronna, R. и V. J. Yohai, 1978: A bivariate test for detection of a systematic change in mean. J. Amer Statist. Assoc. 73, 640-655
Peterson, T. C. и Eastreling, D. R., 1994: Creation of homogenous composite climatological refrence series Int. J. Climatol., 14, 671-679
Potter, K. W., 1981: Illustration of a new test for detecting a shift in mean precipitation series. Mon. Wea. Rev 109, 2040-2045.

Зоран М. Васильевић, дийл. мей.
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66,
10030 Беюйрад, Србија, Јуz̈ослаєија

This paper gives the presentation of the climate in Nis. The climatological data of homogeneity series observations in the period 1953-1997 were used as a basis. The analysis of investigations concerning the occurrence of climatological parameter changes in Nis for the same observational series was given as well. Investigations of eventual occurrence of climate parameter changes were performed with the data refering the temperature and precipitation.

Абсииракий
Уовом раду дай је иириказ кпиме Нииа Основу чине климайолоики йодачи хомог̈еног̆ низа осмайррана у йериоду 1953-1997 годдина. Такобе је дайа анализа исииийивана йосйојаньа йенденчије у йромени климайских йарамеииара Нииа на исйом низу оснайранаа Исйиииванье евенииуалной йосйојань ииенденцце у йроленама клинайских йаранейара је рабена на йодаџина који се односе на йемийерайуру и иадавине.

УвоД

Метеоролошка осматрања у Нишу датирају од 1889. године када је основана метеоролошка станица у Нишу по препоруци г. Милана Не дељковића, ондашњег управитеља Опсерваторије Велике школе у Београду. Станица се налазила на потезу између старог нишког гробља и данашњих Житоцромета и Нишке млекаре. Ту су вршена метеоролошка мерења све до Другог светског рата, са прекидима за време балканских и светских ратова. На том месту више не постоје трагови зграде у којој је била смештена метеоролошка станица. После Другог светског рата, од 1945.г. метеоролошка осматрања се врше на новој локацији у близини нишке тврђаве код тзв. Пантелејске трошарине. Данас се на том месту налази дечије об́даниште, али трагови да су се ту вршила метеоролошка осматрања више не постоје. У лето 1950.г. метеоролошка станица се пресељава у нишку тврђаву. Тачан датум почетка метеоролошких осматрања у тврђави је 01.08.1950.г. Од тада се на тој локацији врше метеоролошка осматрања непрестано све до данас
Ниш се налази на $43^{\circ} .20^{\circ}$ северне географске ширине и $21^{\circ} .54^{`}$ источне географске дужине

Просечна надморска висина му је око 200 метара, док је наедморска висина метеоролошке станице на садашњој локацији 201 метар.

По свом топографском положају везан је за западни део Нишке котлине која представља завршетак тока реке Нишаве, и то за место где котлина почиње постепено да прелази у јужноморавску долину.

Нишка котлина је издуженог облика и има правац пружања исток-запад. Дугачка је 24 километра, док јој највећа ширина износи око 18 км. Планински обод има просечну надморску висину око 700 метара и на више места је засечен долинама мањих водотокова које Нишава у овој котлини прима.

Нишка котлина је према северозападу, западу и запад-југозападу нашироко отворена и прелази у јужноморавску долину. Ка северу је оивичена масивом Калафата, ка североистоку Сврљишким Планинама, ка југоистоку Сувом

Планином а ка југу Селичевицом. Источни оквир котлине, између огранака Суве и Сврљишких Планина, пробијен је дубоком кањонском долином Hишаве, Сићевачком Клисуром.

И најзад, Нишка котлина се налази дубоко у континенту. Од Јадранског и Егејског мора удаљена је око 270 км ваздушне линије, а од Црног мора око 430 километара.

С обзиром на напред изложене географске факторе, Ниш има и одговарајуће климатске карактеристике, које носе у себи обележје умерено-континенталне климе у области семиаридног подручја.

Климатолошка грађа коришвена у овом раду обухвата период од 45 година, т.j. период 1953 1997. Овај период је узет због хомогености података, јер је метеоролошка станица на садашњој локацији од лета 1950.г. Нису обухваћене године 1951. и 1952. јер током тих година нису вршена осматрања свих метеоролошких елемената и појава које се овде третирају. Значи низ 1953-1997. представља најдужи последњи хомогени низ за све елементе третиране у овом раду.

2 HPUTHCAK

у табела 1. Приказане су средње вредности притиска (мб) за Ниш (средња дневна вред ност, средњавредност притиска у 07,14 и 21 час).

Табела 1. Приказ средњих вредносииии йрийиска (мб) за Ниии (средна дневна вредносые, средњає реднос䇇 йииииска у 07, 14 и 21 час)

ГОД. ${ }^{+3}$. JАН. ФЕБ. МАР. АПР. МАЈ ЈУН ЈУЛ АВГ. СЕП. ОКТ. НОВ. ДЕЦ													
поД.	995.9	993.9	992.8	989.7	990.9	991.0	991.4	991.7	994.2	995.9	995.4	9951	2
07 час.	996.1	994.3	993.5	990.5	991.6	991.8	992.3	992.5	994.9	996.5	995.7	995.3	993.8
14 час.	995.4	993.4	992.2	989.0	990.1	990.4	990.7	990.9	993.5	995.1	994.7	994.5	992.5
21 час.	996.3	994.1	992.9	989.7	990.8	990.9	991.2	991.5	994.1	996.1	995.6	995.4	993.2

Као што се из ове табеле види, средња лоналног поља почетком јесени (михољско годишња вредност притиска (993.2 мб) условљена је претежно самом надморском висином станице (201 m) у односу на стандардни притисак на морском нивоу за ову географску ширину, при чему се међусобно поништавају флуктуације притиска изазване различитим баричким пољима која се смењују у току године. Међутим, средње вредности притиска по месецима дају представу о томе какви типови баричких поља доминирају у одређено доба године. Минимум у априлу (989.7 mb) и ниске вредности у мају и јуну $(990.9$ мб и 991.0 mb) указују на већу учестаност утицаја поља ниског притиска у тим месецима, док максимум у октобру (995.9 mb) указује на стабилизацију времена и чест утицај антицик- лето). Други максимум у јануару (такођ 995.9 mb) указује на често зимско антицик лонало поље изазвано присуством приземног слоја хладног ваздуха. Из средњих вредности притиска у 07,14 и 21 час у току године и по појединим месецима лепо се исказује дневн ход притиска, тј. пад притиска од јутра ка седини дана и поновни пораст ка вечерњим часовима и ноћи
3. ТЕМПЕРАТУРА ВАЗДУХА

У табели 2. Приказане су температуре у Нишу за период 1953-1997.

Табела 2. Средъе йемйерайире у Нииу за йериод 1953-1997

	JAH.	ФEE.	MAP.	AIP.	MAI	JYH	गY/	АВГ.	CEI.	OKT.	нов.	дец.	го䒑.
дневна	0.0	2.2	6.4	11.6	16.5	19.9	21.6	21.4	17.3	12.0	6.4	2.1	11.5
074	-1.9	-0.4	2.8	8.3	13.7	17.3	18.4	17.5	13.1	8.0	4.0	0.4	8.5
14 y	2.6	5.5	10.6	16.1	21.3	24.8	27.0	27.4	23.5	17.6	10.3	4.6	16.0
	-0.4	1.8	6.1	11.0	15.5	18.7	20.5	20.3	16.3	11.1	5.7	1.6	10.7
срен.макс.	3.9	6.9	12.0	17.5	22.7	26.2	28.4	28.7	24.8	18.8	11.5	5.8	17.3
срер.мин.	-3.3	-1.7	1.6	5.9	10.4	13.6	14.8	14.7	11.1	6.7	-2.6	1.1	6.3
амплитууе	7.2	8.6	10.4	11.6	12.3	12.6	13.5	14.0	13.6	12.1	8.9	7.0	11.0
Mrh (5 Cm)	-4.9	-3.7	-0.9	2.9	7.7	11.3	12.4	12.1	8.5	3.7	0.3	-28	39

Као што се види најтоплији месеци у Нишу су амплитудом температуре је август (14.0), док јул и август (средње дневне температуре 21.6 и децембар (7.0) и јануар (7.2) имају у просеку $21.4^{\circ} \mathrm{C}$.) с тим што је средина дана (14 часова) у августу топлија (27.4) него у јулу (27.0), али су ноћи свежије (температуре у 07 и 21 час). су ноћи свежије (температуре у 07 и 21 час). Наш народ каже „Од Светог Илије сунце све
милије Такође, август има и највећи милије Такође, август има и највећи
средњи дневни максимум температуре (28.7). Најхладнији месец је јануар са средњом температуром од $0.0^{\circ} \mathrm{C}$. У јануару су најнижи и средњи дневни максимуми и минимуми (3.9 и $3.3{ }^{\circ} \mathrm{C}$.). Месец са највећом средњом дневном

,	$\begin{aligned} & \text { гОД. } \\ & 42.3 \end{aligned}$	$\begin{gathered} \hline \text { JAH. } \\ 18.6 \end{gathered}$	$\begin{array}{r} \hline \text { ФЕБ. } \\ 23.2 \end{array}$	$\begin{array}{r} \text { MAP. } \\ 28.6 \end{array}$	$\begin{gathered} \text { AПP. } \\ 33.0 \end{gathered}$	MAJ	$\begin{gathered} \text { JyH } \\ 38.3 \end{gathered}$	$\begin{gathered} \text { ЈУЛ } \\ 42.3 \end{gathered}$	42.2	37.2			21.6
	-23.7	-23	-19.	-13.	-4.0	-1.0	4.2	4.1	4.6	-2.2	-6.8	-14.0	-16.6

$\begin{array}{llllllllllllll}\text { минимум } & -23.7 & -23.7 & -19.4 & -13.2 & -4.0 & -1.0 & 4.2 & 4.1 & 4.6 & -2.2 & -6.8 & -14.0 & -16.6\end{array}$
За посматрани период 1953-1997 апсолутни мразних дана (Тмин<0 ${ }^{\circ} \mathrm{C}$), дана са мразом при минимум од $-23.7^{\circ} \mathrm{C}$. забележен је 25.1.1963.г., тлу ($\mathbf{0} 05$ цм $<0^{\circ} \mathrm{C}$), летњих дана (Тмакс $>=25^{\circ} \mathrm{C}$), а апсолутни максимум од 42.3 ст.Целз. за- тропских дана (Тмакс> $=30^{\circ} \mathrm{C}$), дана када је бележен је 25.7.1987.г.

Тмин $>=20^{\circ} \mathrm{C}$, дана са $\mathrm{Tcp}>=5{ }^{\circ} \mathrm{C}$, дана са Тср $>=10^{\circ} \mathrm{C}$ и дана са $\mathrm{T} \mathrm{c} p>=15^{\circ} \mathrm{C}$ је приказан у табели 4.
Просечан годишњи број ледених дана
(Тмакс $<0^{\circ} \mathrm{C}$), дана када је T) $\ll=-10^{\circ} \mathrm{C}$,
Табела 4. Средњи број дана са миемйерайурама изнад и исйод одређеной йрайа у Нииу за йериод од 1953-1997.

	JAH.	ФEb.	MAP.	AITP.	MAJ	Ј УH	Јул	АВГ.	СЕп.	OKT.	нов.	дец.	год.
Тмакс<0	7.2	3.9	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	4.0	16.3
Тмин<= -10	2.9	1.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.1	5.9
тмин<0	22.8	17.6	10.2	1.5	0.0	0.0	0.0	0.0	0.1	2.1	8.2	17.6	80.1
то5ңм<0	25.2	20.6	16.6	7.3	0.9	0.0	0.0	0.0	0.6	7.5	13.2	20.9	112.9
Tмкс>=25	0.0	0.0	0.5	2.6	10.8	19.0	24.4	24.4	15.7	4.1	0.1	0.0	101.7
тмкс> $=30$	0.0	0.0	0.0	0.0	1.6	6.4	12.0	13.0	4.6	0.3	0.0	0.0	38.0
Tмин> $=20$	0.0	0.0	0.0	0.0	0.0	0.3	1.0	1.3	0.2	0.0	0.0	0.0	2.9
Tср> $=5$	4.1	8.3	18.3	28.0	31.0	30.0	31.0	31.0	30.0	29.4	18.5	8.0	267.7
Tcp> $=10$	0.5	1.7	7.7	19.7	29.5	29.9	31.0	31.0	29.2	21.2	7.6	1.5	210.5
Tcp> >15	0.0	0.1	1.0	6.7	20.4	27.5	30.2	29.9	21.9	7.8	0.7	0.1	146.3

У просеку у току године у Нишу има 101.7 Што се појаве приземног мраза (т05цм<0) летњих и 38.0 тропских дана, док мразних и ледених дана има у просеку 80.1 односно 16.3. Просечан број дана са мразом при тлу у току године је 112.9. Јануар је месец са највише мразних (22.8) и ледених дана (7.2), а такође и са највише дана са мразом при тлу (25.2). Јули и август имају највише летњих дана (по 24.4) док август има највише тропских дана (13.0), а за њим је јули (12.0).

У просеку последњи дан са појавом мраза (Тмин<0) у првој половини године је 08. априла док је први дан са појавом мраза у другој половини године просечно 29 октобра

тиче, у просеку последњи дан појављивања приземног мраза у првој половини године је 01.мај док је просечно први дан у друго половини године 10 октобра.
3. ВЛАЖНОСТ ВАЗДУХА

Што се релативне влажности тиче, јули и август имају најмању просечну вредност (по 63%), с тим што август има нешто већу јутарњу али мању дневну релативну влажност

	JAH	¢Eb.	MAP.	AIIP.	MAJ	JYH	ЈУл	ABr.	CEII.	OKT.	HOB.	дец.	д.
дневна	80	75	68	64	66	66	63	63	68	72	78	81	70
у 07 час	86	84	81	77	78	77	76	78	85	87	87	87	82
y 14 час	71	63	53	48	50	49	46	43	46	53	64	73	55
у 21 час	83	78	69	66	71	73	68	67	73	77	82	84	74

Табела 6. Айсолуг̄ни минимули средње дневне рел. влажносиии (\%) у Нииу за йериод 1953-1997.

него јули, што је везано за температурне Генерално гледано годишни ход средње услове који су напред описани (свежије ноћи и дневне релативне влажности по месецима је јутра, а топлија средина дана у августу него у јулу). Секундарни минимум средње диевне релативне влажности је у априлу (64%) када је забележен и апсолутни минимум средње дневне релативне влажности (27\%) за Ниш за период 1953-1997. Овај секундарни минимум у априлу није последица мање количине падавина и стабилнијег времена за тај месещ, јер смо видели да је утицај поља ниског при тиска у априлу врло изражен а видећемо и да април не оскудева у падавинама, већ је ова секундарни минимум последица наглог скока средње дневне температуре у односу на претходни период (6.4 ст.Целз. у марту на 11.6 ст.Целз. у априлу). Највећу средњу дневну релативну влажност имају децембар (81%) и јануар (80%). дневне релативне влажности по месецима је пературе по месецима (обрнута сразмера средње дневне температуре и средње дневне рел. влажности) осим поремећаја, т.ј. скока влажности у мају и јуну на 66% који је последица великог повейања атсолутне втажности, јер та два месеца имају просечно највеће месечне суме падавина, што he се видети у даљем излагању.

4. ОБЛАЧНОСТ И СИЈАळЕ СУНЦА

На основу средње дневне облачности и средње облачности у климатолошким терминима да се закључити да је август месец са најмањом просечном облачношћу (3.6/10), а за њим јули

Табела 7. Просечна облачносй (у /10) у Нишу У йериоду 1953-1997. Год.

	JAH.	ФЕБ	MAP.	ATIP.	MAJ	Јун	Јул	ABr.	CEII.	OKT.	HOB.	дец.	год.
дневна	7.1	6.8	6.3	6.2	5.9	5.2	3.9	3.6	4.1	5.1	6.7	7.3	5.7
у 07 час	7.5	7.5	6.8	6.4	5.9	5.1	3.9	3.7	4.4	5.7	7.4	7.6	6.0
y 14 час	7.2	6.8	6.6	6.7	6.4	5.6	4.4	4.1	4.5	5.3	6.8	7.5	6.0
y 21 час	6.5	6.1	5.5	5.4	5.3	4.9	3.5	3.1	3.4	4.2	6.0	6.8	5.1

($3.9 / 10$). Децембар има највећу просечну а најмања у 21 час. Ово је последица тога што облачност (7.3 /10) а после њега јануар (7.1 10). Такође се на основу терминских средњих облачности у току године и по месецима види да за све месеце важи да је средња облачност у 21 час увек мања од средње облачности у 07 и 14 часова за одговарајући месец. Међутим, дневни ход облачности по месецима указује на следеће: у хладном делу године (период окто-бар-март) дневни ход је такав да је највећа облачност у 07 часова, нешто мања у 14 часова

у хладном делу године доминира нижа слојаста облачност која се углавном формира у другом делу нопии, а током дана се разбија. Дневни ход облачности у току топлог дела године (период април-септембар) даје другачију слику. У току свих ових месеци облачност од јутра (07 часова) расте ка средини дана (14 часова), а затим опада ка вечери када има најмању вредност. Ово је последица тога што у топлом делу године доминира облачност конвективног типа

дан са појавом снега у другој половини године 7.11.

Суснежица се најчешће јавља у марту, а затим у децембру.

Просечно у Нишу у току године снежног покривача има 43 дана (42.8). Најчешће снежног покривача има у јануару, затим у фебруару па у децембру.

У просеку, последњи дан са појавом снежног покривача у првој половини године је 10.3. док е први дан са појавом снежног покривача у другој половини године у просеку 28.11.

Суградица и/или град се најчешће јављају у априлу, мају и јуну (по 0.4).

Грмљавина и севање у току године се просечно јављају у 43 дана (42.9) и то најчешће у јуну и уопште у топлом делу године. Међутим, мада ретко, јављају се и у другим деловима године,

Табела 11. Просечне и максималне годииње и месечне суме йадавина (у мм) за Нии за йериод
1953-1997: ЈАС. ФЕБ. МАР. АПР. МАЈ ЈУН ЈУЛ АВГ. СЕП. ОКТ. НОВ. ДЕЦ.

пРоС	586.4	39.1	39.7	41.7	52.3	65.6	62.5	45.8	43.8	45.8	39.4	56.9	53.9
MAKC	791.8	95.1	92.6	102.9	104.9	141.9	206.1	142.5	116.7	201.1	117.6	179.1	111.2
год.	1955	1987	1969	1988	1962	1957	1969	1986	1979	1996	1957	1985	1969

месецима, у просеку, највећу количину падавина имају мај (65.6 мм) и јун (62.5 мм). У јуну је забележен и апсолутни месечни максимум (206.1 мм године 1969.). Секундарни максимум просечне месечне суме падавина је у новембру ($56.9 \mathrm{mм}$).

Табела 12Ексйремне дневне вредносйи $\overline{\text { йадавина (мм) у Нишу у йориоду 1953-1997. г̄од }}$

MECEL	Датум	Максимум
JAHYAP	30.1.1987.	24.2
ФЕБРУАР	6.2.1969.	34.8
MAPT	28.3.1993.	27.9
Аптил	19.4.1981.	33.2
MAJ	18.5.1993.	41.5
Јун	8.6.1969.	47.5
Јул	18.7.1962.	48.2
Август	3.8.1997.	50.6
СЕПТЕMbap	1.9.1963.	71.2
OKTOLAP	7.10.1979.	47.3
\|hobembap	5.11.1954.	76.6
ДЕЕЦЕМБАР	20.12.1955.	35.7
АПСОлУТНИ	5.11.1954.	76.6

па чак и у јануару и децембру („...кад загрме на Светога Саву... ,).

Магла се просечно јавља у 13.3 дана у току године и то најчешће у децембру и ја нуару, најређе у јуну, јулу и августу (и то у јутарњим часовима).

Слана се просечно јавља у 63.7 дана у току године и то најчешће у јануару, затим у децембру па у фебруару
Носледњи (у првој половини године) и први дан са појавом слане (у другој половини године) су у просеку 24.4. и 12.10.
6. ПАДАВИНЕ

Као што се види просечна годишња сума падавина у Нишу је 586.4 mm , док је највећа годишња сума падавина у периоду 1953-1997 забележена 1955. (791.8 mm), а најмања годишња сума била је 1990 .год. (411.5 mm). По

и су јануар (39.1 мм) октобар (39.4 Mm) и фебруар ($39.7 \mathrm{mм}$) Фебруар и јануар имају и најмање апсолутне максимуме у односу на остале месеце.

Из просечног броја дана са одређеним количинама падавина види се да у Нишу има просечно 135.3 дана годишње када је количина падавина мерљива ($>=0.1 \mathrm{mм}$), а само 17.6 дана када је количина $>=10.0 \mathrm{~m}$, односно само 4.2 дана када је количина $>=20.0 \mathrm{mм}$. Дан са количином падавина $>=50.0$ мм јавља се у про секу једном у 10 година. Види се да су само јул, август, септембар и октобар месеци који имају у просеку мање од 10 дана са мерљивом количином падавина

Месеци који имају просечно највећи број дан са великом количином падавина ($>=10.0 \mathrm{~mm}$) с мај (2.1), јуни (1.9) и новембар (1.9). У мају уну то је везано за пљусковити карактер падавина из конвективне облачности, а у но

дан са појавом снега у другој половини године 17.11.

Суснежица се најчешће јавља у марту, а затим у децембру.

Просечно у Нишу у току године снежног покривача има 43 дана (42.8). Најчешке снежног покривача има у јануару, затим у фебруару па у децембру.

у просеку, последњи дан са појавом снежног покривача у првој половини године је 10.3. док је први дан са појавом снежног покривача у другој половини године у просеку 28.11.

Суградица и/или град се најчешће јављају у априлу, мају и јуну (по 0.4).

Грмљавина и севање у току године се просечно јављају у 43 дана (42.9) и то најчешке у јуну и уопште у топлом делу године. Међутим, мада ретко, јављају се и у другим деловима године,
Табела 11. Просечне и максималне годдииње и месечне суме йадавина (у яии) за Нии за йериод

год.		JAH.	ФЕБ.	MAP.	АПР.	MAJ	Јун	Јул	ABr.	CEI.	OKT.	нов.	дец
пРОС	586.4	39.1	39.7	41.7	52.3	65.6	62.5	45.8	43.8	45.8	39.4	56.9	53.9
MAKC	791.8	95.1	92.6	102.9	104.9	141.9	206.1	142.5	116.7	201.1	117.6	179.1	111.2
год.	1955	1987	1969	1988	1962	1957	1969	1986	1979	1996	1957	1985	1969

месецима, у просеку, највећу количину падавина имају мај (65.6 мм) и јун (62.5 мм). У јуну је забележен и апсолутни месечни максимум (206.1 мм године 1969.). Секундарни максимум просечне месечне суме падавина је у новембру (56.9 мм).
Табела 12Ексйремне дневне вредносиии йадавина (мм) у Нииу у йориоду 1953-1997. год

MECEL	Датум	Макскмум
JAHYAP	30.1.1987.	24.2
¢EbPYAP	6.2.1969.	34.8
MAPT	28.3.1993.	27.9
АПРИЈ	19.4.1981.	33.2
MAJ	18.5.1993.	41.5
Јун	8.6.1969.	47.5
Јул	18.7.1962.	48.2
АвГУСт	3.8.1997.	50.6
CEITEMbap	1.9.1963.	71.2
октоБар	7.10.1979.	47.3
HOBEMEAP	5.11.1954.	76.6
ДЕЦЕМБар	20.12.1955.	35.7
АПСОЛУТНИ	5.11.1954.	76.6

па чак и у јануару и пецембру (\ldots...кад загрме на Светога Саву... ,

Магла се просечно јавља у 13.3 дана у току године и то најчешне у децемору и ја нуару, а најређе у јуну, јулу и августу (и то у јутарњим часовима).

Слана се просечно јавља у 63.7 дана у ток године и то најчешне у јануару, затим у децем бру па у фебруару.
Последни (у првој половини године) и први дан са појавом слане (у другој половини године) су у просеку 24.4. и 12.10.

6. ПАДАВИНЕ

Као што се види просечна годишња сума падавина у Нишу је 586.4 mm, док је највећа годишња сума падавина у периоду 1953-1997 забелекхена 1955. (791.8 mm), а најмања забележена $1955 .(791.8 \mathrm{~mm}$), а најмања
годишња сума била је 1990. год. (411.5 mm). По

Просечно, најсувљи месеци су јануар (39.1 мм) октобар ($39.4 \mathrm{mм}$) и фебруар (39.7 мм). Фебруар и јануар имају и најмање апсолутне максимуме у односу на остале месеце.

Из просечног броја дана са одређеним количинама падавина види се да у Нишу има просечно 135.3 дана годишње када је количина падавина мерљива ($>=0.1 \mathrm{mм}$), а само 17.6 дана када је количина $>=10.0 \mathrm{mм}$, односно само 4.2 дана када је количина $>=20.0 \mathrm{~mm}$. Дан са количином падавина $>=50.0$ мм јавља се у просеку једном у 10 година. Види се да су само јул, август, септембар и октобар месеци који имају у просеку мање од 10 дана са мерљивом количином падавина.

Месеци који имају просечно највећи број дана са великом количином шадавина ($>=10.0 \mathrm{~mm}$) с мај (2.1), јуни (1.9) и новембар (1.9). У мају и јуну то је везано за пљусковити карактер падавина из конвективне облачности, а у но-

вембру за дуготрајне падавине из нимбостра- број дана са количином падавина $>=20.0 \mathrm{~mm}$. туса. Мај и јун такође имају просечно највећи

Број дана са количином йадавина (у мм) већом или једнаком од (рр>=)

	од.	Феб.			АПР.	MAJ	Јун	ЈУл	АВГ.	СЕп.	ОК	H	дец.	год.
pp>= 0.1 mm	135.3	13.3	12.4	12.0	13.0	13.6	12.2	9.0	8.0	7.9	8.5	11.8	13.6	135.3
0.5мм	104.9	9.6	9.2	8.7	10.0	11.0	10.0	7.4	6.3	6.3	6.5	9.1	10.8	104.9
1.0мм	87.8	7.6	7.5	7.1	8.2	9.6	8.4	6.3	5.3	5.5	5.4	7.8	9.2	87.8
5.0mm	38.9	2.7	2.7	2.8	3.8	4.3	3.9	2.8	2.8	2.9	2.6	3.8	3.6	38.9
10.0 mm	17.6	0.9	0.9	1.2	1.6	2.1	1.9	1.4	1.5	1.6	1.2	1.9	1.5	17.6
20.0 mm	4.2	0.1	0.1	0.2	0.2	0.6	0.6	0.4	0.5	0.4	0.3	0.5	0.3	4.2
50.0 mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1

Табела 14. Максималне висине Хс (укуйног̄ снейа) и Хн (ново̄̆ снег̄а) у санииинейрима (имн) у Нишу за йериод 1953-1997 са г̈одином йојаввивања

Xc	$\begin{gathered} \text { JAH. } \\ 58 \end{gathered}$	$\begin{gathered} \hline \text { ФЕБ. } \\ 62 \end{gathered}$	$\begin{gathered} \hline \text { MAP. } \\ 40 \\ \hline \end{gathered}$	АПР. 7	$\begin{gathered} \text { MAJ } \\ 0 \end{gathered}$	$\begin{gathered} \hline \mathrm{JyH} \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { Jyл } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{AB} \mathrm{\Gamma} . \\ 0 \end{gathered}$	$\begin{gathered} \hline \text { СЕП. } \\ 0 \end{gathered}$	$\begin{aligned} & \hline \text { OKT. } \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { нов. } \\ 27 \end{gathered}$	$\begin{gathered} \text { ДЕЦ. } \\ 35 \\ \hline \end{gathered}$
год.	1963	1954	1962	1981						1997	1983	1974
	30	27	20	7	0	0	0	0	0	1	22	
			1962	1981						1997	$\begin{gathered} 1983 \\ \text { и } 1990 \end{gathered}$	1980

Табела 15. Врој дана са укуйним снежним йокривачем (у цм) већим или једнаким од ($Х с>$) (укуйни снежни йокривач мерен у 7 часова) \qquad

$\mathrm{Xc}>=$													
1пм	13.5	8.8	3.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	2.4	8.6	36.9
10yм	5.3	3.5	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	2.8	13.0
30цм	0.8	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.6

На основу мерења укупног снежног покривача види се да просечно у току године у Нишу има око 37 (36.9) дана када се у 07 часова измери снежни покривач $>=1 \mathrm{~cm}$. Број дана када је измерено $>=10 \mathrm{~cm}$ сн.пок. је 13.0 , док је број дана када се измери 30 cm или више снежног покривача у просеку 1.6 .

Месец који у просеку има највише дана по свим наведеним граничним вредностима висине укупног снежног покривача је јануар, а за њим следи фебруар.
7. BETAP

Приземни ветарје метеоролошки елемент који највише зависи од доминирајућег поља притиска и од орографије (макро и микроре-

ьефа), али и од других фактора (температурни услови, наилазак фронта, смицање ветра са висином и вертикални пренос количине кре тања, присуство јаке конвективне облачност у маси итд.).

Као што сеиз табеле 11. види, тишине се y току године јављају у 340% о, што значи да се ветар у току године бележи у 660% о случајева. Најмање тишина има у марту (247% о) и априлу (269%) пшто значи да су ови месеци и најветровитији. Највише тишина има у децембру (396% о), септембру (386%) и октобру (383\%o).
Што се честине по смеровима тиче, види се да је у току године најчешћи смер из NW (138% о), затим из $\mathrm{E}(89 \%$ о) и $\operatorname{ENE}(66 \%$ о)

Табела 16. Ружа вейрова йо чесйини (\%о) за 16 слерова за Нии (у ииоку године и йо лесецина)

CMEP	год.	JAH.	TEE.	MAP.	AIIP.	MAJ	уу\%	Јул	ABr.	CEML.	OKT.	HOB.	дец.
N	18	14	13	17	18	25	26	32	26	14	12	14	10
NNE	11	11	12	12	11	16	9	11	12	9	11	7	6
NE	30	20	36	41	42	36	25	25	32	34	35	20	18
ENE	66	52	77	106	72	53	48	45	59	64	83	74	60
E	89	88	93	119	99	82	72	60	83	81	98	109	85
ESE	48	51	61	49	49	50	45	35	37	52	54	53	44
SE	20	21	23	19	22	22	23	17	21	17	13	21	20
SSE	13	11	14	16	18	11	14	10	7	10	14	16	14
s	28	18	33	36	44	37	23	23	17	26	32	28	24
ssw	16	9	17	25	34	16	18	12	11	11	16	17	12
sw	23	16	21	29	28	32	27	19	20	25	25	18	18
wsw	19	22	18	21	19	20	21	16	16	18	15	16	20
w	36	39	32	24	33	35	38	39	45	36	29	39	36
WNW	52	70	55	49	54	53	52	59	45	36	40	51	55
NW	138	154	143	139	136	130	155	183	152	126	99	115	130
NNW	53	45	53	50	51	57	60	71	54	54	40	48	52
тіно	340	361	299	247	269	326	342	346	363	386	383	355	396

Ови ветрови су најчешии и када се гледа појединачно по месецима. Смер NW је најчешии је м меси у односу на остале cмерове. вазпушних масаца тога што су продори нашим крајевима, али је и последица каналисања, тј отворености Нишке котлине ка северозападу долином Јужне Мораве.

Смерови Е и ENE су уз северозападни смер најчешћи у току године, али гледано и поединачно по месецима. Последица су врло честе ситуације када се над источном половином Балкана успостави поље повишеног притиска, а западној половини Балкана се приближава или на њу утиче поље ниског притиска. Овакав распоред поља притиска у ком-
бинацији са карактеристичним рељефом
Табела 17. Ружа веиирова йо брзини (м/с) за 16 смерова за Нии (йросечне брзине дувана вейра и разних смерова):

CMEP	JAH.	Феб.	MAP.	АПР.	MAJ	JyH	JyJI	ABr.	CEI.	OKT.	HOB.	дец.	год.
N	2.1	1.7	2.0	2.0	1.7	1.8	1.5	1.6	1.6	1.6	1.6	1.3	1.7
NNE	2.3	2.3	3.0	2.2	2.0	1.7	1.8	1.2	1.6	2.1	1.9	2.2	2.1
NE	3.7	4.8	3.7	3.2	2.5	1.7	1.9	2.0	2.5	2.7	3.5	3.3	3.0
ENE	4.0	4.1	4.5	2.8	2.3	1.9	2.0	1.9	2.1	3.0	3.9	3.6	3.2
E	3.2	2.9	3.6	2.5	2.3	1.9	1.7	1.8	2.3	2.7	3.2	2.8	2.6
ESE	2.2	2.2	2.0	1.9	1.8	1.5	1.3	1.6	1.6	1.8	2.0	2.0	1.8
SE	1.7	1.5	1.4	1.6	1.4	1.4	1.4	1.3	1.2	1.4	1.5	1.7	1.5
SSE	2.6	2.6	2.6	2.0	2.0	1.4	1.2	1.5	1.6	2.0	2.2	2.5	2.1
s	2.0	3.0	2.7	2.4	2.3	1.7	1.5	1.4	1.6	1.9	2.3	3.0	2.3
ssw	2.0	2.2	2.7	2.8	2.2	1.7	1.5	1.5	1.6	1.9	1.8	2.0	2.1
sw	1.4	2.0	2.2	2.2	2.1	1.8	1.5	1.7	1.3	1.8	2.0	1.2	1.8
wsw	1.2	1.4	1.4	1.8	1.4	1.4	1.5	1.4	1.2	1.4	1.1	1.1	1.4
w	1.4	1.5	1.3	1.6	1.5	1.5	1.4	1.5	1.5	1.3	1.2	1.3	1.4
WNW	2.4	2.4	2.6	2.5	2.4	2.3	2.0	2.2	2.3	1.9	2.1	2.3	2.3
NW	3.3	3.3	3.7	3.4	2.9	2.9	3.0	3.0	3.1	2.9	2.9	3.2	3.1
NNW	3.1	3.1	2.9	3.0	2.6	2.5	2.5	2.4	2.5	2.7	2.5	2.8	27

Из руже ветрова по јачини види се да у про- иначе смерови који се издвајају и по честини секу у току године најјаче дувају ENE ($3.2 \mathrm{~m} / \mathrm{s}$), Смер NW је у просеку најјачи у марту ($3.7 \mathrm{~m} / \mathrm{s}$), NW ($3.1 \mathrm{~m} / \mathrm{s}$) и NE ($3.0 \mathrm{~m} / \mathrm{s}$). Смерови NW и али он релативно јако дува током целе године ENE cy, као што је већ напред истакнуто, Смерови NE и ENE су јачи у хладној половини

Нишке котлине (источни део котлине прелаз у дубоку кажонску долину Нишаве, Сићевачку Клисуру), узрокује каналисање ветра долином Нишаве из смера Е и ENE. Cмер ENE је уз поменуто канолисане везаи и за кошани стуашјі, zата кош ситуације, када кошава дува преко превоја ззеђу Сврљишких планина и масива Кала фата. Ова два смера (Е и ENE) су најчешћи у марту и октобру и новембру.

Остали смерови дувања ветра су ређи што збо тога јер су продори ваздушних маса из тих смерова ређи, што због тога јер је Нишка кот лина заклоњена планинама из тих смеров (видети опис географског положаја Ниша на почетку)

године, посебно у периоду од јауара до марта (ENE у марту $4.5 \mathrm{~m} / \mathrm{s}$, NE у фебруару $4.8 \mathrm{~m} / \mathrm{s}$). То је везано за кошавске ситуације када хладан ваздух из Влашке низије, преко источне Србије продире ка Нишкој котлини преко превоја

ЗАКЉУЧАК

Према изнетој анализи појединих климатских елемената може се констатовати да Ниш има такве климатске карактеристике, које усеби носе обележје умерено-континенталне климе у области семиаридног подручја.

У Нишу је друга половина године топлија од прве.

Средња дневна колебања температуре највећа су лети, а најмања зими.

Ниш је сигуран од мразева само за време лета. Средња вредност релативне влажности ваздуха у Нишу у свим месецима је већа од 60%

Према подацима о средњој вредности облачности види се да облачност опада од јануара до септембра, а затим се повећава према децембру.

Падавине нису подједнако распоређене по месецима нити по годишњим добима. Највише падавина, у просеку, имају мај и јун, а за њима новембар. Најсувљи месеци, у просеку, су јануар, октобар и фебруар. Међутим, постоје знатна одступања у количини падавина у истим месецима за различите године. Просечно, у току године Ниш прими око 585 мм падавина.

Снег се у Нишу јавља просечно око 41 дан годишње и то најчешће у јануару па у фебруару. Последњи дан са појавом снега у Нишу у првој половини године је у просеку 28. март док је први дан са појавом снега у другој половини године 17 новембар.

Просечно у Нишу у току године снежног покривача има 43 дана. Најчешће снежног покривача има у јануару и фебруару. У просеку, последњи дан са појавом снежног покривача у првој половини године је 10.март док је први дан са појавом снежног покривача у другој половини године у просеку 28.11

између Сврљишких ппанина и масива Кала фата. Значи, и на основу руже ветрова по јачини се уочава каналисаност изазвана рељефом.

Ветрови у Нишу дувају често. У две трећине осматрања установљава се дување ветра из разних смерова, а у једној трећини осматрања установљава се тишина. Када дува, ветар дува просечном брзином која се креће између 1 и 5 м/с. Учестаност ветрова из разних смерова условљена је учестаношћу одређених синоптичких ситуација и специфичним рељефом Нишке котлине који врии шаналсане ио Нишке котлине, који врши каналисање креНишаве.

Овај рад је био замишљен тако да да слику климатских карактеристика Ниша и Нишке котлине, али и да се види постоје ли знаци неких промена климе у Нишу.
Што се првог циља тиче, представљен је приказ климатских карактеристика Ниша

Међутим, што се другог циља овог рада тиче није установљено да се климатске карактеристике Ниша мењају за период 1953-1997.

Наиме, испитиван је ток средњих годишњих температура и средњих месечних температура за Ниш, али паралелно и за Златибор за та период. Златибор је узет као станица која им добар низ података за тај период, мало се разликује по географској ширини од Ниша а иије под утицајем урбане климе и послужио ј а упоређивање. Показало се да се подаци Ниша и Златибора међусобно одлично слажу и да се средње годишње и средње месечне тем пературе по годинама у току поменутог периода разликују само због разлике у надморско зисини. Међутим, није устано-вљена нека тенденција промена тих температура у току испи тиваног периода (фитовање разним претпостављеним функцијама) ни за Ниш ни за Златибор, док су флуктуације тих вредности у односу на средњаке пратиле нормалну распо делу.

Показало се да је за извођење поузданих закључака о климатским променама коришћени низ осматрања у периоду 1953-1997 (45 година) ипак недовољно дуг.

Такође, вршено је испитивање везе средњих годишњих температура, средњих месечних температура, годишњих и месечних количина падавина за Ниш са активношћу Сунца у том периоду. За активност Сунца узет је као мерило Wolf-oв број. Међутим, није утврђена нека веза између тог броја и средњих температура и количина падавина у Нишу. И за велике

а и за мале вредности Wolf-овог броја и температуре и количине падавина су имале врло различите вредности (могле су бити и мале и велике и обрнуто)

Ово говори да, ако се жели испитати веза између активности Сунца и климатских елемената, треба одабрати показатељ који боље описује физичку активност Сунца као звезде него што то чини Wolf-ов број (који се одређује на основу броја пега и група пега на сунчевом диску у видљьивом делу спектра).

ПРЕГЛЕД РЕЗУЛТАТА РЕКОНСТРУКЩИЛЕ КЈИМЕ У ЈУГОСЛАВННИ ДЕНДРОХРОНОЛОНHKOM METOДOM

мр Владан Пучић
Геог̄рафски факулйеши, Сиуудениискии йрй 3/пII
11000 Веог̈рад, Југ̈ославшја

Apstrakt
In our work are given the results off dendrochronological investigationes in Yugoslavia in last five years

Айсӣракій
У раду су дайи резулйиайи дендрохронолошких исиираживана у Југ̄ославији у йослед-

УВОД

У Југославији до сада није било дендроклиматолошких истраживања, тако да наш рад представља само први корак у испитивањима веза између климе и дебљинског прираста дрвећа. Добијене резултате зато треба прихватити као пионирске на овим просторима и основу за будућа комплексна истраживања реконструкције климе у прошлости.

Иако је нестандардних мерења било и раније најдужи континуирани низ температуре и падавина у Југославиіи има метереолошка станица Београд и то тек од 1887 . године. Циљ истраживања је био да се дендрохронолошким методом реконструише клима у прошлости и продужи постојећи, релативно кратак низ. Такође би било од интереса видети да ли постоје разлике у трендовима климатских еле мената између Балканског полуострва и оста лог дела Европе.

КЛИМАТСКИ ФАКТОРИ И ДЕБЉИНСКИ ПРИРАСТ

Ритам и величина прираста у току једног веге тационог периода зависе од великог броја фактора спољашње средине. Јачина утицаја појединих фактора није једнака у току читавог

вегетационог периода. У пролеће, земљиште је засићено влагом, али је тада још увек хладно. Отуда, за растене у овом периоду често недостаје потребна топлота. Лети је, међутим, топло, репативна влажност ваздуха опада, а транспирација и евапорација расту. Услед растуће транспирације, а поготово испаравања, долази до осиромашења земљишта у снабдевености водом.

Значај разних климатских фактора за растење није исти у току свих годишњих доба. Значај неког фактора мења се с обзиром на земљишне услове, стање хумуса итд. Утицај неког фактора зависи од врсте дрвећа, изграђености састојине и степена прореда. Стога није чудо, што се у литератури саопштавају врло често противуречна мишљења и закључци о утицају појединих фактора спољашње средине на ток и величину прираста.

Ипак, било би грубо поједностављење када би се дебљински прираст посматрао само у зависности од температуре или падавина. Познато је да су са обилним летним падавинама врло често повезане ниже температуре, висока ре лативна влажност ваздуха, краће трајање ин-

солације, мање глобално зрачење, као и слабија евапорација. Стога је веома тешко одлучити коме од ових међусобно повезаних климатских фактора приписати одлучујући значај. Осим тога на прираст делују и други фактори станишта (подземне воде, резерве влаге у тлу, антропогени утицаји, итд.).

Како поуздано тврдити да је одређена ширина года у вези са неким климатским фактором? У дендроклиматологији је уобичајен метод лимитирајућег фактора при решавању овог проблема. Наиме, треба узети у анализу оне објекте код којих су температура или падавине лимитирајући фактор прираста. При томе треба у што већој мери елиминисати остале еколошке факторе, који могу да маскирају везу климе и прираста. То се односи како на остале факторе станишта, тако и на антропогени утицај (путем сече, прореде, итд.).

у Југославији, као и у осталом делу Европе, температура је ограничавајући фактор раста у високим планинским пределима, где је вегетациони перио кратак, а зими влада физиолошка суша због замрзнутог земљишта. Зато би требало узимати узорке у близини горње границе шуме, односно, нешто испод термичке шумске границе. Проблем горње шумске границе је, такође, слабо истраживан, а наша прелиминарна испитивања лоцирају термичку горьу шумску границу на надморску висину од 2050 до 2100 м. (Дуцић В., 195.).

У Југославији нема класичних аридних предела. Изван медитеранског подручја,у низијским и котлинским пределима Србије три до четири месеца, у вегетационом периоду су изразито сушна, а у Нишкој котлини чак пет месеци (Ракићевић Т., 1988.).

АНАТОМСКО-ГЕНЕТСКА И АНТРОПО-
ГЕНА ОГРАНИЧЕЊА

Основно анатомско ограничене се састоји у томе, да је релативно мали број врста код ко јих су годови добро видљиви. Чак шта више код многих врста лишћара годови се тешко препознају, или се уопште не виде. Сретна је околност, да су врте код којих се годови препознају, у Југославији широко распрострањене. На основу података више аутора и на основу сопственог искуства, направили смо

абеду читљивости годова ретативно распрос трањених врста у Југославији.

ТАБЕЛА 1: ЧИТЉИВОСТ ГОДОВА РЕЛА

ТИВНО РАСПРОСТРАФЕНИХ ВРСТА:

Виде се добро маркантно	Не виде се или се виде слабо
БРЕСТ	БРЕЗА
БУКВА	ГРАВ
ВРБА	ГРАБИЋ
ЈАВОР	ЈАСИКА
ЈАСЕН	ЈОХА
КЕСТЕН	ЛИПА
ТОПОЛА	
СВИ ХРАСТОВИ	
СВИ ЧЕТИНАРИ	

Значајна генетска особина неке врсте је и дужина трајања живота. Наравно, за ова истраживања су значајне дуговечне врсте. Након широког увида у литературу, направили смо табелу дужине трајања живота појединих врста распрострањених у Југославији.

ТАБЕЛА 2: ДУЖИНА ТРАЈАФА ЖИВОТА ВРСТА РАСПРОСТРАЊЕНИХ У ЈУГОСЛАВИЈИ:

Врста
EPECT (ULMUS MINOR)

БУKBE (FAGUS)
BP5A (SALIX FRAGI-
LIS)
ТОПОЛА ЦРНА
(POPULUS NIGRA)
JABOP ГОРСКИ
(ACER PSEUDOPLATA-
NUS)
KECTEH (CASTANEA)
ХРАСТ КИТЊАК
(QUERCUS PUBESCENS)
ХРАСТ ЛУЖњАК
(QUERCUS ROBUR)
БOPOBИ (PINUS)
OPOBИ (PINUS)
CMPYE (PICEA)
ПАТУЉАСТА
KJEKA (JUNIPERUS
NANA)

Дужина трајања живота
маск. преко 500 година просечно $\quad 200-300$ година
просечно око 100 година 50-300 година

до 400 година

макс.преко 500 година 300-500 година

до 2000 година

преко 300 година
300-1000 година
за 500 година - 8 цм

Значајан ограничавајући фактор дендрокли матолошких истраживања је сам новек и његове активности. Судећи по м м ворима, щуме Србије су у средњем веку биле практично непрегледие. Па чак и 1829. године путописац Ото Дубисав Пирх пише, описујући пут кроз Источну Србију: "Србија је тако богата са шумом да дрво нема никакву вредност", Путууући од Београда до Крагујевца римећује: "Јахали смо три дана кроз густе храстове шуме" (Чолић Д., 1951.)

Интензивно досељавање и множење ста новништва у XIX веку, довели су до крчења нума, како оних у близини насеља у нижи крајевима, тако и оних у планинама, ради спаше. Почетак XX века и доба либерално капитализма су означили даље уништавање шума. Затим долази период окупације и пос лератна социјалистичка изградња, у којој очување шума није био приоритет

Као резултат свих наведених утицаја, дошло је до значајног смањења површине под "старим нумама". Осим тога, сечом су измењени микроклиматски услови и режим осветљења у шумама, што је могло да поремети раније успостављену равнотежу између ширине го ова и климатских фактора. Ма како апсурдно звучало, све већа активност на заштити шума и појединих стабала дубоке старости, такође делује ограничавајуће, јер се тако сманује број стабала досупних сечи у научне сврхе.

ПЛАН, ОРГАНИЗАЦИЈА И РЕАЛИ-
 ЗАЩИЭА ДОСАДАШЊИХ ИС

ТРАЖИВАБА
у истраживању смо применили више нивоа одабира узорака. Први ниво је био одабир по старости, дакле, за наше истраживање су били интересантни само узорции старији од почетка инструменталног периода у Југославији (о 1887. године). Показало се, међутим, да је аквих стабала релативно мало, и да су углав ном сконцентрисана у неколико већих комплекса "прашума" европског типа, које су под различитим режимима заштите. Проучавајућ већи број литературних извора, одредили смо подручја по том основу од примарног интереса за истраживање: Босутске шуме, планин Тара, Дурмитор, Шара, Кучајске планине Бељаница. Овај списак је далеко од потпуног

али пресудан фактор за избор ових локација нажалост, била је њихова транспортна доступност

С обзиром да дрво боље реагује на темпера туру на горњој шумској граници (бар, теоријски), узимали смо тамо узорке и то би био други ниво одабира, унутар одређ̄ених подручја на ШІри, Дурмитору и на Копаонику

У погледу суше као лимитирајућег фактора, очекивали смо боље резултате код узорака који расту на кречњачкој подлози,па смо тамо тражили узорке на Бељаници, Кучају и Сувој планини.

Испитиване су корелације ширине годова за све узорке старије од 100 година, са температуром и падавинама и то: вегетациони период, годишње и сезонске вредности. Како је то уобичајено, посматрали смо у циљу елиминације случајних колебања и побољшања коефицијента корелације, покретне средње вредности за $\mathrm{N}=3$ и $\mathrm{N}=5$ са кораком од једне године С обзиром да су за прираст важни и климатски услови протекле године, на исти начин је урађено и за њу. Тако је укупно урађено преко 2500 прорачуна вредности коефицијента корелацие.

За реконструкциіу климе у прошлости смо поставили релативно строг услов да је коефицијент корелације (r) између ширине годова и неког климатског елемента већи од 0.8. С обзиром да се у нашем случају ради о утврђивању (r) између појава које нису истородне (клима - прираст), како и да на прираст може утицати више фактора станишта сматрамо да је овај услов неопходан као мера предострожности.

Као провера исправности добијених резултата корелационе анализе, коришћена су два теста: Пирсонов и Студентов тест, при чему је други био везан, пре свега, за тестирање дужине низа, неопходног за поуздано (r), и одређиван је по таблицама.

АНАЛИЗА ДОБИЈЕНИХ РЕЗУЛТАТА
ПО BPCTAMA, ЛОКАЦИJАМА
И ВРЕДНОСТИМА
КОЕФИЦИЈЕНТАКОРЕЛАЦИЈЕ

Од 42 обрађена узорка, било је највише примерака букве (12), а укупан број испитиваних врста износи 9. Код 13 узорака (r) је било веће од 0.8 за неки од климатских елемената, што износи 30.9% од укупног броја узорака. То се може сматрати релативно високим процентом, из чега се може закључити да метод има перспективу.

Мада је број узорака релативно мали за поузданија зкључивања, чињеница је да су 42% узорака букве показала високе (т) са неким климатским елементом. Зато би се могло предпоставити да је буква релативно погодна за ову врсту истраживања у нашим крајевима. Преглед узорака по врстама дат је у табели 3

ТАБЕЛА 3: АНАЛИЗА УЗОРАКА ПО BPCTAMA:

Врста	број узорака	$(\mathrm{r})>0.8$
ХРАСТ	2	1
БРЕСТ	1	-
БУКВА	12	5
ЦРНИ БОР	5	2
ЈЕЛА	9	2
СМРЧА	9	3
ЦРВЕНА	2	-
КЛЕКА		
ПАТУЉАСТА	1	-
КЛЕКА	1	-
БОР КРИВУЉ	42	13

Од укупно 14 узорака са већих надморских висина, код њих 5 смо добили (r) >0.8. То је нешто изнад математичког очекивања, што иде у прилог тврдњи да је клима лимитирајући фактор прираста на већим висинама и да су та подручја погодна за дендрохронолошка истраживања и у нашој земљи

Укупан број узорака на кречњачкој подлози био је 27. Вредности (r) > 0.8 је имало 8 узорака, штто је у границама математичког очекивања, што наводи на предпоставку да геолошка подлога није пресудна у потенцирању фактора суше.

Од 13 узорака са вредностима (r) >0.8, код њих 10 је температура одлучујућа за прираст, а само код 3 узорка одлучујуће су падавине. Сви

примерци букве и смрче боље су реаговали на температуру.

С обзиром на годишње доба, на прираст имају највише утицаја температуре у току веге тационе сезоне (4 узорка) и лета (3). Уочили смо и велики утицај климатских услова протекле године на прираст, што захтева даља истраживања.

РЕЗУЛТАТИ РЕКОНСТРУКЦИЈЕ КЛИМЕ У ПРЕДИНСТРУМЕНТАЛНОМ ПЕРИОДУ У ЈУГОСЛАВИЈИ

Како је већ речено, код 13 узорака, (т) између ширине годоваи неког климатског елемента је био преко $0.8 . З а$ те узорке смо применили ре гресиону формулу и на основу вредности ширине годова добили смо вредности климатских елемената у прошлости. Међутим, дрво је живи организам који брже прирашћује у младости, тако да је ширина годова нешто већа, без обзира на климатске услове. Али, што је најважније и даље се на ширину годова одражава међугодишња варијабилност климатског елемента. Зато је потребно извршити стандардизацију података, односно уклонити биолошки тренд. То је урађено тако што су посматране једанаестогодишше покретне средње вредности, а вредности киматско елемента су посматране кроз одступање од једанаестогодишње вредности. Међутим, како предлажу неки аутори, морају се искључити вредности са почетка низа (првих 20 до 30) због великог прираста почетка живота дрвета. Зато је морало бити одбачено још 5 узорака Пошто је још један одбачен због велике густине годова, у коначној реконструкцији климе је остало 7 узорака, од којих је 6 по казивало најбоље везе са температурама само 1 са падавинама

Хронологије су приказане као одступања пен тадних вредности климатских елемената. Одступања већа од доње стандардне девијације су тумачена као хладне фазе, а одступања већа од горње стандардне девијације као топле

Упоредно посматрање узорака показује да има извесних одступања, проузрокованих веро ватно антропогеним утицајем. Због тога су издвојене само фазе које се поклапају код свих узорака који су показивали добре везе са тем

пературом и на основу тога смо за XIX век до- најдуже су хронологије и узорци су у близини били следећу хронологију: 1823/1827 до 1824/1828 (хладна фаза са 2 хладне пентаде), 1828/1832 до 1829/1833 (топла фаза), 1837/1841 (топла), 1859/1863 до 1861/1865 (хладна), 1864/1868 и 1866/1870 као топле фазе, 1868/1872 до 1869/1873 (хладна). Централне године фаза хронолошки издвојене изгледају овако: 18251826 (хладна), 1830-1831 (топла), 1839 (топла), 1861-1863 (хладна), 1866 и 1868 (топла) и 18701871 (хладна). Запажа се одсуство изразитијих хладних периода у четвртој, петој и шестој деценији XIX века, и велика променљивост температурних услова у седмој и почетком осме деценије.

Посебно су размотрени узорци са Дурмитора, јер је тамо антропогени утицај минималан, високе су вредности (r) велики је број узорака,

горње шумске границе. Узете су средње ширине годова за четири узорка који су показивали најбоље везе са климатским елементима. Покретне десетогодишње средње вредности средње годишње температуре и ширине годова су показале високу вредност (r) од 0.84 .

Анализа података показује да након брзе смене топлог па хладног периода од 1816. до 1837, наступа дуга фаза колебања температуре углавном око средње вредности, након чега се седамдесетих улази у једну топлу фазу. То се у великој мери поклапа са подацима које даје Конова (1989.), која у XIX веку за северну хемисферу до 1880. године издваја следеће фазе: 1800-1820 (хладна), 1821-1834 (топла) 1835-1860 - колебања око средне вредности, 1861-1880 (топла фаза).

ЗАКЉУYAK

У Југославијц до сада није било дендроклиматолошких истраживања тако да ће неки резултати по први пут овде бити приказани. И поред тога што метод има извесна ограничења (анатомско-генетска, еколошка, антропогена), наш узорак од 44 стабла са 11 подручја у Србији и Црној Гори је доказао његову перспективност. Старост узорака се кретала од 104 до 420 година, а узимани су углавном у прашумским комплексима у вишим планинским пределима. Узорци у близини горње шумске границе, су показали минимално позитивно одступање од математичког очекивања у погледу вредности коефицијента корелације (R) између ширине годова и температуре.

Испитиване су вредности R између ширине годова и температуре и падавина за поједине се-

ЛИТЕРАТУРА

1. Дуцић В.: РЕКОНСТРУКцИЈА КЛИМАТА У ПРЕДИНСТРУМЕНТАЛНОМ ПЕРИОДУ, магистарска теза, Београд, 1995.
2. Ракииевић Т.: РЕГионАлни РАСпоред Суше у СРвили, Гласник Српског географског друштва, св. LXVIII, СГД. Београд, 1988.
3. Битвинскас Т.: деНДРОклимАТичЕскиЕ иссЛЕДовАНИЈА, Гидрометеоиздат, Лењинград, 1974. 4. Чолй̆ Д.: ЗАПТИТА ПУМА И ПУМСКИ РЕЗЕРВАТИ У СРБиЈи, Научна књига, Београд, 1951.
4. Конова Н.: СИРКУЛЈАЦИОНЈИЕ ХАРАКТЕРИСТИКИ КЛИМАТИЧЕСКИХ ЕКСТРЕМУМОВ, у зборниКУ ПАЕЛОКЛИМАТИ ПОЗДНЕЛЕДНИКОВЈА И ГОЛОЦЕНА, Наука, Москва, 1989.

АНАЛИЗА ТРЕНДОВА НИЗОВА ПАДАВИНА И ТЕМПЕРАТУРЕ

 У НАШОЈ ЗЕМЉИ У ОДНОСУ НА ЕЛ НИЩО ПЕРИОДЕМлађен Ћурић
Институт за метеорологију, Физички факултет,Београд

Extreme climatic events occur around the globe evry year. Because the El Nino has become very visible in recent years as a dominant source of interannual climatic variability around the world, there is a need to provide a comparison between this events and time series of precipitation and temperature in selected region in Serbia. It is show that there is no significant similarity between the trends of these events, although in many cases climatic extrems coinside with El Nino.

Абстракт

Екстремни климатски догађаји дешавају се сваке године у појединим деловима света. Последњих година је доказано да су многе климатске промене условъене Ел Нињом. Због тога се намеће потреба да се испита веза између појављивања Ел Ниња и трендова падавина и температуре у нашој земьи. Показано је да не постоји значајнија сличност између трендова ових догаћаја, иако у доста периода постоји поклапаъе екстремних вредности посматрани. величина са појавом Ел Ниња.

Увод

Сваке године се јавља у некој области Земље понеки екстремни климатски догађај. Они варирају у широком опсегу разновесности, од суше у неким областима до дуготрајних јаких киша, праћених поплавама, у другим областима (WMO, 1997). У последње време неки од ових климатских екстрема тумаче се
 као последица повременог отоплења океанске површине у екваторијалној области источног и централног Пацифика. Од основног интереса је да се познаје механизам настанка овога феномена и како се сам феномен назива. Перуански рибари су у деветнаестом веку топлу океанску струју, која са запада запљускује њихову обалу, назвали Ел Нињо. Сам назив на шпанским језику значи "дечак" или "млади исус". Овакав назив су дали због тога што се струја појављивала у децембру месецу, око католичког Божића. Та струја није била једнако топла сваке године. Нарочито топла је била после сваких

неколико година. Почетком двадесетог века британски научник Gilbert Walker је посветио пажњу том феномену. Он је закључио да је појава топле морске струје само једна манифестација иначе врло сложеног механизма атмосферских дешавања у тропском делу Пацифика. Он је први запазио да када јушно од екватора, у источном депу е области, постоји висок ваздушни притиса
 уаи зада даздушни притисак у источно Или, када ваздушн при у у иом ном делу опада исо Због тога се тај нео фе делу расте, и обратно. Због тога се тај цео феноме атмосферских и океанских дешавања назив Ел Нињо јужне осцилације (ENSO-EL Nin Southern Oscillation), Ropelewski (1988).

Поставља се једно основно питање-зашто се Ел Нињо појавњује крајем децембра? За време северног лета у тропској области Пацифика у нижим деловима атмосфере дувају

S1.1. Месечне вредности падавина (горе) и температура (доле) за Београд у периоду 1951-1997. Осенчене области представљају El-Niño периоде.

Sl.2. Месечне вредности падавина (горе) и температура (доле) за Ниш у периоду 1951-1997 Осенчене области представљају El-Niño периоде.

североисточни и југоисточни Пасати. У то време у северном делу Пацифика налази се северно-пацифички антициклон. Тај антициклон снажно појачава североисточни Пасат. Ти дуготрајни ветрови, компонентом брзине од истока према западу повлаче за собом топлу површинску воду океана. У то доба се, дакле, појављује топла источна морска струја, од обале Перуа до западних острва Индонезије. У то време дуж обала Перуа и Еквадора тече хладна јужна струја. Та хладнија вода је богата рибом и тада рибари имају добар улов. Крајем септембра и почетком октобра источна компонента ветра постепено слаби и, чак, прелази у западну компоненту. Са тиме се појављује топла западна морска струја која захвата Перуанске обале крајем децембра. Та топла вода није погодна за рибе, те се она повлачи у веће дубине, где је хладнија и храном богатија вода. Тада је врло слаб улов рибара, и отуда њихово велико интересовање за Ел Нињо, Glanty (1996), Yarnal i Diaz (1986)

За време Ел Ниња, изнад области са највећом прегрејаности воде, појављује се снажно узлазно кретање ваздуха. Као последица тога појављууу се изузетно развијени конвективни облаци из којих се излучују обилне падавине Те падавине захватају и континентални део Перуа. Појављују се велике поплаве, наноси блата и јаки ветрови. Од таквих киша формирају се велика језера. Једно такво дугачко 100 км, широко 50 км и дубоко око 10 м формирало се за време Ел Ниња који се јавио у сезони 1997/98. године. То је, према мерењима, најјачи до сада забележени Ел Нињо. Најјачи пре овога јавио се у зимском периоду 1982/83. године. Истовремено у западном делу тропског Пацифика (област Индонезије) јављају се силазна струјања сувог ваздуха која су праћена дефицитом падавина сушом и честим пожарима.

Шта је узрок повременом прегревању воде тропског Пацифика још се са сигурношћу не зна, Wang (1995). Претпоставља се да се ради о некој активности на океанском дну, или је везано за подводне земљотресе. Било какав да је узрочник, несеумљиво, описана активнос која се дешава у систему атмосфера-океан у тропском Пацифику има снажан утицај н климу ширег подручја Землье (Chin, 1990; Bu gyuan i Donghang, 1989; Gimeno i sar., 1998)

. Анализа понашана низова падавина и температуре у Београду и Нину

Одабрана је анализа низова падавина и

 температура, поред мноштва других метеоролошких елемената, због тога што ова два елемента најбоље карактеришу Ел Нињо периоде, и што су њихови низови, у тринципу, најдужи и најпоузданији. Дужина низова, 1951-1997, узета је ради поређеюа са карактеристикама Ел Ниња који су се јавили у том периоду. Те карактеристике су добро описане у раду Trenberth (1997). Београд и Ниш су одабрани као места из исте климатске бдасти што ін знчајно због одабран методологије која се користи за анализуКао што је познато, једна метода за анализу низова података је метод тренда. Та метода би требало да укаже на општу тенденцију онашања, јр се овом методом врши равнавање осцилација кратког трајања, а долазе до изражаја понашања са дужим периодима. Наравно, подразумева се да временски низови нису случајни, јер у њима тренд није присутан. Полази се, дакле, од хипотезе да клима не може бити случајна појава, као ни метеоролошки елементи преко којих се испољава, већ се она мења под сложеним дејством разних фактора. Овај, математички, концепт тренда (Kendall, 1983), који се најчешће користи овде нейе бити приенен, вен te се користити метод оји јо аа анизу Ел Hииа применио TrenНиња применио Tren-
y
Према овом методу под Ел Нињом се оодразумева отоплење површинске воде екваторијалног дела Пацифика које траје дуже од пет месеци. Област се налази између 5° северне и јужне географске ширине и између $90^{\circ}-150^{\circ}$ западне географске дужине. Када је просечна месечна температура површинске воде вейа за $0.5^{\circ} \mathrm{C}$ од дугогодишњег месечног просека и то најмање пет узастопних месеци каже се да се јавио Ел Нињо. Користейи податке температуре површине океана (у тачкама које су на растојању $2^{0} \times 2^{0}$) Trenberth (1997) је нашао да је у периоду 19511997 било 16 Ел Нињо појављивања. Почетак и крај тих периода је приказан осенченим стубићима на стикама 1-4 Постедњи, стуснасти Еи Ниио ниј приказан иако је

S1.3. Девијације месечних вредности падавина (горе) и температура (доле) за Београд у периоду 1951-1997. Осенчене области представљају El-Niño периоде

почео 1997 ．године，јер још траје（прогнозир се да ћее се завршити у јуну 1998）

Такво једно прегрејано и дуготрајно жариште може да има утицаја и на климу далеких географских области（Gimeno и сар．1998；Bu－ gyuan i Donghang，1989）．Овде се полази од ретпоставке да ако такав утицај постоји，код нас би се морао одразити на периодичност кстрема температуре и падавина изнад одабране области．Трајање екстрема и њихово време појављивања могло би бити другачије односу на Ел Нињо．Одабрана област ј централни део Србије．У њој је понашање низова падавина и температура слично，што е види са сл． 1 и 2 Слични ходов види са сл．1 и дозвољавају да се，ради лаконе，не рачунај

Посматрајмо месечне вредности за Београд веће од 150 мм．Видимо да су се такви екстреми појавили четрнаест пута（сл．1） Половина од тога броја јавила се у време Е Ниња．Такође је евидентно да никада немам такву појаву која је трајала дуже од једно месеца．Слично понашање екстрема падавин је и за Ниш．Тамо су се месечне количине падавина веће од 150 мм јавиле само четир тута，од тога опет пола у време јављања Е Ниња（сл．2）．Слично падавинама имамо понашање средњих месечних температура．Ту је ход за две станице много сличнији него за аадавине．Такође се види да време појавливања екстремних температура главном не пада у исти месец као падавина То је у сагласности са типичним годишњим ходом ова два метеоролошка елемента

у сагласности са дефиницијом Ел Ниња девијације месечних вредности температуре и падавина од одговарајућих вишегодишњих редности требало би боле да прикажу евентуални утицај Ел Ниња од самих месечних вредности тих елемената．На

сликама 3 и 4 приказане су те девшјације за Београд и Ниш．Види се да су се месечне падавине у посматраном периоду у Београду јавиле 16 пута са вредношниу већ̆ом за 77 mm од одговарајућих просечних вредности，сл． 3 ． Толико се пута јавио и Ел Нињо у истом периоду．Такођ̆е се из података о девијацији температура налази да су се 16 пута десиле месечне температуре вейе од просечних вишегодишњих за $3,6^{\circ} \mathrm{C}$ ．Слични прагови се могу наћи и за негативне девијације．За падавине у Београду тај праг је－ 50 мм，а за температуру $-3,8^{\circ} \mathrm{C}$ ．Одговарајућии позитивни прагови за Ниш су 59 мм и $3.6^{\circ} \mathrm{C}$ а негативни -38 мм и $-3,6^{\circ} \mathrm{C}$ ，сл． 4

1．Завриина рaзматран⿱⿱一口䒑日十

Уместо закључка чини се погоднијим завршити овај рад са неколико питања．Прво питање је：да ли би се из претходног разматрања могло тврдити да је једнак број девијација датог елемента，с вредношћу преко одговарајућег прага，са оројем јављьања Ел Ниња у истом периоду условљен са Ел Нињом？Очигледно не би，јер периодичност ова два догађаја није иста．Међутим，могли бисмо поставити и овакво питање．Да ли сваки пут Ел Нињо＂оставља траг＂на климу у некој области у временском периоду једнаког трајања и са истим кашњењем у односу на његово појављьвање？Очигледно，одговор и на ово питање био би негативан．Јер，могао би се замислити механизам преношења утицаја Ел Ниња на много различитих начина，тако да дође тај утицај до дате области са различитом доуе тај утицај до дате облаја временских или климатских аномалија на далеке области，тзв ＂телеконекција＂，је иначе данас важно питање на које нема јединственог одговора（Glantz， 1996）．

РЕФЕРЕНЩЕ

Bugyuan，Z．i Donghang，L．，1989：The relationship between the El Nino events and the drought or excessive rain of Northwest China during 1845－1988．Scientia Atmospherica Sinica，16，185－192．

Chiu, H.L., 1990: Spacial and temporal climatic variations in the tropical Atlantic and their relationship to ENSO. Ph.D Thesis, University of California, Berkeley, 183 str.

Gimeno, L., Garcia, R. i Hernandez, E., 1998: Precipitation in the Canary Islands in the seventeenth century and its relationship with El Nino events. Bul.Amer.Meteor. Soc., 79, 89-91.

Glantz, M.H., 1996: Currents of change: El Nino's impact on Climate and Society. Cambridge University Press, 194 str.

Kendall, M.G., 1983: The advanced theory of statistics: V. 3, Design and analysis and time-series, Longon Griffin, 895 str.

Ropelewski, C.F., 1988: The global climate for June-August 1988: A swing to the positive phase of the Southern Oscilation: Drought in the United States and abundant rain in monsoon areas. J.Climate, 1, 306-324.

Trenberth, K., 1997: The definition of El Nino. Bull.Amer.Meteor.Soc., 78, 2771-2777.
Wang, B., 1995: Interdecadal changes in El-Nino onset in the last four decades. J.Climate, 8, 267-285 WMO, 1997: WMO statement on the states of the global climate in 1996. WMO, No. 858, 11 str.

Yamal, B. i Diaz , H.F., 1986: Relationship between extremes of the Southern oscilation and the winter climate of the American Pacific coast. J.Climatol., 6, 197-219.

ПОTРЕБЕ CABPEMEHE METEOPOЛOГИUE ЗA MEPE円ИMA

Mrăен Турић
Ииститут за метеорологију, Физички факултет, Београд

Abstract

The short historical review of the development of meteorology, the scientific progress and the instruments used for measurement of the different elements is described. The finding and works of the Bergen School is treated since it can be stated that hey have established the new era in scientific weather forecasting. The improvement of all the three factors observations, tools and models is represented. The classification of the weather systems on or near the ground are ranged from extratropical cyclone to dust devil as well as the middle and high-level disturbances from long waves to in-cloud turbulent eddy

Абстракт

Дат је кратак преглед развоја метеорологије, напредак науке и инструмената који су служили за мерење различитих метеоролоиких елемената. Рад бергенске иколе је посебно истакнут, поито је оиа установила нов научни приниип прогнозираъа. Приказана су побољцања осматрања, опреме и модела развоја временских система. Извриена је киасификачија временских система формираних при тлу, од вантропских до вртлога прашине. Класификовани су и временски системи који не додирују тло, од дуги таласа до облачне турбулениије

Историјски преглед до формирана бергенске школе

Није могуће дати преглед потреба савремене метеорологије за подацима добијеним мерењима а да се при томе не прикаже краћи историјски ток у овој области. у том смислу потребно је напоменути да је период времена у коме се прате метеоролошка дешавања врло дуг, можда поуздано и не знамо колико је дуг. Ипак, овде је довоъно да се осврнемо на нека поуздана писана документа која на јасан начин обележавају заинтересованост човека у свим историјским периодима за атмосферска дешавања. Меб̆у драгуље таквих писаних докумената спада, без сумње, Аристотелова књига Метеорологика (Аристотел, 1983). То је драгоцена збирка емпиријских чињеница о времену и клими. Иако настала пре више од 2300 година (тачна година настанка се не наводи, јер је дело писано у дужем дубоко научни приступ тумачења разнородннх појава. Она је научна не толико по резултату, већ но научном методу Остањајући се на учене о четири елемента насталих из представе о два испарења - сувом и влажном он тумачи јелинство настанка појава широког дијапазона од ветрова, падавина, земљотреса, комета, итд. Дар за тумачење атмосферских појава код Аристотела теба вероватно тражити и у његовом очу

Никоману, који је био дворски врач
(прогностичар) македонског
И код других "записивача" тога времена налазимо језгровите записе о карактеру метеоролошких појава. Тако је Плутах записао одлике падавина из кумулонимбусних облака. Оне настају према њему, као када дрво, на чкјим листовима има пуно капљица воде, нагло протресемо. Имамо записа о карактеру појава и из још ранијег периода. Тако, у Кини су нађени, у ископинама, кости животиња на којима су бележене одлике кише. У ближем историјском периоду број таквих записа прогресивно расте. Има их доста и са наших подручја. Такве записе из периода малог леденог доба, 1350-1850. године, из књига Стојановић - јобрадо вуеви (1931)

Записи о метеоролошким појавама, ма како бил језгровити, су нужно непрецизни ако нису праћени са измереним подацима. Меренима су претходил Први термометар је прожаша Galileo Galilei 1592 год а барометар Toričeli 1643 године Одмах после тога отпочело се са редовним мерењима температуре и притиска ваздуха на више места Тако већ 1645. године Academia del Cimento из

Фиренце организовала је прву метеоролошку мрежу од 11 станица за мерење температуре и падавина у северној Италији. Мерена су вршена до 1667 . године. Знатно касније, 1780. годиие научно друштво Societas Meteorologica Palatuna из Баварске донело је одлуку да организује мереньа и Гренгчда и Соверне податке из Европе до Гроннеда и Северна Америк. Све стание су бими израћени у истој ратионни. Десетогодишш мерена од петнаест (колико се дуго мерино) објављьена су у лванает инига То је био јединствен материјал те врсте и стужио је као ризница за даља проучавања карактеристика времена. На основу овога материјала Brandes ј 1826. године нацртао прве карте о ветровима ваздушном притиску
Све до открића телеграфа, од стране Gausa Vebera , 1934. године није било могуй свакодневно оперативно коришиење ових података. Могуһност брзог преноса података први пут је искоришнена у Лондону 1848. год. за време Светске изложбе. Тада су цртане прве карте које су служиле за дневну прогнозу времена.

Иако су од тада технички услови дозвољавали да се метеоролошки подаци свакодневно користе за цртање временских карата, та се могућност нкје користила више десетина година. За време Кримског рата, у новембру 1854. године, десило се цром мару оненене француске ратне флоте у Цром мору нрироднаи јаке олуе. Тада је велаки катастрофа могла шбоіи на се располаго са временским картама за тај дан Захвавуіуй његовом великом ауторитету, залагања за щбтањ временских карата оставрила су се у Паризу 16 септембра 1863. године. То је ознячито прекретницу у развоју метеорологије Од тада се редовно прати развој времена изнад великре области Земљве. Пример Француске следиле су и друге земље. Цртање дневних временских карата одмах започиње Аустро-Угарска (1865), затим Сједињене Америчке државе (1871). Велика Британија (1872), Русија (1873), Данска и Шведска (1.4), Немачка (1876), итд. У наошој земљи такве карте се оперативно користе од 1933. године.

Нажалост, квалитет осматрања и густина мреже били су врло лоши. Осматрања су често била не синхронизована и двадесетчетворочасовно мерење је било недовољно. Све је то отежавало да се стекне права слика о моделу атмосферских приказаваде ноно и старе карте лоше
 Roy (команди брода Beagle са је адмирал Fiz Darwin 1831-1836 rо Buче путовао око сеета) први шеф Мстеоролошке стужбе у Лондочу врюо лепо приказивао временске системе вантропских ширина. Његов модел цистона публикован 1863

годане садржк хладну струуу са севера у задњем делу и топлу струуу са југа у предњем делу (Fit Roy, 1863). Тај модел није доживео потпунију афирмацију, иако је то врло исправан модел, збо негове преране смрти (1865. године). Некако у исто време, друга значајна личност енглеске науке,Francis Galton (potan Chantsa Darwina n касније пионир статистичке генетике) покушао је
 свој метод приказао у рану Ме европо. Он је (Gatton, 1863). Нажагост после 1870, годин Galton вапушта ачтивни рад у метеороногији а његове лепе идеје није нико други следио Практично нико други у Европи није ни после 50 содина на тако рачионаган начин приказивао метеоролошке податке.

У периоду од 1865-1915. код метеоролога који су се бавили мроучававем функшонисан метеоролошких феномена нарастало је разочарене. Они су морали да тумаче све временске феномене само на основу извештаја из оскудне мреже приземних мерења, датих помобу мекомплетних кодова, и без аеролошких података. Такву констатацију је дао водећи истраживач у иведском прогностичком центру Ekholm током 1904. roдине (Bergeron, 1980).

Као одговор на постојеће неодрживо стан Извештаја из европске метеоролошке мреже уведена су нова мерења. Одмах после 1910. године аапочиғу сондажна мерења помоһу авиона Дутинска сононоша служба 1915. године уводи 50 . аспособъен да тети чак кроз нмибострату бо посебниу инструмената за слепо детене за нрино авиона је био обешен метеорограф који је записивао атмосферски притисак и температуру. Пилот би се после достигнуте висине од $4-5 \mathrm{~km}$ брзо приземљио, да би обезбедио свеже податке Такав начин сондираюа задржан је и измећуу два светска рата. Пре тога, метеорограф је везиван за балоне без посаде који су достизали висину и до 18 км. Иначе, балон је пронашао Montgolfier далеке 1783. године. Знаменити Gay-Lussac ce 804. године пео у балону до висине од 7 км ачно мерио температуру и притисак Знатно после ога, од 1890 -тих коришнени су балони без посаде едостатак оваквог сондирања је тај што су измереких подаци каснили данима. Прво соддираве -атмосфере, сматра се, извршено јо 1749. године у Глазгову. Тада је био термометар везан за змаја (Golden и сар., 1986)
Коришһењем авиосондхрања и радио пренос података са бродова после 1910. године знатно j прасторну слику о дезшаванима у створе боль се овоме додају посебно добри радни услови и

концентрацјја научника која је била остварена у Индиректна аерологија је била заснована на Бергену (Норвешка), није никакво чудо да је индиректној евиденцији крстава ваздуха, ускоро после тога уследио модел цинлона вантропских ширина. Модел који је од 1919 до данас непревазиђен у главним карактеристикама. Тај модел развоја циклона могао је бити тако приказан захваљууупи тушној мрежи приземних саница (у Норвешкој је 10 пута повећана густина у то доба) и развоју индиректне аерологије.

влажности и температурних услова ка висини која је следила из осматрања облака их хидрометеора у мездесој мерној мрежк. Тако је посли сарата била рајег коришнева синоптнки топлог фронта

Сл. 1 Анализа исте временске ситуације после (а) и пре (b, c) прихватања модела циклона бергенск школе

Несумљиво да је додатан подстицај развоју модела циклона био и уговор који је потписала истраживачка група из Бергена са министарством а пољопривреду Норвешке (Jewell, 1980). Наиме, авност у Норвешкој је била упозната да Шведској фармери могу добити прогнозе времена преко телефона. У интересу развоја пољопривреде мукбе роблема ноји то одовориа да има мног
 група из Бергена Усленидо је потписиван уговора юојим се финансира пројегт поји шуди прогнозе времена које ће развити потопривреду. Тада су сви чланови групе постали метеоролози практичари. Покушали су да дају што је могућ боле прогнозе за фармере. Захвазууућ средствима од потписаног пројекта они су знатно повећали број мерних места у Норвешкој. То је одлучујуһе побошало слику о процесима у атмосфери.

Колико је модел развоја цижлона бергенске школе побољшао ижсрпрсацију измерених података види се на Сл.1. На њој је приказана анализа исте

временске ситуације и на основу истих података од 14.11.1875. године после прихватава тога 1878).

Мерења за потребе мезометеорологиіре

На синоптичким картама често се запажају у појединим тачкама екстремне вредности притиска, ветра, температуре, итд. Такви подаци могу бити погрешни или неког другог разлога. Мебутим, они могу бити одраз стварног става аммосере у области знатно представвају подсиношиисе Такви подаци имају просторне и сременске роременаје који
 марrava картама.

Развој авиосаобраћаја 1930-тих година захтевао је и прецизније податке о времену. Олујни облаци, и са њима повезани олујни фроитови, често су изазивали несреће у различитим деловима света. Због тога се наметала потреба за гушиом, подсиноптичком мрежом мерења. Пример првих Анализе података из ових мерења могу се найи у

радовима Koschmiedera (1955), Fujiwara (1943) и Byers i Braham (1949).
Табела 1. Прве под-синоптичке мерне мреже

| Године | Локащја | Земља | Број станица | Растојање |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1939 -41 | Линденберг | Немачка | 19 | 3 -20 |
| 1940 | Маебаши | Јапан | 20 | $8-13$ |
| 1946 | Флорида | САД | 50 | 2 |
| 1947 | Охајо | сад | 58 | 3 |

Поједини истраживачи су покушали да објасне падавине. Једна од њих је АТИ метода (Ћурић и Поједини истраживачи су покушали да објасне располагали са гушћом мрежом. Тако је Suckstorf (1938) описао појаве које су условљене истицањем хладног ваздуха испод базе олујног облака. Он је трансформисао податке са једне станище, мерене у честим узастопним тренуцима времена (временска оса) у просторну осу која је у смеру кретања облака. Његов резултат приказан је на Сл.2. Иако је анализа рађена на основу оскудних података закључци не одступају много од савремених сазнања о овом процесу (Ћурић, 1980).

Метеоролошки радар се по први пут у историји користио за идентификацију карактеристика и области са падавинама, истовремено са приземним подацима у Пројекту олује (Byers and Braham, 1949). Тада је установљено да се са радаром могу добити корисне информащые о структури и
 друсим микро или сино

Сл. 2. Истицање хладног ваздуха испод базе Cb облака према Suckstroffu (1938).
Карактеристике падавинама, које су несумљиво значајне, а појављују се на размерама сувише великим да би се могле сагледати из осматрања на једној станици, и сувише су мале да би се уочиле помоћ̆у радара Феномени тих размера се називају чояу радара. Фенеси до дас је развјено низ погодних техника да се помоћу радара мер

падавине.
Тих, педесетих година формулисан јс у Америци и први Пројекат за одрејјивање карактеристика хладног фронта помоћу радара (Swingle и Rosenberg, 1953). Такви Пројекти су настављени и касније неколико пута. Сваки следећи пут увођена је нова мерна техника. Поред класичних радара користе се и доплерови радари, авио лабораторије (опремљене са инструментима за мерење микрокарактеристика облака) класична сондажна мерења и падаууће сонде. Као резултат тако прецизних мерења сазнала се потпуна структура фронта, од облика, динамичких карактеристика до еволуције елемената облака и падавина (Hobbs и cap. 1980; Hobbs, 1989); House и сар., 1990)
Један од главних резултата тих мерења везаних за хладни фронт јесте да је показано да је профил ситуаихјама То је потвржило раншји теориски налаз Ćurića (1979,1987) да се у пракси примарни и секундарни фронт погрешно тумаче на основу и секундарни фронт погрешно тумаче на основу да је секундарни и примарни фронт уствари део једне исте, али заталасане површине. Но, увек је потребно сваки теоријски налаз, који углавном предњачи, доказати и мерењима.

Један од најпознатијих истраживача мезопроцеса je свакако Fujita (1963). Да би боже предочио прогностичарима мезоразмерне процесе при конвективном времену Fujita je публиковао у боји анализу тих мезопроцеса. Тиме је постигао да, слично бергенској школи, компликоване анализе учини доступним прогностичарима, заинтересује их за проблем и усмери их да не пренебрегавају мезопоремећаје, већ да их суперпонирају на поремећаје синоптичких размера.

Комбинујући најсавременије технике мерења, са класичним, данас се може рећи да су сви временски системи сагледани у погледу њихових димензија, трајања и екстремних вредности неких метеоролошких елемената који их карактерипу. Са овим основним карактеристикама морају се
руководити метеоролози када доносе одлуке како руководити метеоролози када доносе одлуке како
оперативно пратити ове системе. За системе операмена онаке какри се појавају у риземлу,

Табела 2. Карактеристике временских система на, или близу земъе (Fијіа, 1986).			
Систем Хориз.размере Трајање Mак.ветар Вантропски циклон $500-2000 \mathrm{~km}$ $3-15$ дана $55 \mathrm{~m} / \mathrm{s}$ Хладни фронт $500-2000 \mathrm{~km}$ $3-7$ дана $25 \mathrm{~m} / \mathrm{s}$ Антициклон $500-2000 \mathrm{~km}$ $3-15$ дана $10 \mathrm{~m} / \mathrm{s}$ Топли фронт $400-1000 \mathrm{~km}$ $1-3$ дана $15 \mathrm{~m} / \mathrm{s}$ Харикен $300-2000 \mathrm{~km}$ $90 \mathrm{~m} / \mathrm{s}$ Тропски циклон $300-1500 \mathrm{~km}$ $1-7$ дана $33 \mathrm{~m} / \mathrm{s}$ Тропска депресија $300-1000 \mathrm{~km}$ $3-15$ дана $17 \mathrm{~m} / \mathrm{s}$ Суви фронт $200-1000 \mathrm{~km}$ $3-10$ дана $20 \mathrm{~m} / \mathrm{s}$ Тајфун $50-300 \mathrm{~km}$ $2-3$ дана $50 \mathrm{~m} / \mathrm{s}$ Мезоантициклон $10-500 \mathrm{~km}$ $3-12$ сати $25 \mathrm{~m} / \mathrm{s}$ Олујни фронт $10-300 \mathrm{~km}$ $0,5-6$ сати $35 \mathrm{~m} / \mathrm{s}$ Мезоциклон $10-100 \mathrm{~km}$ $0,5-6$ сати $60 \mathrm{~m} / \mathrm{s}$ Падајући ветар $10-100 \mathrm{~km}$ $2-12$ сати $55 \mathrm{~m} / \mathrm{s}$ Макрослапови ваздуха $4-20 \mathrm{~km}$ $10-60$ мин. $40 \mathrm{~m} / \mathrm{s}$ Микрослапови ваздуха $1-4 \mathrm{~km}$ $2-15$ мин $70 \mathrm{~m} / \mathrm{s}$ Торнадо $30-3000 \mathrm{~m}$ $0,5-90$ мин $100 \mathrm{~m} / \mathrm{s}$ Усисни вртлози $5-50 \mathrm{~m}$ $6-60 \mathrm{~s}$ $160 \mathrm{~m} / \mathrm{s}$ Вртлози прашине $1-100 \mathrm{~m}$ $0,2-15$ мин $40 \mathrm{~m} / \mathrm{s}$			

Табела 3. Размере и трајање временских система који не додирују тло (Fujita, 1986).

Систем	Хориз. размера	Трајање
Дуги таласи	$8000-40000 \mathrm{~km}$	15 - дана
Кратки таласи	$3000-8000 \mathrm{~km}$	3-15 дана
Циклонски таласи	$1000-3000 \mathrm{~km}$	2-5 дана
Млазна струја	$1000-8000 \mathrm{~km}$	5-15 дана
Ниска млазна струja	$300-1000 \mathrm{~km}$	1-3 дана
Tpar cтpyje	200-1000 km	2-5 дана
Наковањь конвективне скупине	$50-1000 \mathrm{~km}$	3-36 сати
Индивидуални наковањ	$30-200 \mathrm{~km}$	1-5 сати
Суперћелијски облак	$20-50 \mathrm{~km}$	2-6 сати
Кумулонимбус	$10-30 \mathrm{~km}$	1-3 сата
Кумулус	$2-5 \mathrm{~km}$	10-100 минута
Облачна кула	$2-5 \mathrm{~km}$	2-10 минута
Вртлог торнада	$1-5 \mathrm{~km}$	20-90 минута
Облачно кубе	$100-500 \mathrm{~m}$	1-3 минута
Термик	$100-1000 \mathrm{~m}$	5-20 минута
Облачна турбуленциа	$10-100 \mathrm{~m}$	променливо

Временски системи који се налазе на средњим и већим висинама у атмосфери имају типичне карактеристике које су приказане у Табели 3

Из табела се примећује да углавном важи правило штт су процеси мањих размера - они краће трају. Са становишта праћења тих временских система то причинава двоструки проблем. Треба имати континуарнија мерења и у простору и времену. мрешогуһе организовати толику густину мерн мреже да би се идентификовао, нпр. вртло потребно увести мерну мрежу која омогућава практично континуарна мерена у простору и времену. Тако, чине се напори да се уведе мрежа мласичних радарских мерења изнад велиних области. Једна таква мрежа се управо успоставља изнад целе Европе (Meischner и сар., 1997). Мрежа доплерових радара даје један већи квалитет,

разноврсност измерених величина. Изнад целе области САД већ је уведена таква мрежа од преко 150 доплерових радара у мрежи.

Након искуства стеченог мерењем карактеристика стратосфере и мезосфере помоћу UHF и VHF радара постало је јасно да се овакви радари могу користити за мерење доплерових брзина и у тропосфери. Тако, од 1980. год. ова техника се Продиајлери ветра (Monna и сар., 1998; Golden и cap. 1986; Schlatter и cap., 1994). У Европи се развој и примена овога система спроводи координирано у оквиру Европске уније од 1987. године. Слична мрежа се уводи у Јапану и Аустралији (Vincent и cap, 1987).

За мерење профила температуре и водене паре користе се Термодинамички профајлери. Такође

као савремена мерна техника уводе се: акустични других опасних појава изнад Европе, Африке и доплерови радари, лидари као и хибридни сондажни системи (Golden, 1986; Fokianos и cap.,1998)

Посебна пажња се поклања новим генерацијама геостационарних сателита. Тако, у припреми је MGS (Metcosat Second Generation) који ће служити од 2000 до 2012. године. Друга генерација ових сателита има многа побољшања у односу на ранију верзију. Повећан је број електронских канала (од три на десет), побољшана оштрина канала високе резолуције) и бриина понављања слике (скраћена је од 30 на 15 мин.). Овакав сателит 解 се моћи користити за предочавање времена, нарочито у случају наиласка јаких олуја и

Референце

Abercromby, R., 1878: On the general character and principal sources of variation in the weather at any part of a cyclon or anticyclone. Quart. J. Met. Soc., 4, 1.
Аристотель, 1983: Метеорологика. Гидрометеоиздат, Ленинрадд, 240 crp .
Bergeron, T., 1980: Synoptic meteorology: An historical review, PAGEOPH, 119, 443-473
Byers, H.R., u R.R. Braham, 1949: The thunderstorm. Weather Bureau, Washington D.C., 287 str
Atmospheric sounding systems. Y: Mesoscale meteorology and Corectí M 1990. Dynamics of a cold air out 14, 493-498.
Curić, M., 1979: An example of a waveform of the frontal profile. Arch Met. Geoph. Biokl., Ser. A, 28, 113-126
Curic, M., 1987: Dependence of the mesostructure of the cold front cloud system on the shape of frontal profile. Geofizika, 4, 5-15.
Ћурий, М., Д. Јанщ и В. Вучковић, 1991: Радарске процене падавина АТИ методом. ІІ Југословенска конференшија о модификацији времена, 2-4 април 1991, Маврово, 50 .. 60
Fitz Roy, R., 1863: The weather book. A manual of practical meteorology, London.
Fokianos,K. us cap., 1998: On combinining instruments.J. Appl. Meteor., 37, 220-226.
Fujita, T. T., 1963: Analytical mesometeorology: A review. Y: Severe local storms. Meteor. Monog., 5, Amer. Met. Soc. 777.125 . 1986. Mesoscale classification. Y: Mesoscale meteorology and forecasting (Ed. P. Ray). Amer. Met Fuiita, T. T.,
Soc., 18-35.
Fujiwara, S. 1943: Report of thunderstorm observation project. Japan Meteorological Agency, Tokyo, 248 стр Hobbs, P. V., 1989: Research on clouds and precipitation past, present and future. Bull. Amer. Meteor. Soc., 70, 282285.
Hobb

Hobbs, P. V., T. I. Matejka, P. H. Herzegh, J. D. Locatelli u R. A. House, Jr., 1980: The mesoscale and microscale structure and organization of slouds and precipitation in midlatitude cyclones, I: A case study of a cold front. J. Atmos. Sci., 37, 568-596.
Houze, R.A., B.F. Smull и P.Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma, Mon. Wea. Rev., 117, 613-654
Jewell, R., 1980: The Bergeron's first year in the Bergen school: Towards an historical appreciation. GAGEOPH, 119, 474-490.
Koschmieder, H., 1955: Ergebnisse der Deutschen Boenmessungen, 1939/41. Wieweg - Sohn, Braunschweig, 148 crp. Meischner, P. и cap.
Soc., 78, 1411-1419.
Monna, W. A. u R. B. Chadwick, 1998: Remote-sensing of upper-air winds for weather forecasting: wind-profiler radar. Bulletin WMO, 47, 124-132
Stojanović, Lj., 1902-1927: Anciens note et inscriptions Serbs. Liv. I-VII, Beograd - S. Karlovci.
Suckstroff, G.A., 1938: Kaltufterzengung durch Niederschrag. Z. Meteor., 55, 287-292.
Vincent, R.A., и cap. 1997: First results with the Adelaide VHF radar: spaced antenna studies of tropospheric winds. I Atmos. Terr. Phys., 49, 353-366
Atmos. Terr. Phys., $49,353-366$.
Vujović, P., 1931: Documents historiques sur les variations de climat dans les territoires du Royaume de Yougoslavie et des contrees avoisanantes. Imprimerie d'etat du Royaume de Yougoslavie, Beograd, 58 srp.

УРБАНА КЛИМА НОВОГ САДА

Злайица Пойов,дийл.мей.,
 Рейублички хидромейеоролошки завод Србије, мейеоролоика ойсервайорија Нови Сад, Пейроварадинска йврдјава, 21000 Нови Сад, Југісславија

Abstract
The urban surface of Novi Sad (250000 inhabitants) take a place of 10981 ha which is mostly located along the left bankriver of the Danube in the plane, $79-89 \mathrm{~km}$ above see level, ide and in the foothill of the Fruska Gora. Namely, the coefficient of aerodynamic roughness of the terrain z_{0} in the town varies from about 0.4 m on the outskirts of the city, to about 2.5 m in the center of the city. In the same time sky view factor $\Psi_{\text {sky }}$ decrease from about 0.9 at the suburban settlement to about 0.35 in some narrow streets in the center of the town. Intending to emphasize the significant of the investigation in urban climate in Novi Sad, I have analyzed urban anomalies of some climatological elements in the town.

У намери да исииакнем значај исиираживаъа у обласиии урбане киине у овом раду сан анализирала урбане аномалије иојединих киинииских елеменайа на иодруиу Новог Сада, г̆рада који са 250000 сйиновника лежи на 10981 ха већин делом дуж леве обале Дунава, у иодножју Фруике Іоре и у којем коефицијенай райавосииии зо и факйтор видика неба Чскй варирају од 0.\& н односно 0.9 на йериферији до 2.5 м и 0.35 у ченирру града.

УвоД

С обзиром да на подручју Новог Сада не постоји мрежа станица на основу које би се могао цратити утицај урбане средине на климатске карактеристике града у овој студији ће бити искоришћени подаци прикупљени истовре мено, у климатолошким терминима, на главној метеоролошкој станици Римски Шанчеви смештеној у равници на надморској висини од 86 m , у руралној средини под пољо-привредном вд пецијо, око два и по километра северно

 брду у населу Петроварадин неносевноно рду у насеву Петроварадин, непосредно уз реку дунав и недалеко, око киометар и по Петроварадинске тврђаве норед бедема ни којем је смештена стания, на 43% укуше повриине изграђани су да, на 4з\% укунт пратни објекти, који су окружени ирежо дутева и паркинта док је преостали део пои вегетацијом. И поред

чињенице да растојање од 8.3 km између ових станица није велико, због специфичности њиховог положаја можемо очекивати значајне

вредности климатских аномалија које су последица тих локација: локалне топографије, близине Дунава, близине урбане површине Новог Сада, структуре терена изнад којег се врше мерења ... Нереално би, међутим, било очекивати да се на основу анализираних подасака може егзактно утврдити утицај урбане средине на поједине климатске елементе, јер би локална топографија, и без присуства урбане средине, на поменутим локацијама условљавала извесне климатске аномалије. Иако је релативни допринос урбаних климатских аномалија, у оваквим условима, веома тешко установити, у овом раду ће бити дискутоване сезонске аномалије температуре, влажности ваздуха, ветра и појаве магле, на
 1990. године, док he за анализу урбаних дачи шрижупнени из мрере нани и по

 т од града.

a) TEMILEPATYPA

Постојање значајних разлика у температури ваздуха измереној на Петроварадинској

тврђави и Римским Шанчевима може се Слика 1: График разлика средњих сезонских приписати различитим узроцима. Један од њих је разлика у надморској висини станица, због које је, нарочито у јутарњим сатима, када је ат очекивати позитивну вредност ове аномалије, због инверзије. Током дана, када је атмосфера нестабилно стратификована, због разлике у надморским висинама ових станица, разлика температура требало би да буде негативна

Други узрок значајних разлика у температури између Петроварадинске тврђаве и Римских ІІІанчева је положај станица у односу на урбану површину Новог Сада. Наиме, урбана острва топлоте, најинтензивнија у току ста билних синоптичких ситуација с ведрим небом и слабим ветром, рапидно расту по интензитету око ии непосредно после заласка сунца, и достижу свој максимум три до пет сати кас није. Током ноћи $\Delta \mathrm{Tu}$-г опада споро, нонекад чак незнатно, али се зато брзо нарушава после свитања. Преко дана је интентензитет урбаних острва топлоте мали, а врло често чак занемарљив. Овако идеализована слика днев ног хода разлика температура измерених на урбаној и руралној станици значајно се ублажава, па и губи, при промени синоптичких услова који доводе до наоблачења, појачања брзине ветра, падавина...Но и поред тога на основу података о средњим сезонским вредностима терминских температура на Петроварадииској тврђавл и Римским намесвима можемо уочитти да постојање урбаног острва топоте, нарочито у вечерњем термину, има значајног утицаја на вел вихових разлика.
И на крају, близина Дунава климатолошкој станици Тетроварадин може, током јутарњих и вечерних сати, када се, због топлотно коша, нове申ати позитивну врериост уочене температурне аномалије док ће се због чрисуства реке током дана вредност ове разлике смањивати или ће бити негативна.

На слици 1, може се уочити да су разлике На слици 1 , може се уочити да су разлике средњих сезонских температура у јутарњем термину најинтензивније током јесени и зиме, у посматраном термину значајпија него у делу године после пролећне равнодневице и када су антропогени извори топноте, због потребе за загревањем простора, највеђи. Ова разлика је загревавем простора, највећи. Ова разлика је
нешто нижа у пролеће, а више је него нешхо нижа у мролеће, а више је ноко смањена током лета, када се због ранијег свитања много брже нарушавају и рана јутарња инверзија и урбано острво топлоте.

вредносйиии иеемйерайчура измерених у 07 сайии за Пейроварадин и Р.ІІанчеве

Слика 2: График разлика средних сезонских ииемйерайчра измерених у 14 сайии

На графику на којем су представљене разлике средњих сезонских температура које се односе на подневни климатолошки термин (слика 2), јасно се уочава разлиқа између зиме и осталих годишњих доба. Наиме, средином дана, када се слој мешања, због конвекције, стратификује нестабилно или неутрално, разлика посматраних температура због веће надморске висине Петроварадинске тврђаве постаје негативна. Близина Дунава који се током дана спорије загрева од околног копна повенава негативну вредност ове разлике, па присуство урбаног острва топлоте, и онако веома слабо израженог или чак потууно нарушеног преко дана, током венег дела годие ние дововно да промени знак посматране разлике. Међуим,
 граду најзанаска тррава остаје и у нодневнои термину у просеку за 0.2 степена топииіа од термину у просеку за 0.2 слие оплија од руралне локашије Римских Шанчева

Слика 3:График разлика вредносйи средних сезонских ииемйерайира измерених у 21 сай

Разлике средњих сезонских температура ваздуха измерених у вечерњем, за разлику од јутарњег и подневног термина, не показују
 уррђаве и у вечерним сатима нешто тошија током јесени и зиме него у току пролына й лета у односу на руралну локациіу Римских Шаччева Чињенца да су те разите манег реда величине од оних уочених у јутарнем тор мину може нам угазати да је релативни до
 ззрока, температурних аноманиа тожои

слика 4а) Средње сезонске вредносииии разлика ииемйерайира измерених у климайолошкии иерминима на Пешрроварадинској ииврћави и Римским Шанчевима - за зиму:

Саика 4б) лейо

Слика 4в) йролеће:

Слика 4̄̆) јесен:

вечери и јутра, различит. Због тога ћемо наредних неколико реченица упоредити разлике средњих сезонских температур рора уин риске Шияе годишња доба. года

Из серије ових графика јасно се уочава да су током већег дела године температурне номалије у јутарњем и вечерњем термину ис ог реда величине и да су знатно, у просеку ок подневни термин Ова стика се нарушава само тети када су анализиране разиие у вечерне термину сотово двоструко вete у односу иа jy арњи термин, када је због ранијег свитан инверзија у пиитком стоіу атмосфере већ арушена И ова анализа може нам, међусим, оппстити само да предшоставима да је утица урбаног острва топлоте на величину посма тране аномалије значајншји у вечерњим са гима, када се руралии ваздух хлади много брже и постаје стабилнији од слоја урбаног прекривача, него у јутарњим сатима, када је током хладније половине гоцине за њега великим де лом одговорна и инверзија.

Осветлићемо проблем температурних аномалија још из једног угла. Наиме, ако по датке које прати ова студија упоредимо по данима видећемо да је разлика у температури у подневном термину готово занемарљива, а да је у десетак углавном јутарњих термина пре вазишла величину од $10^{\circ} \mathrm{C}$. Број вечерњих утарњих термина у којима је величина ове аномалије била у интервалу од 5 до $10^{\circ} \mathrm{C}$ много је већи, нарочито у хладвијем делу године. Наиме, док је од маја до августа то сасвим ретка појава која се јавља једном у тридесет одина, у периоду од краја септемора до марта вероватноћа појаве овако значајних тем пературних аномалија у јутарњем термину је 6 9%, а у вечерњем $2-5 \%$. Интересантно је истаћи да су ове разлике у јутарњем термин пајчешне током јесењих и првих пролећних месеци, а у вечерњем термину преко зиме кад су антропогени извори топлоте највећи.

Мада ова једноставна статистика истиче да су температурие аномалије над Новим Садом у току посматраних 30 годдна нешто мање од ве године, у јутарњем, и нешто више од одину дана у вечерњем термину биле значајне о још увек не говори довољно о овом фе номену. Међутим ако нагласимо да се он без изузетка јавља током стабилних, антицик лоналних ситуација чија се појава и трајање могу веома лако предвидети, познавање интензитета урбаиих острва топлоте у појединим

квартовима града вероватно би омогућило значајне уштеде енергије која се утроши на грејање.

PEJATMBHA BJAЖЖНОСТ ВАЗДУХА

Специфични микроклиматски услови локација на којима су вршена мерења условила су између осталог и значајне разлике релативн влажности ваздуха измену њих. Намме положај климатоломке стаме на ного варадинској тврђави, када је атмосфера ста билно стратификована и када је турбулентни
Слика 5) средъе сезонске вредносиии разлика релаииивне влажносӣи ваздуха, ӣо йси кромейру, измерене у климайолоиким $\overline{\text { u}} \boldsymbol{p}$
 ким ІІанчевима:
а) зима

г) jecer:

губитак влаге због испаравања са Дунава и евапотранспирације са падина брда на којем је смештен плато, отежан, чиниће ову локацију Рнатно Шанче Осим тога вредност евапоРимских нание и Оонина ускдадиштене воде транспрацие и комаинске су, због уклонене вегетаџије и њене замене ренативно непропустъивим материјанима релато нижи него у руранио оконини Срруге стране шрисуство водене површине Дунава чиние локачију Петроваражинске тврђаве, у чиниие локацију Петроварадинске нвстабилно стратификоване ат мосфере знатно внаж-нијом због чега ћ мосфере знамем вроцене утица-ја урбанизашије на величичу аномалија влаге, на посматраним локашјама, постати веома комплексан.

На графицима 5 -г, се уочава да је преко целе године ред величине разлике релативне влажности ваздуха у јутарњим и вечерњим са тима знатно већи него у подневном термину птто указује да специфични положај клима толошке станице Петроварадин има пресудни утицај на величину ове аномалије. С друге стране са графика ба и в, можемо уочити да се ова разлика, у јутарњем и вечерњем термину са изузетком првих неколико година, посте пено смањује, што можда указује да се ан тропогени извори влаге у граду повећавају. На графику 6 б, који се односи на подневни термин не уочава се никакав тренд, али се види да су одступања релативне влажности ваздуха, то ком пролећа, лета и јесени, незнатна, нто ука зује на чињеницу да је у условима добро развијене конвекције, типичан подневни дефицит урбане влажности ваздуха овде надокнађен присуством реке. Зими, кад је утицај кон векције мањи, рурална влажност Римских Шанчева остаје већа преко целог дана

Саика 6: разлике релайивне влажносйи ваздуха, Пейроварадинској йврђави и Рим ским ІІанчевима у йериоду '61. - 90. годд

6a) 07 сати

6б) 14 сати

BETAP

Профил ветра у најнижим слојевима атмосфере у великој мери је условљен локалном топографијом, а потом и присуством и геометријом урбаних површина, као и распоредом водених и зелених површина у региону. И док

 лативно једноставно бити модификован лативно једноставно бити модификован, Дунава, урбаних материјана и пошумљешх повр-шина, у околини климатолошке станице Петроварадип, мешабе у првом реду про-филе еемпература изнаи тих површина, па ђе самим тим податно модификовати и циркушачіу, топографски положај стани-це може је каца у складу са синоптичком ситуацијом великих размера дува умерен и јак ветар учинити вет ровитијом од непосредне околине.

Слика 7: разлика средьих сезонских вред-
 варадинској йврђави и Римским ІІанчевима у иериоду 61. - 90. године

С друге стране присуство елемената рапавости на платоу Петроварадинске тврђаве и повећана површинска рапавост градске

средине утицаће на смањење брзине ветра на Петроварадинској тврђави, али не присуство урбаног острва топлоте изнад Новог Сада, у есяй локалну дневну циркулациіу.

Ветар на климатолошкој стаиици Петроварадин, у периоду који прати ова студија, није мерен континуирано, али се са графика на ко јем су на основу расположивих података при казане средње сезонске и годишње аномалиј ветра (слика 7), види да оне нису нарочито значајне, дане показују неки карактеристични тренд, нити да вмају значајних сезонских ос цилација. Међутим на основу анализе податак који сведоче о појавама јаког и олујног ветра на поменутим покачшіама може се уочити да се разлика броја дана са јаким и олујним ветром између Петроварадииске тврђаве и Римских Шанчева током анализираног периода значајно смањина, што вероватно сведочи о томе да се брзина ветра, због повећане рапавости терена над околином Петроварадинске тврђаве, смањила, па убрзање успореног урбаног тока условљено прементањем преко орографске препреке, у ситуацијама умереног и јаког ветра, има све мањи значај. С друге стране, с обзиром да ово смањење честине олујног и јаког ветра на Петроварадиско тврђави не утиче на смањење његове средње брзине, можемо закључити да је утицај локалне циркулације условљене географским положајем станице и присуством урбаног острва тонлоте града, у ситуацијама када је ветар у региону слаб, све значајнији.

Слика 8: Разлика укуйно̄̄̄ $\overline{\text { додииинег̆ броја дана }}$ са јаким и олујния вейром на Пейро варадинској шыврђави и Рилским ІІІанчевима у йериоду од 1961.- 1990. године

MATJA

Иако је степен замућености урбане атмосфере обично знатно виши него у руралној околини појава магле, видљьивости мање ол 200 m , обично је ређа у градовима где се због веће концентрашије кондензамионих језгара формира већи број мањих капљица које не произ

воде веома густе магле. И постојање урбаних острва топлоте чини појаву магле у уроаним срединама ређом. Овај ефекат урбанизације веома се јасно види из анализе разлика сезонских и тодишьих вредности броа дана са маглом ма Петроварадинској пряави и Римским Дунава, докачију Петроварасинске бврђаре Дунава, лока магловигијом Нта више, ша гра није учинила магловитјом. нка више, на гра фику 20, на којем су предочсне сезонске вредности ове аномалије можемо уочити да је нодана са маглом на Петроварадинској тврђави релативно често, у појепиним сезонама, био већи од броја дана са маглом у руралној оголини док је током друге половине исшитиваног периода ово сасвим ретка појава. Наиме, током прве пекаде испитиваног периоода средюи годишњи број дана са маглом на Петроварадинској тврђави је био 27 , а на Шанчевима 24 већ током друге дехаце просечан број масловитих дана је на трвој покачији опао на 21 , док је у руралној околини порастао на чак 30 . Током друге декаде сыика је остала готово непроменена са просечно 21 -ним магловитим даном на Петроварадинској тврђави и 29 магловитих дана на Римским Шанчевима. С обзиром на резултате добијене приликом анализе аномалија релативне влажности ваздуха на посматраним локацијама, готово сигурношћу можемо тврдити да добијени тренд разлике броја дана са појавом магле није последица промене влажности ваздуха на посматраним локацијама, већ да је у првом реду иоследица све веће загађености урбане атмосфере. Шта више, из добијених резултата можемо наслутити и да је пораст конщенграције загађујућих материја над Новим Садом био нарочито значајан током седамдесетих година

слика 9: разлика сезонских вредности броја дана са маглом на Петроварадинској тврђави Р. Шанчевима у периоду од 1961.-1990. године:

Иако су информације које се односе на ллажност ваздуха у урбаној атмосфери често
 облачнос и расодел падавна, нарочто у нзглепа очигледан

Наиме, да би дошло до конвективних падавина неопходно је присуство водене паре и конденационих језгара у атмосфери и неопходан је конензашшје те материје подмаи до ко воства много више од ожолие атмосфере тристарна инеану лабораторију за ироверу ових уснова С обзиром да треба времена да се онденачиона језгра и водена пара подигну до нивоа кондензачије и да се образуіу кашљиц довољно тешие да падну на землу, урбани ефекти на падавине не се обично јављати не олико десетина километара низ ветар од града пре него у самом граду. Најчешћи југоисточни, а потом и северозападни ветрови на Новим Садом требало би, даклле, да услове на интензивније урбане аномалије падавин северозападно, односно југоисточно од града док би утицај урбане средине на просторни распоред падавина, према ружи ветрова, био најслабије изражен северно, североисточно и југозападно од града.

Просторни распоред падавина у околини Но зог Сада, за све три декаде посматраног пери ода представљен је на сликама $10 а$, и и в на ос нову података са 18 падавинских или клима толошких станица лоцираних у кругу полу иречника 30 km од града.

ллика 10а: Просторни распоред просечн одхишње количине падавина у периооду 1961. 1970. година

Слика 10б: Просииорни расйоред йросечне годишье количине йадавина у йериоду 1971 1980. Године

На основу добијених карата можемо уочити да се током испитиваног периода издваја дефицит аадавина северно и североисточно од града, а града због утицаіа орографиј ман изражена Подручје самог града такође се налази у зоши дефичита падавина док су на кишовитије докачјје југоисточно, зандно, еверозапано и југозападно од града С обзи ром да је због присуства Фруише Горе јужно

Слика 10в: Просииорни расйоред йросечне одинье количине йадавина у йериоду од 1981.-1990. г̄одине

од града веома тешко установити релативни допринос орографије и урбанизације на просторну расподелу падавина, овде бих истакла вог Сада где је утицај орографије зачемарлив иадично неујеннчена и рафије занемарљив, чешће под утицајем урбане јеріана коа ј секу десетак процешата нерјави у про североисточне зоне.

РЕЗУЛТАТИ ВЕРИФИКАЦИЈЕ З0-ДНЕВНЕ ПРОГНОЗЕ ВРЕМЕНА ЗА ПЕЕРИОД 1988-1990.Г.

Зоран Николић, дийл.мейи.
Рейублички хидромейеоролоики завод Србије, Кнеза Вииеслава 66
11030 Беойрад, Јуz̄ославија
Abstract
The method by analogy for weather forecast for 30 days ahead, using relative topografy $500 / 1000 \mathrm{mb}$, has been in óperative use in RHMS of Serbia since 1969.

The method has following assumptions: in a case that current and archive weather situation are similar, we can expect that further development of current situation will be identical or very similar to the archive one.

The weather forecast for 30 days has been issued twice a month.
Some results of verification of the weather forecast for 30 days ahead which have been issued during the period from 1988 to 1990 have been shown in this paper.

Абсииракий

Меииод аналойије за 30 - дневну йройнозу врелена кориићенен релайивне ииоииойрафије 50011000 мб у ойерайивној је уйойреби у РХМЗ Србије од 1969. аподине.
Мейод ина за йреиийосииавку следеће : у случају да су ииекућа и архивска временска сийиација мебусобио сличне, поже се очекивайи да даъи развој иеекуће сийуачије буде идениииан или веома сличан архивском

30-дневна йрог̄ноза времена издаје се 1.-ог̆ и 15 -ой у месечу.
У овом раду йриказани су неки резуайайии верификачије 30-дневних йройноза времена издайих 1.о̄̄ у месечу и йо у йериоду 1989 - 1990

Кратак приказ оперативног метода за
 \section*{дугорочну прогнозу времена}

За израду месечне прогнозе времена у РХМЗ Србије користи се метод аналогије. Основна претпоставка овог метода је да су одређене временске ситуације међусобно сличне или чак веома сличне, како на ширем подручју (хемисфера), тако и изнад појединих области. Зато је логично очекивати да ће даљи развоји две међусобно сличне синоптичке ситуације (архивске и текуће) такође имати висок степен подударности.

Оперативни метод (Радиновић, 1975) разматра аномалије релативне топографије RT500/1000 mb у односу на нормалне вредности изведене из 25 -годишњег низа и то у 120 хемисфери. Ове аномалије упоређују се са одговарајућим аномалијама RT500/1000 mb за

ретходне године (архива) и налазе се периоди најбољих аналогија. Затим се бира архивски период у коме је у највећем броју тачака забележен исти знак аномалије RT500/1000 mb као и у текућем тридесетодневном односно седмодневном периоду (Радосављевић, 1982) и у коме је коефицијент корелације, који изражава степен сличности, био највећи. На крају се саставља прогноза времена према показатељима 30 -дневног периода који следи иза изабраног архивског периода.

Релативна топографија слоја $500 / 1000 \mathrm{mb}$ и њене аномалије користе се за избор аналогних периода јер директно одражавају топлотно стање значајног дела тропосфере и тесно су Конзервативност и инертност релативне температура или приземни притисак.

Резултати верификације месечне прогнозе

 временаОријентациона прогноза (изгледи времена) за 30 дана унапред ради се два пута месечно и то 1.-ог и 15 .-ог у меседу и садржи следеће елементе. максималну дневну температуру ваздуха, средњу дневну тневнературу тературу ваздуха, средњу дневну температуру ваздуха, поје кине, сога, рмвавине, малле и надавина по дашиа и за чео 30) иении период

Текст прогнозе, као њен саставни део, описује развој времена у одређеном периоду и истиче оне феномене који су значајни за поједине кориснике. Оваква прогноза ради се за више карактеристичних места у Србији. Осим наведеног, прогноза која се издаје 1 .-ог у месецу садржи и трафички приказ поља прогнозираних средњих месечних температура затим месечних количина падавина као и месечног броја дана са падавинама за подручје Југославије.

Верификација месечне прогиозе времена

у циљу стицања сазнања о ваљаности оријентационе прогнозе времена за 30 дана унапред, извршена је верификација одређених елемената прогноза издатих 1 .-ог у месеиу за периоду 1988-1990. Верификоване су прогнозе следећих елемената:

- средња дневна температура ваздуха - средња месечна температура ваздух
- месечна количина падавина

Од верификационих скорова коришћени су средња грешка, средња апсолутна грешка и коефицијент корелације.

Поред овога, на основу апсолутних одступања прогнозираних вредности од стварних, рађене су и интегралне криве поузданости прогнозе гемпературе и количине падавина (Гирс, 1978). Такође је вршена и оцена прогнозираног гренда средње дневне температуре

Осим оперативне прогнозе посматрана је тзв. климатолошка прогноза код које је прогнозирана величина заправо њена средња
вишегодишња, тј. "нормална" вредност. у вишегодишња, тј. "нормална" вредност. У овом случају узет је тридесетогодишши низ
$(1951-1980)$.

a) Средны дневна температура вавдуха

На сликама 1 и 2 дате су средње грешке и средње апсолутне грешке оперативне и климатолошке прогнозе средње дневне
температуре ваздуха и то по месешима. емпературе ваздуха и то по месецима.
Средње грешке оперативне и клима-толошке прогнозе поклапају се по знаку у свим месецима. Прогнозиране средње дневн ууну, сештекбру, нообр и оо остварених јуну, септембру, октобру и новембру, док је у ситуачија обриута стыа

Иако је средња грешка оперативне прогнозе у већини случајева (месеци) по апсолутној рредности мања од средње грешк лиматолошке прогнозе, средња апсолутна решка (слика 2) оперативне прогнозе средњ дневне температуре је или мања или приближно једнака средњој грешы лиматолошке прогиозе у мирт и лерии ецембар, јануар, фебруар и марл) и лети месецима, док је у месецима ирелазни годишњих доба (пролеће и јесен) средња од средње апсолутне грешке климатолошк ирогнозе за око 1.0 до 1.5 степен.

\triangle Kilmatoloska prognoza
\square
Operativna prognoza
слина 1. Средная греника ирогнозе средње сиевые темитературе по месецима

Δ Klimatološka prognoza Operativna prognoza
Слика 2. Средња апсолутна грешка прогнозе средње дневне температуре по месецима
Посматрајући интегралне криве поузданости прогнозе средње дневне температуре може се доћи до сличног закључка.
На сликама од 3 до 8 дате су интегралне криве поузданости средње дневне температуре (\triangle климатолошка прогноза, \square - -перативна прогноза, Тр-прогнозирана средња дневна температура, То-остварена средња дневна температура) за карактеристичне месеце:

Слика 4. А пррил

Слнка 5. Јули

Слика 7. Октобар

Слика 8. Новембар

Ниво дозвољене грешке средне дневие температуре

Дозвољену грешку прогнозе температуре могуће је одредити арбитрарно, тако да буде једнака за све случајеве тј. месеце или сезоне Међутим колебливост средње дневн температуре је у месецима прелазних одишњих доба вена него у зимским и летњим аа делује логично да и дозвољена грешка мрогнозе средње дневне температуре буде вена. Као мера колебљивости узела је емпературе од дана до дана Тако је за април и мај као и за септембар и октобар, добијена
 6 до 28 степени Мооженем фактором .6тервая поверења 95% (132) одређена је озво-лена грешта тј 48 онносно 37 степени

Мес.	Оператив на пргноза $\%$	Климато- попка прогноза \%	Дозвоље -на грешка (C)
I	53	55	3.7
II	59	55	3.7
III	55	60	3.7
IV	55	72	4.8
V	70	82	4.8
VI	68	87	4.8
VII	70	66	3.7
VIII	70	67	3.7
IX	78	90	4.8
X	61	77	4.8
XI	53	50	3.7
XII	64	71	3.7

 сиепыье лневне темпиературе й ниво дозвољене грение по месенипта

у табели 1 дат је проценат коректних (употребљивих) пропноза средње дневне температуре за сваки месец, а на основу величине дозвољене грешке.

Проценат коректних (употребљивих) прогноза средње дневне температуре добијених оперативним методом је сасвим задовољавајући, поготову ако се има у виду да се ради о прогнози за 30 дана унапред. Такође је установљени ниво дозвољене грешке
(апсолутног одступања) у складу са захтевима корисника месечне прогнозе времена.

Тренд средюе дневне температуре

Посматрани су знаци разлика $\Delta T p=T p(i)$ $\operatorname{Tp}(\mathrm{i}-1)$ i $\Delta \mathrm{To}=\mathrm{To}(\mathrm{i})-\mathrm{To}(\mathrm{i}-1)$, где је:

Tp(i)-прогнозирана средња дневна температура за \mathbf{i}-ти дан
Tp(i-1)-прогнозирана средња пневна температура за $\mathrm{i}-1$ дан (претходни) To(i)- остварена средња дневна температура за i-ти дан
То(i-1)-остварена средња дневна температура за $\mathrm{i}-1$ дан (претходни)

За оцену прогнозе тренда средње дневне температуре коришћена је величина R дефинисана као
$R=(n 1-n 2) /(n 1+n 2)$
где је:
n1-број случајева код којих је тренд успешно прогнозираи (знак $\Delta T p$ се поклапа са знаком $\Delta \mathrm{To}$)
n2-број случајева код којих тренд није успешно прогнозиран (знак $\Delta T p$ се не поклапа са знаком $\Delta \mathrm{To}$)

meace
-Rp-operativna prog. Δ Rk-klimatološka prognoza
Слика 9. Вредности параметра R но месецима
За $R>0$ прогноза тренда средње дневне температуре се остварила у више од 50% случајева, за $R<0$ у мање од 50%, и за $R=$ 0 у 50% случајева.

На слици 9 дате су вредности параметра R за сваки месец. Осим у новембру, децембру и јануару, ирогноза тренда средње дневне температуре била је боља код климатолошке него код оперативне пропнозе, а у марту, Rk у фебруару и октобру Rp је мање од 0 т нк. У фебуару и оклобру пр је мање од 50% прогноза тренда није остварена у више од 50% случајева
б) Средња месечна температура

На слици 10 дата је интегрална крива поузданости прогнозе средње месечне температуре. Оперативни метод показује боље резултате од климатолопке прогнозе, нарочито за одступања већа од 2 стенена Наиме 90% ирогноза сред 2 месечн наиме уотуре добијених температуре добијених оперативним методом
нема грешку већу од 3 степена, док ј нема грешку вену од 3 степена, док је
проценат климатолошких прогноза са истим одступањем мањи и износи 82%. Чињеница да грешка прогнозе средње месечне температуре оперативним методом не прелази 4 степена

указује на оправданост примене метода аналогије.

operativna progno

Δ

Слика 10. Иитегрална крива поузданости прогнозе средње месечне темнературе

в) Месечна количина падавина

На слици 11 дата је интегрална крива поузданости прогнозе месечне количине падавина, која претставља грубу оцену ваљаности прогнозе месечних количина падавина. За финију оцену прогнозе ове величине коришћена је категоризација ваљаности прогнозе по којој је прогноза добра уколико је стварна вредност у интервалу $\pm 20 \%$ од прогнозиране, а употребљива ако је у интервалу од $\pm 20 \%$ до $\pm 30 \%$ од прогнозиране. Оперативна прогноза месечне количине падавина је по овом критеријуму била добра у 25% и употрбљива у 20% случајева, док је климатолошка била добра у 20% и употребльива такође у 20% случајева (месеци).

Слика 11. Интегрална крива поузданости примене метода аналогије за прогнозу месечне прогнозе месечне количине падавина

Оперативни метод је у извесној предности над
климатолошким што указује на оправданост
Закључак методом пореди најчешће са прогнозом инерционим методом (нпр. перзистенција), овде је као контролни метод изабран климатолошки, са циљем да се читавој ствари је ито се могло и моенивати, очеративни ј, што се могло и очекивати, оперативни једнак климатодошком када је y шитану једнак климатолошком када је у питању месечне количине падавина док је ко

Литература

Радиновић, Т., 1975: "An analogue method for weather forecasting using the $500 / 1000 \mathrm{mb}$ relative topography ". Mon. Wea. Rev., vol. 103, $N 7$, p. 639-649.

Радосављевић, М., 1982: "Прогнозирање средње дневне температуре ваздуха за 7 дана по методу аналогије релативне топографије $500 / 1000 \mathrm{mb}$ и тестирање остварења прогнозе". RHMZ Cpбије

Гирс, А.А., Кондратович, К.В., 1978: "Методи полгосрочних прогнозов погоди" Lewingrad Gidrometeoizdat

РАСПОДЈЕЛА И ИСПИТИВАНЕ ХОМОГЕНОСТИ 48ч И 72ч КОЛИЧИНА ПАДАВИНА ЗА ЦЕТИЩЕ

Бранко Мицев
Ранко рајковиһ
Нада Pудан
лавица Мицев и
Рейублички Хидромейеоролоики завод Црие Горе МВ Пролейерске 19, Подг̈орича ииел./факс 081 623-304

Abstract

On the basis of the studies performed at the Republic Hydrometeorological Service of Montenegro concerning 24-hour rainfall amounts, a conclusion can be made that 24-hour rainfall amounts with return periods of 50 , 100,200 and 1000 years have been noticeably increased for the last 18 years. Many extreme rainfall amounts were recorded in this period, i.e. the frequency of the extreme amounts could be seen.

Since the obtained results are very interesting, the question is what is the situation with 48- and 72-hour rainfall amounts. For the purpose of investigations, two series were taken, the first one being the basic covering the period 1950-1980 and the second one, as the experimental one, covering the period 1o80-1998.

By applying certain mathematical-statistical methods, we get the following conclusions.

- As for 48- and 72-hour rainfall amounts covering the period 1950-1980 as the basic series, they coincide to he pattern, i.e. Gamma distribution (iwo parameters gamma distribution). The histograms concerning the period 1981-1998 being the sample show a very good coincidence with the basic series;
- The occurrence of homogeneity between the testing series (1981-11098) and the basic one (1950-1980) has been established.

Абсииракй

На основу исиираживања која су вршена, у Хидромеиеооролоиком заводу Црне Горе, за ексйремне $24 ч$ количине йадавина, између осйалой, доило се до сазнања да су 24 количине ииадавина са йовраӣним ииериодима од 50, 100, 200 и 1000г̄одина знаитно йовећане у йоследњих 18 година. У овом йериоду је рейисйровано низ ексииремних количина йадавина, односно уочена је учесиииносий ексӣремних количина.
С обзиром да су добијени веома занимљиви резулиииайии иоссииавља се ииииање каква је сийуаииј са. $48 ч$ и 72 ч количинама йадавина.
За исӣийивање узейиа су два низа, йрви као основни од 1950 до 1980 и друг̄и као ексйерименйиални од 1980 до 1998.
У овом раду исиииииивано је:
Примјеном одређених майемайичко-сииаииисииичких меииода добија се
■ да се 48ч и 72 ч количине йадавина, које се односе на йериод 1950-1980 као основни низ, иокоравају закону, Гама расйодјели (двойарамейарска г̄ама расйодјела). Хисииог̄рами који се односе на йериод 1981-1998 као узорак йоказују веома добро слаг̈аъе са основним низом

- уийврђено је иосйојање хомог̄еносиии измебу исиииимиваног̄ низа (1981-1998) и основной низа (1950-1980).
А) АНОМАЛИИЈА ЕКСТРЕМНИХ $24 ч$ КОЛИЧИНА ПАДАВИНА У ПОСЉЕДЊИХ 18 ГОДИНА

У екпсерименталном периоду (1981-1998) у односу на основни период (1950-1998) уочена су знатна помјерања код екстремних 24 ч количина падавина на

количинама падавина за 24 ч, 48ч, 72 ч, као и укупним мјесечним и годишњим количинама падавина за урбана подручја. У експерименталном периоду уочено је повећање $50,100,200$ и 1000 годишњих количина падавина за око 30%. Повећање екстремних 24 ч количина падавина дато је на слици 1.

подручју Цетиња као подручје са највећим

ДВОПАРАМЕТАРСКА ГАМА РАСПОДЈЕЛА

Параметри расподјеле су α и β Математичко очекивање: $\mathrm{E}=\alpha / \beta$ Варијанса: $\sigma^{2}=\alpha / \beta^{2}$
Б) РАСПОДЈЕЛА 48 ч КоличинА ПАДАВИНА

Примјеном одговарајућих метода математичке статистике у циљу утврђивања закона расподјеле, за основни низ, потврђено је да 48 м количине падавина су распоређене по закону двопараметарске гама расподјеле. Хиквадрат тест даје позитивне резултате за прихватање утврђене законитости. Резултати су дати у табели 1 и 2.

Таб. 1. Статистички преглед резултата за основни /контролни низ

Таб. 2. Резултати за

2	-тест/основни низ			
x^{2}	v	СЛ	α за x^{2}	x^{2} крит
35.9	25	0.07	0.05	37.6

Како је $\chi^{2}<\chi^{2}$ крит основни низ следи гама расподјелу са параметрима α и β из табеле 1.
На слици 2.1 и 2.2 дати су хистограми No- основни низ- број података фреквенчије са гама расподјелом за основни низз.

Ne - експериментални низ- број података
Контролни низ (сл.2.2) такође веома добро прати основну дистрибуцију.

АМ-аритметичка средина
МЕД-медијана
МОД- мод
ГМ-геометријска средина
СД-стандардна девијација
ДК-доњи квартил 25\%
ГК-горњи квартил 75\%
Ка-коефицијент асиметрије
Кс-коефицијент спљоштености
Кв-коефицијент варијације
СЛ-сигн. левел-значајни ниво

Сл.2.1 Хистограм фреквенције са Гама расподјелом за 48ч падавине за период 1950-1980.-Цетиње

Сл.2.2. Хистограм фреквенције за 48 ч падавине за период 1981-1998.-Цетиње

Д) РАСПОДЈЕЛА $72 ч$ КОЛИЧИНА

 ПАДАВИНАМатематичко статистичким методама утврђено је да 72ч количине падавина су Резултати су дати у табели 3 и 4.

Таб. 3. Статистички преглед резултата за основни /контролни низ

Таб. 4. Резултати за χ^{2}-тест/основни низ

x^{2}	v	CI	α за χ^{2}	$\chi_{\text {крит }}^{2}$
25.6	16	0.05	.0 .05	26.3

Како је $\chi^{2}<\chi_{\text {крит }}^{2}(25.6<26.3)$ основни Контролни низ (сл 3.2), према хистограму низ следи Гама расподјелу са параметрима фреквенције, прати основну дистрибуцију α и β из табеле 4.
На слици 3.1 и 3.2 дати су хистограми фреквенције са Гама расподјелом за основни низ

Сл.3.1. Хистограм фреквенције са Гама расподјелом за 72ч
количине падавина за период 1950-1980.-Цетиње

Д) ТЕСТ ХОМОГЕНОСТИ НИЗОВА 48 ч И 72 ч КОЛИЧИНА ПАДАВИНА

За утврђивање хомогености низова 0.05 и са нултом хипотезом да су средње извршено је тестирање 48 и и 72 ч количина вриједности низова једнаке.
падавина за обострани тест, за прагом од

Таб. 5. Резултати теста хомогености $3 а 48$ ч количине падавина

	основни низ	контролни низ	јединствени скуп/заједно
N	2578	1509	4087
μ	55.8	54.7	55.4
σ^{2}	2673.9	3345.1	2921
σ	51.7	57.8	54.0
медијана	39.2	35.5	37.8

Хипотеза: Но : $\mu_{\mathrm{o}}=\mu_{\mathrm{e}}$
Тест: НЕ (двострани)
$\alpha=0.05$
Резултат $=0.67$
С обзиром да је у питању обострани тест
следи да је регион прихватања хипотезе од
-1.96 до +1.96 .
Таб. 6. Резултати теста хомогености за 72 ч количине падавина

	основни низ	контролни низ	једниствени скуп/заједно
N	1686	950	2636
μ	87.4	86.8	87.1
σ^{2}	4495.2	5726.7	4938.9
σ	67.0	75.6	70.2
медијана	72.1	65.2	68.8

Како је $-1.96<0.67<1.96$ (израчуната вриједност се налази у региону прихватања) следи да се прихвата хомогеност основног и експерименталног низа

Хипотеза: Но : $\mu_{\mathrm{o}}=\mu_{\mathrm{e}}$
Тест: НЕ (двострани)
$\alpha=0.05$
Резултат $=0.202$
С обзиром да је у питању обострани тест следи да је регион прихватања хипотезе од -1.96 до +1.96 .

Како је $-1.96<0202<1.96$ следи да се прихвата хомогеност основног и експерименталног низа за 72 ч количине падавина.

ЗАКЉУЧАК

На основу изведених испитивања може се закључити следеће:

- екстемне 24 м количине падавина, са повратним периодима од $50,100,200$ и 1000 година, показују знатно помјерање ка већим вриједностима које се креће око $+30 \%$.
- 48 ч количине падавина, основни низ, су распоређене према закону двопараметарске Гама расподјеле. Тестирање је извршено помоћу χ^{2} теста, 48 ч и 72 ч количине падавина, за ризик прихватања од 0.05 тј. са 95% нивоом поузданости.
- 72 ч количине падавина, основни низ, су такође распоређене према истом закону расподјеле, наравно са другим вриједностима параметара расподјеле.
- контролни низови на основу хистограма фреквенције показују веома квалитетну подударност са основном дистрибуцијом.
- Показатељ растурања око средње вриједности је повећан код контролних низова у односу на основни за 12% и 13% за 48 и и 72 ч количине падавина респективно.
- 25% и 75% квартили показују смањену вриједност код екпсерименталних низова у односу на основни низ.
ㅁ за 48 ч количине падавина, 25% од свих вриједности, се налази до 18мм за основни низ и до 14 мм за контролни низ.
- за 48 ч количине падавина, 75% од свих вриједности, се налази до 78 мм за основни низ и до 74мм за контролни низ.
- за 72 ч количине падавина, 25% од свих вриједности, се налази до $36 \mathrm{mм}$ за основни низ и до $33 \mathrm{mм}$ за контролни низ.
- за 72 ч количине падавина, 75% од свих вриједности, се налази до 121 мм за основни низ и до 118 мм за контролни низ.
a 48 и 72 ч количине падавина за основни и контролни низ, на основу тестова хомогености, припадају исто популацији тј. добија се да су низови хомогени те да не постоји деформација у расподјели 48ч и 72ч количина падавина у посљедњих 18г., у односу на основни низ, на подручју Цетиња као подручје са екстремним количинама падавина.

ИНФОРМАЦИОНИ СИСТЕМ И МЕТЕОРОЛОШКИ ПОДАЦИ

דOPMMPA HE SEMT-REALTVME BABE

 METEOPOJOHKMX M XHMPOJOHHKHX IOJATAKA PEJEBAHTHMX
ЗА ХИДРОЛОНKE ПPOCHOЗE H HWEHO YKJATIA HE У

 MHOOPMALMOHH CMCTEMPXMB CPGMJEБранислав Милаксара, диилл инон елекииро

Introduction of new measurement methods for the meteorological data (radar equipment, satellite) enable a completely new quality in making hydrological forecasts.
In order to take advantage of radar and satellite images and increased number of data, it is necessary to introduce some new technologies operational and create a corresponding infrastructure for a quick acquisition and storing.
This paper concerns the importance and ways to reorganize the information database for a successful application of new data types (graphical) by connecting to LAN and forming a semi realtime base of forecast data with GIS elements.

Абсиираний

Увођењем нових мейода мерена мейеоролоиких ииодайика (радар, саииелийи), омойуује се и нов квалийейи у издавану хидролоииких йрогтноза.
Да би се искорисйили радарски и сайелийски снинччи и йовепон обима йодайака, йойребно је увесйи нове йехнолойцје рада и осйварииии одйоварајуйу инфрасйрукийуру за брзо иреузимање и одговарајуће складииийене исиииих.
$У$ раду се размайра важносй и начини реорйанизачије информаиииике иодлойе за усйешно кориићене нових ииииова йодайика (ерафичких) йовезиеинем у LAN и формиранем sеті realtime Базе йрог̈носйичких йодайика са GIS елеменииииима.

УВОД

Добро познавање и моделирање физичких процеса у природном окружењу (сливу), нумеричке методе и моина рачунарска техника шрешизно предвитају волне режиме (стана) ресматране области Највећи поблем примене софистичраних модеда је недостатак ажурних важно да репевантан податак који постоји негде у информационом систему, буде што пре доступан и придружен осталим елементима модела јер закаснела информација је, исто што и непостојећа информација.

Ажурност се постиже јединственим Ииформационим системом, тј. интегрисањем осматрачког система и повезивањем локалних рачунарских мрежа појединих служби у обједињену (LAN) мрежу PXM Завода.

Тренутно, поток информација неоиходних одељењу прогноза вода, пристиже из разних извора: радиовезом и телефоном у јутарњем еммоу (за протеки дан), нреуздмажем рачунарском мрежом (эа шр четири сата) Метеоролошши пода двадесе ажурирају свака три сата, но из техничиих и организачионих разлога, овакав ритам је ретко организау -

Из наведенога се види да су добијени подаци недовољно ажурни и да је њихово притицање неуједначено. Овде се не налазе ни подаци о падавинама којй се добијају радарским мерењима, а на чему се у PXM Заводу интензивно ради. Све се ово у целини решава предвииеним Ииформационим системом реализовани по секторима

Интегрисањем

Разноврсност података и могућност њиховог преузимања из разних извора, захтева у одељењу прогнозе вода сегмент управљања за прикупљање података. А олакшани прилив и повећани обим битних података захтева организовано разврставање и формирање у манипулативне базе података за рад у реалном времену.

Новине у раду: радарски и сателитеки подами

Коришћењем сателитских и радарских снимака, нумеричких прогностичких модела, као и употребом других помоћних метода, могу се постићи много бољи резултати од досадашњег начина рада.

Мерење количине падавина мрежом плувиографа и кишомера само делимично може да задовољи потребе прогнозе. Да би се регистровале све падавине, поготово иљусковите, потребно је имати неисплативо густу мрежу падавинских станица. Са друге стране и радарско мерење падавина може да региструје промене у интензитету падавина, као и њихову просторну расподелу, што је за хидролошку прогнозу незаменљиво
Коришћење сателитских снимака, сателитских мерења и размене информација, постаје у светској хидрометеоролошкој служби све више уклучен у међународнумозми никога ко је како je 1990 с сомет MDD (Meto Distribution) - yкъyчeн vao ceprac y прора Distribution) - укључен као сервис у програм организаџије све се више меоооошке метеоролошких ишформација опвија размеко сателитског система. Развијен за размену информаџиіа за обдасти без изграђене инфраструктуре, показује изузетну поузданост отпорност на сметње као и исплативост Методе сателитског й етеоролошких појава се практично тев разрађују, али су сви изгледи да ће овај алат пружити неочекиване могућности (сателитски е мере појаве на површини Земље на 3×3 се ме).
Нова техничко - технолошка достигнућа су омогућила да се огромна количина информација добијена радарским и сателитским осматрањима, придружи и интегрише у постојеће хидрометеоролошке контигенте информација. Нажалост не постоји веће искуство у хидролошкој примени радарски и сателитски измерених

метеоролошких вредности, али се сагледавају могућности и практичност ових нових су радарска и досадшшег искуства се зна да успешша али да иштертетачшје добијених вредности нису јерноставне Спечифичне су одређену орографиіу - односно сдив, те се морају вршити извесне калибрације.
Због велике количине података у сателитској размени и потребе за уштедом капацитета, има неких специфичности у односу на досадашњ начине рада. Наиме, сви се подаци морају при слању компримовати и на пријему развити. Такође се применује криптографија података који су под комерцијалном заштитом. Ово намеће захтеве за стандардизацијом и неким новим техникама и новим софтверским системима које треба укључити у рад.

Порации као основ креираға система

Од къьучног значаја за дефинисање софтверског система, неопходна је тачна идентификација података и везе између њих Информатички задатак организације преузимања података и формирања semi realtime Базе, мора бити креиран на основу типа, контитента и протока података коришнених у прогнозирању.

Независно од хидролошких прогностичких модела који се користе у РХМЗ, хидролошки модел слива може се свести на облик
где је:
$y_{k}=h\left(\mathrm{x}_{\mathrm{k}}\right)$
$a:$

$$
\mathrm{x}_{\mathrm{k}+1}=\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{p}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}}^{\mathrm{h}}, \mathrm{w}_{\mathrm{k}}^{\mathrm{m}}\right)
$$

$\mathrm{x}\left(\mathrm{t}_{0}\right)=\mathrm{X}_{0}$
ту су:

- вектор излаза из модела у тренутку \mathbf{t} (измерених величина)
x_{k} - вектор стања система у тренутку $\mathfrak{t}_{\mathrm{k}}$ (све променљиве у моделу чија се вредност промена: влажност земљишта, дубинска инфилтрација и стање линерних резервоара)
$\stackrel{\text { резервоара) }}{\text { в. }}$
ρ_{k} - вектор параметара модела у тренутку t^{1}
$\mathrm{u}_{\mathrm{k}_{\mathrm{k}}}$. вектор управљања у тренутку t_{k}
к - вектор спољних хидролошких улаза у параметри - водостаји, температуре воже) $\mathbf{w}^{\mathrm{m}}{ }_{\mathrm{k}}$. вектор спољних метеоролошких улаза тренутку T_{K} (укупан водени талог услед падавина и отапања снежног покривача, температуре, положај и брзина премештања падавинских облака и прогноза количине падавина)
g - функција симулације физичког процеса претварања падавина у отицај

Теоријски гледано, база података, на коју не се ослањати примењени прогностички модели, мора садржати све, горе побројане, параметре, кателитски снимљених сливова и радарски и у овој области је примена орнтинуаниих модела који захтевају вени број улазих содатана те инфорауоии систем мора бити способан да их све са лакоћом прихвати.

Свакако да учешће
појединих улазних пвараметара у прогностичком моделу нема исту тежину, тако да ће информациони систем бити развијан и дограђиван према важности параметара (и технолотко - материјалних могућности) тј. од приншипа оперативности, ка максималној егзактности.

Као штто је познато, највећи и непосредан утицај на посматрану хидролошку ситуацију имају падавине и температурне промене, које су брзопроменљиве величине. На брзину промене протицаја, следеће по значају би се могло означити топљење снега у одређеним периодима, а у другим опет, неки други, иза којих у свим случајевима стоји температура ваздуха, као и кретање ваздушних маса.

Све су ово метеоролошки подаци, из чега произилази да су за краткорочне хидролошке прогнозе, управо они и најважнији.

Како комплексни (детерминистички) модели допуштају непрекидно симулирање хидрограма, то је неопходно континуирано раћење основних компоненти хицролошког циклуса. Њихова примена указује на потребу рорморувала континирано мерене и слыа би - атага у одативу Базу, достушу у сваве
 прогностичарима.

Такође је од евидентног, непосредног утицаја стратегија управљања акумулацијама и регулисаним водотоџима. Хидролошке прогнозе утичу на избор стратегије управљања се овим може одржарати желени режим у се се овим може

Пошто су природни режими вода често измењени услед постојања акумулација или других хидротехничких мера, параметри који би се морали наћи у овој Бази треба да задовоље, не само моделе падавине - отицај и моделе за симулацију тока у кориту, већ и моделе за управљање.

За увид у хидролошку ситуацију, значајну улогу играју подаци из међународне размене који су постали лако доступни захваљујући оивезаности Завода са суседни Иидрометеоролошким службама прек Интернета

Табела 1

	Подсистеми Базе
x_{k}	стања система у тренутку t_{k}
p_{k}	параметара модела у тренутку t_{k}
$\mathrm{w}^{\mathrm{h}}{ }_{\mathrm{k}}$	спољних хидроулаза у тренутку t_{k}
$\mathrm{w}^{\mathrm{m}}{ }_{5}$	спољних метеоулаза у тренутку $\mathrm{t}_{\mathrm{t}} \mathrm{o}$
u_{k}	управљања у тренутку t_{k}
y_{k}	излаза из модела у тренутку t_{k}
веза	архивска база хидролошког Сектора

Све горе поменуте групе података морају наћи место у одговарајућим подсистемима semirealtime Базе за хидролошке прогнозе. Предвиђени подсистеми Базе би се креирали управо према наведеним векторима, ка структурама које се препознају као подлога примене модела.

Пошто ће се будуће прогностичке методе све више ослањати на метеоролошке податаке добијене радарским и сателитским мерењима просторно приказаним, намеће се потреба за трафичким делом ове Базе. Он ће се састојат од неколико датотека сталних и привремених:

Графичка база

сйиалиа 1	датотека грашица сливова
сйална 2	датотека водотока по сливовима
сйдлина 3	датотека параметара сливова
сійалиа 4	датотека објеката
привремен и ноддайи	датотека привремено меморисаних метеоролошких граф. података

Код графички дефенисане просторне појаве уочавају се три битне компоненте:

1. појаве које се прате у реалном времену;
2. просторна локација појаве;
3. време посмарања (мерења) појаве.

Односно: шта, где и када

у GIS-у (Географском информационом систему) се ове појаве приказују као карактеристике - подаци придружени некој просторној тачки, линији или полигону. То је статичка слика стања, као што је водоток или пошумљеност слива. Овакви објекти се чувају појаве - динамичка збивања, то је за опис и ток ојаве - диномито битна компонента време и ови се подачи чувају у привременим датотекама Сталне датотеке садрже географске подлоге са непроменљивим карактеристикама, док се мерени и прогнозирани просторни подаши мештају у спојевима који кореспонииају временским атрибутима.

Метеоролошке прогнозе морају бити експлицитно издаване по појединим параметрима који улазе у хидролошки модел (прогноза температурних токова, прогноза Како се из метеоролошких прогностичких модела, резултати добијају у графичкој форми у простору независно од граница сливова и осталих географских објеката, графичка база сталних датотека служи за издвајање

Организација модела података у Бази.

нараметара омеђеног слива и осталих карактеристика подручја
Привремене графичке датотеке садрже просторне снимке метеоролошких појава, ка и прогнозиране вредности истих, сложене по временски прецизираним лејерима.

Време чувања појединих група података у овој Бази одређује прогностичар, узимајући у обзир развој хидролошке ситуације и режима вода на терену и застарелости улазног податка.

Како у РХМЗ постоји Архивска баз хидролошких података са подацима о свим мерним станицама и мерењима од оснивања хидролошке службе, то се предвиђена sem realtime База повезује са њом ради баждарења модела и осталих битних информација.

Ово би био преглед података и типова који дефинишу Базу.

Следећи битан чинилац је

Не улазећи детаљније у разматрања о могућим типовима DBM система за GIS апликације оготванен модел содатака не постоји опште

 архитектура
у дуалној ар
ролоо архитектури се подаци, који нису просторни, чувају у релационим базам DBMS. Просторни подаци се посебно чувају меморишу и користе спешијализования посторним упитним језиком. Тиме се сам роширује постојећа технологиіа рада, а и мењају из основа ни кощеепт ни алати.

Унификована архитектура је настала с појавом објектних модела података, омогућава изградњу сложених објеката агрегирањем ростих или другачијих и на јединствеи начи о захтева врло сложене методе и стандарде и овој фази је неисплатив.
Закорачујући овим пројектом у област технике GIS, треба се определити, без великих амбиција, за дуалну архитектуру semi-realtime Базе података хидролошке прогнозе. За овакву архитектуру треба одлучити збо једноставне интеракције са постојећим апликацијама и приступа подацима који с одражавају кроз њих. Са друге стране, не постављају се велики захтеви у испуњавању ефикасности рада, због невеликог скуп географских података (подлога), са малии бројем међусобних веза. Наиме, на основу контура слива, из радарски измерених просторних података, треба издвојити нумеричке податке, припадајуће том сливу. Ту нема ни текстуалних променивих ни сложених агрегираних објеката. Поред тога, овај би се систем могао означити као једнокориснички тј. неће се истовремено на модели, те шроблем конуреи разти нои значаја, ша шта је дуаит мод

Технолошка подлога и организација рада

Организација рада одељења прогнозе који обухвата: прихват података из разних извора, предходне обраде, привремено чување података, анализе и издавање прогноза надлежности кроз организационе сегменте:

1. прикупљања података (подршка физичке комуникације, мрежни протоколи,

утоматска аквизиција
међ̀ународна размена, размена информација у LAN...)
2. филтрирања података за смештање у) (декомпресија, демодулациіа у Базу брана норука, сателулација, централна слика, архивирање, коитазрола
3. сегмент рада са semi хидролошком Базом података
4. сегмент радних станица, задовољавајућих перформанси, које ће омогућити и примену кодета срафичку презештаииу одела, графичку презентачију

Независно од опремљености, треба рачунати да се исти хардвер може користити истовремено за разне апликашије.

у зависности од врсте података који се реузима у Базу, од врсте сензора аквизиционог уређаја, комуникационог софтвера срећу се различити формати, те их треба филтрирати и издвојити као чисте податке у Базу. у самој Бази, формати нодатака треба да су исти као формати који се користе у моделу који не их преузимати.
Даљи поступак у фази припреме података за иримену хидролошког прогностичког модела редставља провера комплетности неопходних података и њихова попуна:

Последња фаза је обрада података кроз модел и дисеминација резултата на предвиђен начин Заводски LAN, централни сервер...)

Дизајнирање и развој Заводске информатичке
инфраструктуре
Ослањајући се на реализоване, постојеће секторске информационе системе, а водећи рачуна о развоју технологије и новим

области перманентно је у фокусу пажње заводских стручњака:

- real - time пренос података
- декодирање/кодирање
- нови протоколи за пренос података и стандарди формата података
интеграција система (у постојећ окружење)
корисничке станице (хардверске перформансе и оперативни систем)

Из тога је проистекла и тренутна конщепција Информационог система РХМЗ.

Најважнија компонента информационог система у оквиру Завода јесте централни рачунар SAN, који је преко Ethernet мреже везан са свим рачунарима оперативних служби Завода. Чак се предвиђа да се GMS у Србији
 клијенти Тиме би се практично сви

прикушљени подаци у овим станищама истога метеоролошких података Иначе се сав тренутка нашли на дохват руке свакога ко је Хидрометеоролошки информациони систем прикључен у мрежу. У овој шеми пажња се фокусира само на подсистеме метеоролошке дрипреме и обраде података као и систе хищролошке прогнозе, као корисника Хидрометеоролошки информациони сист
везуе за приказану информатичку кичму.

Закључак

У свим случајевима када не постоји техничко станице, али ће се и у стратегији постављања технолошка могућност примене пуне детерминисаности, прибегава се статистичким методама, а ако се није у стању ни да за ове алгоритми, у предвиђању наступајућих догађаја може помоћи емпиријско искуство. Радарска слика облачности може искусном прогностичару да у многоме употпуни недостајуће информације и омогући предвиђање наступајућих појава. Стога је важно поставити монитор и проследити слику расподеле облачности и у одељење хидролошких прогноза, не заборављајући да хидролошки прогностичари треба да базирају своје обраде на финалним нумеричким резултатима метеоролошке прогнозе.
Овде треба поновити да ће информациони систем бити развијан и дограђиван према важности параметара и изнад свега оперативности, који укључује и емшрију у могнозирању, не одустајући од тежне ка мроксиално максиматној егзактности

Такође не значи да ће у најскорије време бити на свим сливовима постављене аутоматске аквизиционе хидролошке и метеоролошке

Литература:

- Др. Ђуро Радиновић, Мр Александар Костић: "Радарско мерење падавина у Србији" - студиј Београд 1997
- James Martin: "An End User's Guide to Data Base" Prentice Hall 1985
- М. Кукрика: "Методологија пројектовања информационих система " Београд 1995
- "GIS - стање и перспектнве" Зборник радова Првог југословенског скупа о GIS технологијама Београд 1415 март 1996
Самир Ћатовић: Примена SSARR моде-ла за прогнозу отицаја са слива реке Колубаре
- Интерна документа РХМ Завода Србије

АУТОМАТСКА МЕРНА СТАНИЦА ЗА ПРАТЕЊЕ МЕТЕОРОЛОШКИХ И ЕКОЛОШКИХ ПАРАМЕТАРА У РЕАЛНОМ BPEMEHY

Виша Тасиһ, Новича Милошевиһ, Драг̈ан Миливојевиһ, Милан Радојковиһ Мисиииийуй за бакар हор

Abstract

This paper describes characteristics, way of realization and application in practice of own computer system for real time automatic data acquisition, processing and analysis of meteorological and ecological parame ters in urban area.

```
Абсичракии
```

Развијни рачунарски сисйем ойиие намене намао је йрилену у нонииорингу мейеоролоиких и еколоиких йарамейара у урбаној средини,

УВОД

У Институту за бакар (Завод за хемијску и техничку контролу) постоји вишегодишње искуство у праћењу аерозагађења и анализи земљишта и отпадних вода. У циљу аутомати зације узорковања, обраде и меморисања ре ултата о стању животне средине у одељењу з Индустријску информатику реализован је рачунарски систем који се састоји од микрорачунарских уређаја УМС89А (мерних станица) и персоналног рачунара. Комуникације између рачунара у систему базиране су на БСП протоколу [1] за синхрони пренос. Ре ализовани систем налази се у оперативном раду у Бору неколико месеци.

XAPДBEP CUCTEMA

Хардверску компоненту система чине:

1.Мерни претварачи и сензори који мете оролошке параметре (температура, атмосфер ски притисак, влажност, осветљеност, брзина и правац ветра) и еколошке параметре (еквиватентна доза зрачења, бука) претварају у одговарајуће електричне сигнале. Мерни претварачи који се у овом случају користе набављени су од фирме Conrad и углавном носедууу напонске излазне сигнале из опсега о -2.5V
2. Микрорачунарски систем УМС89А (мерна станица) је модуларни рачунарски уређај при лагођен за прихватање улазних величина са мерних претварача и сензора базиран на ос мобитној фамилији М6800 са следећим карактеристикама:

- 8-битни процесор М6800
- 64 КБ меморијског простора
- 8-битни А/Д конвертор
- 64 аналогна диференцијална улазна канала (струјни или напонски)
- 64 дигитална улаза
- модем за синхрони пренос у основном опсегу

3. Персонални рачунар са додатком комуникационог интерфејса за прихват података са модема за синхрони пренос

На слици 1. приказана је конфигурација рачунарског система примењеног у Бору.

COФTBEPCKA KOMIIOHEHTA

Софтвер система сачињава низ модула груписаних према хардверским целинама:

На мерној станици постоје модули за самотестирање и дијагностику, мерно контролни

модул и комуникацијски модул. Сви ови модули писани су у асемблеру за М6800 и уписани су у ЕПРОМ .

Сл.1. Конфигурација рачунарског система

На персоналном рачунару реализовани су програмски модули писани у Турбо Паскалу којима се постиже:

- управљање радом мерне станице
- прихватање података са мерне станице, управљање комуникацијама као и провера исправности трансфера.
- обрада пристиглих података са мерне станице и њихов приказ на екрану
- меморисање података у датотеке или базу података на хард диску
- приказ мерења из претходног периода на захтев
- формирање извештаја на нивоу дана или на месечном нивоу према одговарајућем захтеву

НАЧИН ФУНКЦИОНИСАЬА СИСТЕМА

Излази мерних претварача прикључени су на улазне канале мерне станице.Станица је тако мрограмирана да врши узорковање свих параметара сваке секунде. Електрични сигнали се путем А/Д конверзије преводе у еквивалентну бројну вредност. у процесу мерења врши се логичка контрола у односу на засићење или на нерегуларне вредности.
Свакога минута мерна станица шаље према персоналном рачунару средње вредности параметара измерене у предходном минуту. У случају прекида комуникација између мерне станице и персоналног рачунара, мерна Након поновног успоставьана комуникачија Након поновног успостављања комуникација упамћени подаци се преносе са временом нас анка као заостале поруке до персоналн рачунара

Сл.2. Изглед једиог од радних екрана у МС ДОС ощружењу

Подаци пристигли са мерие станице у комуни кациони интерфејс персоналног рачунар реузимају се програмским испитивањем ње овог статуса. Из комундкационог интерфејса иреузети подаци смештају се у PAM мемориуу. Персонални рачущар је место интеракције човека са надгледаном појавом и ради у неко лико режима:

- презентира ажурну слику вредности свих мерених параметара у бројном графичком облику у реалном времену
- формира датотеке и базу резултата мерења и смешта их на диск
- подржава везу са другим рачунаром и обезбеђује пренос одатака за креирање дефинисаних извештаја
- информише о стању система (дијагностика стања) о омогућује управљање њиме (тестирање, корекција времена и сл.)
Програм аутоматски формира одговарајуће дневне и месечне извештаје.
На слици 3. приказаи је пзглед дела једног дневног извештаја. Сви подаци доступни су за даље анализе у неком од стандардних програма за табеларне прорачуие

BARJIVYIIR

На основу вишемесечног упоређивања и анализе резултата мереъа аутоматске мерне станице и мерења класкчне инструментације дошло се до закључка да су добхјени резултати задовољавајуке тачности

Основне предности реализованог система у односу на досадашве методе огледају се у следећем:

- врши се правовремено мерење
- елиминишу се субјективне грешке очитавања и саопштавања резултата
- врши се ефикасна контрола мерених величина у односу на задате границе, што омогућује упозорења и алармирање
- резултати мерења су расположиви за анализе и обраде помоћу моћних програмских алата
- омогућено је лако чување и размена података и сл.
Овакав рачунарски систем је веома погодан за примену у ширем градском подручју ако се има у виду да се лако може проширити додавањем нових мерних места (мерних станица).

Сл.3. Изглед дела дневног извештаја

Треба напоменути да је систем отворен за стандардно комуникацијско повезивање са неким другим (надређеним) системом.

JUTEPATYPA

Д.Миливојевић, М.Радојковић, Г.Јојић-Благојевић,С.Лаловић,Рачунарске мреже на бази БСП комуникацијског подсистема', ЈУИНФО'95, књига 2. страна 228-231, Брезовица 04-7. Април 1995.
Д.Миливојевић, М.Радојковић, Г.Јојић-Благојевић, С. Лаловић, Ђ. Шимон, В.Тасић, Д.Миловановић "Контрола загађености радне и животне средине применом сопственог система за рад у реалном времену" Зборник радова са међународне конференције Превентивни инжењеринг и животна средина, (поглавље Д16-1 до Д16-3), Ниш , новембра 1995.

АУТОМАТИЗАЩИЈА РАДА РАДАРСКОГ ЦЕНТРА ОДБРАНЕ

 ОД ГРАДА У СРБННИЗоран Вучинић, дийльмейо. и Јбубомии Маринковић, дийл.мейи, Рейублички хидромейиеоролоикии завод Србије, Кнеза Вииеслава 6б, 11030 Беоирад, Jугосаивuја

Abstract

The solutions applied in project : "Operational Automatization of a Hail Suppression Radar Center" performed in cooperation with the Faculyy of Electronic Engineering from Nis are presented in this paper. Future development activities within this project are also given.

Абсииракиии

У раду су иирезенииована реиеъа која се иирименују у ииројекийу "Ауйомайизачија радар радарской ценийра одбране од зрада" који се ради у сарадни са Елекйронским факулйеииом из Нииа. Такође је дай и будући разеој ювоййројеийа.

Досадашњи начин рада у оперативном спровођењу дејства на градоносне облаке достигао је свој максимум, како у брзини рада тако и у квалитету. Тако, да је даље напредовање у повећању ефикасности одбране од града, могуће само увођењем у оперативни ра нових технологија, које би омогућиле много брже и прецизније реаговање у дејству на гра доносне облаке.

Имајући све ово у виду, Републички хидрометеоролошки завод Србије је склопио 19.01.1995. године уговор са Електонским фа култетом из Ниша за израду "Идејног пројекта система за аутомамизацлу радарског центра заштите од града . Резултат заједничког рада је дефинисање пројектних захтева за систем аутоматизације радара MITSUBISHI RC-34A Пројектни захтев је тако дефинисан да систем аутоматизације радара MITSUBISHI RC-34A мора да омогући следеће функције:

1.Рад у реалном времену;

2.Могућност избора мерног опсега, који је уса глашен са мерним опсезима радара MITSUBI SHI RC-34A ($25,50,100$ и 250 km)
3.Код претварања аналогног у дигитални сигнал, треба да се користи логаритамски сигнал радара. Интезитет рефлексивности треба да је изражен у dBZ-има, и при том је потребно узети у обзир техничке карактеристике сваког појединачног радара;
4.Могућност регистровања интезитета рефлексивности од 0 до 90 dBZ са кораком од 1 dBZ;
5.Потребно је да се обухвате следеће корекције ситнала :

услед закривљености земљине површине,
услед атенуација у атмосфери;
6.Величина пиксела треба да буде прилагођена резолуцијии екрана 1024×1024 у свим мерним опсезима;
7.Аутоматско радарско сканирање мора да могући приказ слика
RHI,
CAPPI ;
-секторски PPI;
секторски RHI ;
-секторски CAPPI ;
8.Вертикална оса при RHI пресеку као и при казу запремине и вертикалног пресека радар ског одраза добијених из секторског пре траживања треба да буде од 0 до 20 km ;
.Код приказа слике на екрану користиће се 256 нијанси боја;
10. Снимање и филтрирање сталних одраза;
11.Меморисање свих података (слика и нумеричких података) уз памћење датума и времена очитавања;
12.Максималну отвореност софтвера, како би руководилац дејства одбране од града могао већину параметара сам да поставља у зависности од атмосферских услова.
у току саме израде идејног пројекта, пројек тни задатак је проширен, тако да аутоматизација обухвата све послове на радарском цен ру а не само сам радар.

Резултат целокупног рада је "Идејни пројекат система за аутоматизацрју радарског центра опбране од града" На основу овог идејног дројекта урађен је "Пројекат система за аутоматизапију радарског центра опбране од грана" у коме су детаљно разрађени сви за-
 хтеви из идејног пројекта.

У даљем текст, укратко ће бити црестављен аутоматизовани систем радарског центра одбране од града.

Систем за аутоматизацију рада радарског центра одбране од града дигитализује логаритам ски канал радара MITSUBISHI RC-34A и

обрађује их на погодан начин да би се на графичким дисплејима добили метеоролошки продукти за одвијање дејства одбране од града са циљем повећања ефикасности одбране од града и економичнијег коришћења противградних ракета. Аутоматски систем ради у синхронизацији са радаром и у реалном времену. Систем за аутоматизацију рада радарског центра заштите од града се састоји од неколико подсистема (слика 1)
-Радарски сигнал процесор ;
-Дигитални сигнал процесор ;
-Подсистем за израчунавање координата ;
-Интерфејси за везу са подсистемом за приказиване метеоролошких продуката,
-Подсистемом за управљьање радаром и антеном и микроталасним линком ;
-Подсистем за управљање радаром и антеном по азимуту и елевацији ;
-Микроталасни линк ;
-Подсистем за приказ меторолошких продуката ;

Радар сагнал процесор конвертује видео сигнале логаритамског канала радара у дигитални облик, интегрише их по даљини и азимуту, трансформише рефлексивност облака у облик применљив у метеорологији (BZ), врши комерише синхронизационе импулсе са рад система и омогућава пролаз сигналима за управљање радаром и антеном .

Слика 1 Приказ система за аутоматизацију радарског центара одбране од града

Дигиталнн снгнал процесор има три функције форматира блок података који се затим ссимира ниво нума и генерише офсет сигнал оои елемишшше негов утица на систем учествује у контроли кретања антене.

Подснстем за пзрачунавање ноордннатв конветрује координате поларног коодинатног система, у коме радар ради, у декартов коорди натни систем, погодан за приказивање метеоролошких продуката. Координате положаја радара су узете у обзир приликом трансфор мације.

сорем за управваве радаром пице и,

 декодира захтеве главне радне станице и, н уснову тога, ствара упављачке сипнале антеном. Начини управљања антеном који омогућавају добијање свих метеоролошких продуката су: кружно са константном селектованом брзином на фиксној еле вацији - PPI, сканирање по елевацији са константном селектованом брзином на фиксном азимуту - RHI, секторско сакнирање по азимуту и елевацији и комбиновано секторск сканирање.Мнтерифенс ся минроталасним линком обезбеђује предају и пријем слике суседних радарских центар. Систем омогућава и слање радарске слике у центар заштите од града у Београду.
Подстстемт зя пррназ метеоролошкнх продукатасе састоји од три или више радних станица које су повезане у локалну (LAN) мрежу радарског центра (слика 2). Главна радна станица раравља целокупним системом и налази се на града. Помоћне радне станице (две или више) намењене су за радна места планшетисте, координацрју рада са центром одбране од града у Београда и издавању стрелцима команди за дејство.

На свим радним станицама се одвијају неза висни процеси који су у функцији радног места. Осим главне станице, остале могу према потреби, да се конфигуришу у станице различитих намена.

Како је мриказ метеоролошких продуката непосредни циљ целокупног овог пројекта, њега ћемо мало детаљније описати.

Слика. 2 Локална (LAN) мрежа радарског центра
Видео сигнал радара, после одређених транс- рефлексивности (количини падавина), Доплеформација у радарском сигнал процесору, ровој фреквенпији (када се изврши Доплери-
 поруке на улазу у подситем за приказивање спектра и координатама X, Y и Z . метеоролошких продуката носи инфомацију о:

Графички приказ треба да омогукии јепноставну преставу метеоролошких продуката са додатним подацима неопходним у прощесу дејства на градоносне облаке као штто су: географски елементи (положај протквградния станица, положаји радарских центара и центра аштиге од града у веоград, пража држава, менти (графички рриказ ромене одређенни радарских параметара у времену одриссии азимутни обележивачи, ознаке дресека по азимуту и елевачиіи, ознаке доса задавајућег командног елемента, итд) и табере релевантних нодатака за дејство одбраме оп града (пријављени стрелии који су стремниг од дејство, број и тип расположивия ракета по противградним станицама разено по противградне станице за дејство, елементи гађања за сваку станину, тражени и одобрени квадрати, итд.).

Основни метеоролошки продукти су:
-PPI;
-Хоризионтални пресеции или САРРI ;

Слика 3 Изглед планшете у чеоном моделу

Вертикални щресеци ;

Exo вpx ;
Процесирање мапе клатера (сталних одраза).
Изведени - секундарни продукти су

- Аутоматска анализа селектоване ћелије облака:

Аутоматско прайее селектоване ћелије облака :
-Тродимвензионална представа селектоване белије облака;

- Аутоматско праћење максимума рефлексивности ии стварање сигнала упозорења на појаву максимума изнад одређене вредности (коју задаје руководилац радарског центра) у CAPPI жачину рада

Слика 5 RHI пресек

Слива бр. 6 Ихфформадии о дејству

Слика 7 Планшета за дејство са реаннии радарским одразом

На основу овог пројета урађен је лабораторијки модел који је поред захтева дефинисаних у идејном пројекту имао и проширење у смислу укњучивања у систем аутоматизације рада на радарском центру и процесе: радарског мерења и осматања, процене развоја облачности, детаљног мерење радарских параметара, доношење одлуке за дејство, припреме дејства, само дејство, крај дејства,

תИТТРРТТРА

Ei Bull HN, 1994: Idejni projekt informacionog sistema odbrane od grada-knjiga 1, Beograd, 158 str. Ei Bull HN, 1994: Idejni projekt informacionog sistema odbrane od grada-knjiga 2, Beograd, 92 str.; Elektronski Fakultet, 1995: Idejni projekt sistema za automatizaciju radarskog centra odbrane od grada Niš, 133 str.
Elektronski Fakultet, 1996: Projekt sistema za automatizaciju radarskog centra odbrane od grada, Niš, 160 str.;
Kostić A. et al.,1997: An Approach to Wether Radar Signal Processing by DSP for PC, $3^{\text {th }}$ Internationa Conference TELSIKS' 97 , Nis̆ 645 str.;
Kostić A. et al.,1997: Wether Radar Signal and Data Processing in Hail Suppression System, Facta Univ No 2, Niš 325 str.;
Rančić D. et al, 1996: Hail Suppression Information System or Radar Center, Proceedings of the GIS/LIS '95-96 Central Europe conference,Budapest,Hungary,102-111;
Rančić D. et al, 1996: Visualization of Radar Data in Hail Suppression Information System, $3^{\text {th }}$ Interna tional Conference TELSIKS'97, Niš 433-436.;
Rančic D. et al, 1996: Rančić D. et al, 1996: Spatial Component of Hail Suppression Information System , ETRAN96,Budva,(in Serbian)

ема која се односе на непосредан рад радар ског центра
Іо завршетку лабораторијког модела присту пило се изради чеоног модела (слике бр.3.,4.5 6. и 7.). Тренутно је чеони модел у фази тести рања и његова оперативна употреба се очекује у току 1999. године

СТАТИСТИЧКА АНАЛИЗА ОДНОСА РЕЛАТИВНОГ ОСУНЧАВА円А И СРЕДЊЕ КОЛИЧИНЕ ОБЛАЧНОСТИ

Биљана Сйавриһ
Рейублички хидромейеоролоћки завод Србије, Кнеза Вишеслава 66
11030 Беойрад, Југ̈ославија

Meteorology as an applied science deals with studying complex and reciprocal relations between physical variables and phenomena in the atmosphere. Insolation is a very important climatic element and represents the basis for Solar radiation examining. There is evident decreasing tendency of relative insolation, based on the available data time series obtained from measurements on the territory of Serbia, study of which represents a task for further discussions on climatic changes on Earth. Very high correlation coefficient between cloudiness and insolation is determined by applying Earth. Very high correlation coefficient between cloudiness and insolation is determined by applying
statistical methods for linear correlation, which represents a significant factor in analysing and statistical methods for linear correlate
checking of meteorological elements.

Абсӣракй

Меииеоролоӣија као йримењена наука бави се изучавањем сложених односа и узајамних веза између меииеоролошких величина и йојава у аиимосфери. Дужина йрајања сијана Сунца веома је важан елеменӣ климе и йредсйавла основ за изучавање Сунчеве радијације. На основу йосӣојећег̄ низа йодайака на йиериӣорији Србије, евиденйиан је ирренд смањења релаиивне осунчаносиии, чије ииумачење иредсиавла задайак за дале изучаваъе климайских йромена на Земљи. Применом сииайисииичке мейоде линеарне корелације измебу йојава облачносйии и осунчаносйи, уиивврен је веома висок сииейен зависносииии између њих, ийо иредсйавльа бийин факиыор у анализи и конйроли мейеоролошких елеменайиа

Увод

у статистичкој обради метеоролошких података бројна вредност може бити резултат мерења, и тада је установљена помоћу мерног инструмента, или осматрања, када се добија визуелном проценом. Док нам инструмент даје тачан податак у тренутку мерења са великом прецизношћу, визуелна оцена не може бити тако детаљна и тачна, али је чест рпрезентативнија јер може покрити већ одручје у атмосфери Појава облачности сматра се на свим климатоношжии станицама, док се стално регистовани осунчавања врши на ре ретиво мово броју метеоролошких станица. Међутим,

баш пужина сијања Сунца изузетно је важан елемент за многе научне и практичне потребе.

Применом метода корелације можемо одредити узајамну везу између ове две појаве и њен степен математички изразити. Резултат овог испитивања може се директно употребити у критичкој контроли и обради ова два параметра.

Појам и обрада осунчавања

Осунчавање представља дужину трајања сијања Сунца у неком временском периоду и користи се за израчунавање Сунчеве радијације. Дужина сијања Сунца у

одеђеној тачки зависи од географске неком дану (време од изласка до заласка) ширине и доба године. Из тог разлога, када би Земља била без рељефа и када би осим стварног (регистрованог) сијања било сасвим ведро (без облака)
Сунца, у статистичкој обради користи се појам потенцијалног (могућег) сијања Сунца за одређено место, које представља укупно могуће трајање сијања Сунца у

у климатологији је битан појам средњ месечне и средње годишње суме часова сијања Сунца за дужи временски перио (Табела1)

Табела 1. Средње месечне и годишње суме часова сијања сунца у периоду 1951.-1997.

Месец	1	II	III	IV	V	VI	VII	VIII	IX		XI	XII	година
Београд	9	94,1	146,9	187,1	231,9	261,	297,	278,6	217	165,7	88,6	63,7	105
Лозница	62,7	0,1	138,	170,5	222,1	238,7	286,9	261,3	198,	146,5	79,9	54,1	9, 3
III	62,6	92,5	142,6	169,4	220,7	241,1	277,2	269,9	207	15	85,2	47.5	1970, 9
Сомбор	63,8	92,0	146,6	179,1	228,8	247,5	283,4	261	201	155	78,3	54,5	1987,
В. Градиште	66,7	94,2	3,5	74	222,8	241,8	284,4	265,1	214,4	161,2	85,0	60,6	2030
Златибор	82	10	138,7	15	199,6	218,	265,7	247	199, 7	162,8		74,	1956, 6

Из ове табеле се види да стварно облачности, као и других појава од којих регистрована дужина сијања Сунца не зависи дужина трајања сијања Сунца. зависи само од географске нирине посматраног места, већ и од низа других меса, веһ и од низа других Осим стварног трајања сијања Сунца, у окружење насељености, квалитет ваздуха релативно трајање сијања Сунца, тј (загађеност) и многи други. Сви ови релативна ведрина неба у процентима фактори утичу на количину и врсту (Табела 2).

Табела 2. Релативно средње месечно и годишње сијање сунца у процентима (\%)

Месец	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	година
Београд	26,1	32,9	40,4	46,9	51,1	56,7	63,7	64,6	58,2	49,2	31,3	23,7	45,4
Лозница	22,3	31,4	38,0	42,8	49,1	52,0	61,7	60,7	53,2	43,5	28,2	20,0	41,9
Ниш	21,9	32,0	39,2	42,8	49,3	53,2	60,3	63,2	55,8	45,6	29,6	17,2	42,5
Сомбор	23,1	32,4	40,4	44,7	501	53,3	60,3	60,3	53,8	46,4	27,9	20,6	42,8
В. Градиште	23,9	33,0	42,2	43,6	49,1	52,5	60,9	61,5	57,5	47,9	30,0	22,6	43,7
Златибор	29,1	35,2	38,1	40,0	44,3	47,9	57,4	57,6	53,7	48,2	37,3	27,2	43,0

У Табели 2. приказано је релативно сијање вредност у разматраном случају , до Сунца датих станица за средње вредности $45,4 \%$ у Београду .Ове разлике су потврда месечних и годишњих сума у периоду од локалног утицаја. 1951. - 1997. године. Из ових података видимо да су вредности средњег годишњег релативног трајања сијања Сунца од 41.9% у Јозници, што представља најмању

За Београд је посебно разматрано релативно осунчавање у периоду од 1925. 1997. године (Табела 3.)

Табела 3. Релативно осунчавање за Београд за период 1925.-1997.

Београд	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Ср.вред.
1923-64	24,2	32,6	40,6	47,9	51,6	58,7	65,5	66,0	62,7	49,3	29,9	23,6	46,0
цео период	26,1	32,9	40,4	46,9	51,1	56,7	6,7	64,6	58,2	49,2	31,3	23,7	45,4
$1965-97$	26,2	3,3	40,8	44,4	50,3	53,8	60,4	60,9	54,9	49,4	31,8	23,8	44,2

Евидентно је да је у периоду од 1965. - 1997. његова вредност 46.0% од могућег сијања релативно трајање сијања Сунца мање и Сунца, узето за целу годину. То смањење је износи 44.2%, док је у периоду 1925. - 1964.
посебно изражено у летьим месецима

a) Београд

б)Златибор

Слика 1. Средња месечна релативна осупчаност и облачност у наведеним периодима
С обзиром да је Београд специфична (урбана) средина са сталним променама природног окружења, добијени резултати за релативну осунчаност у наведеним периодима указали су на потребу за анализом релативне осунчаности по одређеним периодима за остале одабране
a) Сомбор

Слика 2. Средња месечна релативна осунчаност и облачност у наведеним периодима
Јасно се види да је код посматраних станица (са изузетком Златибора) дошло до смањења релативног трајања сијања Сунца. Промена релативне осунчаности није правилно распоређена по месецима. Највеће негативне промене релативне

станице. Резултати су графички представљени на Сл. 1. и 2.
Слика 1. показује вредности релативног осунчавања за два временска периода која могу грубо да се представе као период са мањом и већом урбанизацијом.
б) Ниш

осунчаности у односу на претходни период су у летњим месецима, а позитивне промене су ређе и везане су за зимске месеце, а њихов интензитет зависи од посматране станице

Смањење релативног сијања Сунца у односу на потенцијалне вредности врло је битна за даље изучавање климатских промена на Земљи. Дужина сијања Сунца као један од битних метеороложких елемената, повезана је са Сунчевим зрачењем, а за последицу има промену температуре ваздуха и низа других најважнијих елемената климе

У циљу доласка до објашњења појаве уочене на Сл. 1. (пораста осунчавања у зимском периоду и смањења у летњем у носледњих 22 године у односу на претходно расположив период) посматрана је промена средње месечне облачности за исте временске периоде. Резултати су графички представљени на Сл. 2.

Анализом Сл. 1. и 2. уочава се велики степен подударности између ових графика. Зимски месеци почев од новембра у Београду, или нешто касније у мање урбаним срединама (јануар), праћени су смањењем облачности у последњих 20 година. Средње облачности у летњим месецима су скоро идентичне.

Полазени од ових опажања можемо закључити да је смањење облачности један од фактора који је одговоран за повећање

зрачења у зимским месецима. Величина овог утицаја може се само наслутити због разноврсности осталих фактора, али с обзиром да имамо тренд смањења зрачења у летњим месецима када се облачност скоро не мења, може се претпоставити да је ово један од кључних фактора.

Наведени резултати изведени су из 6 разматраних станица, а репрезентативни 6 разматраних станица, а репрезентативни графици представљени су на Сл. 1.и 2.

Појам и обрада облачности

Облачност

представља
степен покривености неба облацима и директно е повезана са осунчавањем. Када је небо ведро (без облака) осунчавање је веће, а самим тим и израчивање са Земљине овршине, па су већа дневна колебања температуре. Што је облачност већа, мање је осунчавање, као и израчивање са Земљине површине, па је дневно колебање температуре смањено.

у статистичкој обради за потребе климатологије најчешће се користе нјмови средње месечне и средње годишње блачности (у десетинама), што је за

 одабране станице приказано у Табели 4.Табела 4. Средње месечне и годишње количине облачности за период 1965.-97.

Месеци	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Ср.вред.
Ниї	7,1	6,6	6,2	6,2	5,8	5,2	4,0	3,7	4,3	5,2	6,5	7,4	5,7
Златибор	6,7	6,5	6,2	6,3	6,0	5,7	4,7	4,6	4,8	5,3	6,2	6,6	5,8
Лозница	7,1	6,6	6,1	6,1	5,7	5,4	4,2	4,1	4,7	5,3	6,8	7,3	5,8
В.Градишште	7,2	6,7	6,0	6,1	5,7	5,4	4,3	4,1	4,4	5,1	6,7	7,4	5,7
Београд	6,9	6,5	5,9	5,7	5,5	4,9	3,9	3,6	4,1	4,8	6,6	7,2	5,5
Сомбор	7,0	6,5	5,9	5,9	5,7	5,4	4,3	4,1	4,5	4,9	6,7	7,3	5,7

Појам корелације

Метеорологија као наука која се бави изучавањем сложених односа и узајамних веза између физичких величина и појава, по својој природи има потребу да установи узрок и дејство тих веза. Зависност између природних појава веома је сложена јер у

непосредној вези нису само две појаве, већ више њих које се преплићу. Многи проблеми чија су објашњења и решења задатак метеорологије, захтевају примену оних статистичких метода које могу да установе да ли постоји нека зависност измеуу метеоролошких елемената и појава, и ако постоји да утврди облик смер и јачину те узајамне везе

Методом корелације испитује се колико има основаности да се претпостави веза између два или више низова осматрања, тј. између две или више променљивих, и како се степен те узајамне везе може изразити математички.

Корелација има посебну примену у метеорологији зато што истражује везу (зависност) међу метеоролошким појавама.

Веза између појава постоји ако пораст вредности података једне појаве прати пораст вредности података друге појаве и обрнуто. То је директна корелација (смер везе између појава је позитиван). Такође веза постоји и ако пораст једне појаве прати пад друге појаве и обрнуто. То је инверзна корелација (смер зависности је негативан). Без обзира на смер везе, на основу метеоролошких процеса у атмосфери, може се очекивати зависност међу наведеним појавама. У коликој мери је та зависност изражена, односно ког је интензитета, може да се одреди помоћу коефицијента корелације (r).

Зависност међу метсоролошким појавама мора увек имати физичко тумачење, јер статистички потврђена веза може бити случајна подударност. Потребно је да се утврђена веза међу појавама анализира и утврди која је од две појаве узрок, а која последица. Осим смера везе (зависности) и интензитета те зависности, потребно је одредити и њен облик.

Линеарна корелација је зависност при којој је промена једне појаве стално праћена приближно једнаким променама друге појаве. Да бисмо испитали зависност две метеоролошке појаве, приказаћемо њихове бројне вредности на графикону, где се вредности појаве x уносе на апсцису координатног система, а вредности појаве y на ординату. Наношењем парова тачака добија се дијаграм расипања. Да би се дошло до реалније везе између посматраних појава, потребно је имати што више тачака на графикону, односно да дужина низа мерења или осматрања тих појава буде што већа.

Циљ овог рада је испитивање корелације између средње месечне облачности (у десетинама), која се као независно променљива наноси на x осу и релативног трајања сијања Сунца (у процентима), која се као зависно променљива наноси на y осу. У координатном систему имамо онолико тачака колико има парова вредности ових појава, тј. број година у посматраном периоду, за одређени месец у години. На примеру приказаном на Слици 3. узете су средње месечне вредности за јануар у периоду од 1925.-97.

На овом примеру се види да је корелација између ове две појаве линеарно инверзна односно по смеру негативна и јаког интензитета. Распоред тачака по облику је дугуљаст и узан.

Сликаз. Линија регресије за Београд за месец јануар у периоду 1925.-1997.

Линија регресије је права линија која презентује цео скуп тачака које су унет на дијаграму расипања, тако да збир квадрата одступања од сваке тачке до тог правца, нормално на апсцису, буде минималан.

Правац линије регресије, с обзиром на уочену линеарну зависност између средње месечне облачности и релативног сијања сунца може се одредити линеарном једначином
$y_{c}=a+b x$,

где је y_{c} оцена правца регресије зависно променљиве y. Параметар а представља одсечак на ординати, (вредност функције y_{c} за $x=0$). Параметар б је коефицијент

регресије, односно нагиб који одређује колико се промени зависно променљива y ако се независно променљива x промени за јединицу мере. Ако је коефицијент регресије позитиван корелација одређена том линијом је директна, а ако је коефицијент б негативан корелација је инверзна (што је случај у нашем примеру).

Статистичка метода којом се одређује линија регресије на основу парова тачака унетих у дијаграм расипања назива се метода најмањих квадрата. У основи ов методе је претпоставка да збир одступања података парова вредности од линије регресије трба да буде једнак нули односно да збир квадрата тих одступања буде минималан. Значи

$$
\begin{aligned}
& y_{c}=a+b x \\
& \Sigma\left(y-y_{c}\right)=\Sigma[y-(a+b x)]=0 \\
& \Sigma\left(y-y_{c}\right)^{2}=\Sigma[y-(a+b x)]^{2}=\min
\end{aligned}
$$

Овај статистички метод омогућава нам најбоље прилагођавање правца линије регресије стварним вредностима низова података. За одређени број година имамо исти толики број линеарних једначина

$y_{1}=a+b x_{1}$	$x_{1} y_{1}=a x_{1}+b x_{1}^{2}$
$y_{2}=a+b x_{2}$	$x_{2} y_{2}=a x_{2}+b x_{2}^{2}$
$-\cdots$	$-\cdots+b x_{n}$
$y_{n}=a y_{n}=a x_{n}+b x_{n}^{2}$	
$\sum y=N a+b \sum x$	$\sum x y=a \sum x+b \sum x^{2}$

у складу са наведеним системом једначина, преко суме низова година добијамо две нормалне једначине

$$
\begin{align*}
& \Sigma y=N a+b \Sigma x \\
& \Sigma x y=a \Sigma x+b \Sigma x^{2} \tag{II}
\end{align*}
$$

где је N број година у посматраном периоду.

Решавањем система ове две нормалне једначине са две непознате добијају се елементи регресије
$a=\frac{\sum y-b \sum x}{N} \quad$ и $\quad b=\frac{N \sum x y-\left(\sum x\right)\left(\sum y\right)}{N\left(\sum x\right)^{2}-\left(\sum x\right)^{2}}$
Израчунавањем параметара a и b одредили смо линеарну везу $y_{c}=a+b x$

Сада ћемо одредити параметре а и σ за Београд, на основу података средњих месечних вредности за јануар за период 1925. - 1997, јер је то довољно дуг низ за парове података које тестирамо.

Заменом стварних вредности средње месечне .облачности , и релативног трајања сијања Сунца за јануар, тј. одговарајућих сума вредности, добија се

$$
\begin{aligned}
& a=80.29 \\
& b=-7.86
\end{aligned}
$$

Заменом израчунатих вредности параметара, једначина регресије $y_{c}=a+b x$ у конкретном случају добија облик $\quad y_{c}=80.29-7.86 * x$

На основу ове једначине могуће је за било које вредности средње месечне облачности, као независно променљиве, одредити вредности релативног сијања Сунца за тај месец, као зависно променљиве величине.

На пример, за средњу месечну облачност $2,4,6,8$, у јануару, добијамо да је релативно сијање Сунца израчунато помоһу једначине регресије:

$$
\begin{aligned}
& y_{\mathrm{c}}(2)=64.57 \\
& \mathrm{y}_{\mathrm{c}}(4)=48.85 \\
& \mathrm{y}_{\mathrm{c}}(6)=33.13 \\
& \mathrm{y}_{\mathrm{c}}(8)=17.41
\end{aligned}
$$

Свакако да овако оцењене вредности података носе у себи одређену грешку у односу на стварне вредности. На дијаграму расипања парова вредности података уочавамо да постоји вертикална девијација тачака у односу на линију

регресије. Зато морамо имати у виду Што је израчуната вредност ове грешке колика је тачност интерполисаног податка, добијеног на основу корелације између облачности и осунчаности. Меру за просечну грешку у оцени даје нам стандардна грешка оцене (σ_{c}), која је дефинисана као квадратни корен из просечног квадрата одступања стварних података (зависно променљиве y) од линије регресије y_{c}.

$$
\sigma_{c}=\sqrt{\frac{\sum\left(y-y_{c}\right)^{2}}{N}}
$$

Што је израчуната вредност ове грешке
мања, оцена зависно променљиве помоћу правца регресије је прецизнија. На основу података за Београд, израчунато је за средње годишње вредности $\sigma_{c}=3.38$, што представља малу грешку у оцени.

Коефицијент корелације

Коефицијент корелације r представља меру за степен линеарне корелације између случајно променњивих x и y. Ако су случајно променњиве статистички

Слика 4. Графички приказ линије регресије и коефицијента корелације за Београд, Ниш, В. Градиште, Лозницу, Сомбор и Златибор

независне, коефицијент корелације једнак је нули. Кад су променњиве x и y линеарно функционално зависне, $|r|=1$. Код линеарне стохастичке зависности

коефицијент корелације је мањи од један а што је веза између променљивих слабија он је ближи нули. Позитиван предзнак коефицијента корелације одговара директној сразмери величина x и y, а

негативан значи обрнуту сразмеру идеална, тј да постоји висок степен променњивих. Сматра се да је корелација завиности између њих. За Београд идеална ако је $0.9<|r|<1.0$.

На Сл. 4. приказана је линија регресије добијена на основу средњих месечних вредности облачности и релативне осунчаности за назначене периоде који зависе од дужине низа вредности података за одређену станицу. На основу средњих годишњих вредности израчуната једначина регресије за Београд гласи:

$$
y_{c}=108.3-11.5 * x
$$

где је y_{c} средња релативна осунчаност, а x средња облачност.

На слици 4. приказана је и вредност коефицијента корелације израчуната на основу следеће формуле:

$$
r=\frac{\sum d_{i} x d_{i} y}{\sqrt{\sum d_{i} x^{2} \cdot \sum d_{i} y^{2}}}
$$

где је d_{i} разлика између средње месечне вредности за одређену годину и за цео низ година облачности (x) и релативне осунчаности (y). Из израчунатих вредности видимо да је корелација између облачности и релативне осунчаности

ЛИТЕРАТУРА

Вујевић, П. Климатолшка статистика, Научна књига, Београд, 1956.
Ивановић, Д. Метеоролошка статистика, Хидрометеоролошка техничка школа, Београд, 1976

Макјанић, Б. Основна статистичка обрада података у климатологији, Природословно - математички факултет, Загреб, 1980.

МЕТОДЕ УТВРТИВАНА ХОМОГЕНОСТИ КЛИМАТОЛОЩКИХ ПОДАТАКА М МОГУННОСТИ ПРАКТИЧНЕ ПРИМЕНЕ НА НИЗОВЕ МЕТЕОРОЛОНКИХ ПОДАТАКА НА ТЕРИТОРИНИ СРБИЈЕ

Јасиа Колачек

Рейублички хидромейеоролошки заеод Србије, Киеза Вииеслава $6 б$
11030 ฝеог̈рад, Јуz̈ославија

The meteorological data quality is as much important in meteorology as its values. Knowing the climatolgical data homogenity is of basical importance for data processing in climatology for it is the basis for choosing data to be processed. The meteorological data homogenity can be examined by using more different methods used in meteorology. The methods differ both by approach to the problem of data homogenity and by characteristics of meteorological value which homogenity is to be determined. This paper gathers the application possibilities of the chosen methods on data observed in Serbia.

Абстракт

Квалитет метеоролошких нодатака је у метеорологији псто толико важан колико н саме вредности тих података. Познавање хомогености пнза климатолошких података је од основвог значаја за обраду података у клнматологдіп, јер се на том основу врши нзбор података за обраду. Хомогеност метеоролошких података се може нспитати помоду впше различнтих метода којс се корпсте у метеорологијп. При том се методе разликууу како по приступу проблему хомогености нодатака, тако и по карактеристикама саме метеоролошке величине чија се хомогеност низа одребује. Овај рад разматра могућност примене појединих метода на подацима осмотреним у Србдји.

1. увод

Хомогеност података је основни предуслов за успешно статистичко обрађивање разних низова метеоролонких података. Информације које се желе добити из временског низа метеоролошких елемената за одређено место или подручје јесу опе које указују на промене изазване климатским утицајима. Из тог разлога се тежи уклањању свих осталих утипаја, односно корипћешу података код којих су уочене промене условљене искључиво променама времена и клйме

Нехомогеност података може потицати од разних објективних и субјективних фактора Најчешћи узроци који се сусрећу у пракси су: промена типа инструмента, квар инструмента, промена његове локације, промена локације читаве станице, постепена промена услова мерења (промена изгледа околине, урбанизација и слично), промена метода мерења, ос-

матрача или једноставно промена правила рада и друго. Најчешће није изводљиво утицати на ове узроке, већ самим тим штто је, у већини случајева, узрок нехомогености непознат.

Обзиром да је у статистичкој обради података од изузетне важности дужина посматраног низа, односно величина посматраног узорка, ироблем нехомогености метеоролошких података се јавља већ у првим фазама обраде. У оквиру захтеване дужине временског низа података веома је тешко обезбедити и њихову хомогеност, јер се може с разлогом очекивати да је у том временском периоду сигурно утицао бар један од бројних могућих фактора нехомогености. Посебан отежавајући фактор представља најчешће непостојање поузданих информација о врсти и времену настајања промене, што је обично случај када је реч о

дугачким низовима измерених података. Из тог разлога, неоиходно је испитати хомогеност расположивог низа података на urто је могуће поузданији и ефикаснији начин, јер је тај квалитет основни предуслов употребљивости добијених резултата.

2. опшТИ ПРИНЦИПИ

Поређеше низова два метеоролошка елемепта измерених на пстој станици

Обзиром да је велики број метеоролонких параметара у међусобној реладији, ова хомогености њихових низова, под условом да је референтни низ другог елемента хомоген. Примене неких од тшх реладија заиста могу дати веома добре резултате. Један од таквих примера је поређење трајања сијана сунца са дневном амплитудом температуре и укупном количином облачности. Такође, неке релације се могу ексниицитво изразити и помоћу математичких израза, као што је, на пример, McKenzie-ва формула за везу између миниималне температуре ваздуха и температуре тачке росе измерене претходне вечери.
Међутим, корелације између параметара измерених на истој локацијй су обично недовотне да би се из овакве анализе добили квалиторожоши нодатага се саси, сваки низ меол нешравияних колебана, можда ио ои шери
 чији су узроци довезани са кишатодошииа променама Тада је помону оваквну метода ше могуће раздвоіити климатолошка колебана од оних која су изазвана променама устов мерења.
Зато је, уместо апсолутне хомогености, увек боље испитивати релативиу хомгеност поређењем истог параметра измереног на две или више станица за које се може рећи да одюо варају истом климатском подручју.

Поређење времепских пизова једног метеоролошког елемента измереног на две или вите суседних станица

Као први задатак се јавља проблем избора одговарајућих стапида за овакву анализу. Накоп угогодишшег искуства дошио се до одређених сазнања о томе које предуслове је неопходно задовољити да би се поређењем добили су висли резултати
Као прво, станице би требало да буду не много удаљене једна од друге (ве више од 100 km када е пореди темшература) и да вшхова разлика у надморској висини не буде превелика (до 200 m

за поређење температуре). Станице које се ко ристе у анализи би требало да имају сличну тике сличне као пове климатске карактерис
 (као што су планине, језера, шуме и слично).

Обично се захтева да низови података међу собом буду високо корелисани, мада треба увек ммати у виду да висока корелисаност не води обавезно и до сувислих резултата

Број станица које се носматрају би требало да буде што је могуће већи (што није увек лако изводљиво). Поред тога што већи број анализираних станица даје и већу тежину донетим акључдима, на овај начин са већом урношиу можемо утврдити на којој станиц када је дошшо до нарушавања хомогености така на иако се поређењем измерених пода леминишу суседним станицама успеша међусезонских или међугодишњих колебања на овај начин се не могу открити иромене у хомогености које су настале услед промене ме тода рада која је истовремено уведена у цело мрежи станида. Тада се лако може догодити да се таква нехомогеност ногрешно интерпретира једноставно као колебање климе.
3. ГРАФИЧКИ МЕТОДИ УТВРТИВАњА

ХОМОГЕНОСТИ КЛИМАТОЛОШКИХ НИЗОВА
Величина промене која је условила нехомоге ност је обично много мања од климатолошких колебања која се уочавају када се посматра низ који се мороролоког нараметра. Методи елиминииуу ова колебана и могу се шоделити ирема нахшну рада ша трофиче метоле по тистичке тестове, односно нумеричке методе.

Метод осредњавања разлика
Може се лако показати да два хомогена низа месечних или годишњих вредности једног метеоролошког елемента х и у, на две станице иствх климатолошких карактеристика имају линеарну корелацију па једначина регресије има облик

$$
y=a+b x
$$

Из праксе се зна да се за метеоролошке еле менте као што су темшература, притисак или мравац ветра може сматрати да је $b=1$, па је тако:

док је за параметре као што су осунчавање и количина падавшна прихватљива претпоставка да је $a=0$ ма је:

$$
b=\frac{\bar{y}}{\bar{x}} \quad \frac{1}{n} \sum_{t_{i}}^{t_{2}} f x_{t}=f \bar{x}
$$

Ова чињеница се може искористити за рафичко откривање неправилности у времен ском ходу одређеног параметра. Ако се израчуна разлика или однос између одгоарајућих месечних или годишших вредност ог елемента на две или више станица и пред тави графичким путем на временској оси, докјене вредности би требало да осцилууу око неке константне вредности, а свака промена у том осциловању указује на могућу нехомоге ност. Ради елиминисања ових осцилација чије постојање отежава анализу, прибегава се осредњавању тог низа вредности у одређеним временским интервалима, тј. коришћењу тзв. нокретних средњих вредности. При том је Burroughs (1978) уочио да се приликом осредтати добијају ано се подаи "отерете" ромону тани добијауу ако се подацп опнерете помон
 , ,

$$
\overline{x_{\Delta t}}=\frac{1}{8} x_{t}+\frac{3}{8} x_{t+1}+\frac{3}{8} x_{t+2}+\frac{1}{8} x_{t+3}
$$

Наравно, уколико је време трајања промен хомогености мање од овог интервала метод н даје добре резултате, па се иптервал мор декватно одабрати.

Метод кумулативних сум

Преостале осцилације у добијеном низу азлика вредности одређене метеоролошк еличине се могу елиминисати посматрање кумулативних сума ове величине по времену:

$$
\sum_{t} x_{t}
$$

Ако се овако добијени низ вредности прикаж на временској оси тада се, у идеалном случају добија права линија чији нагиб за $t=N$ износи:

$$
\frac{1}{N} \sum_{l}^{N} x_{t}=\bar{x}
$$

Међутим, ако је у временском интервалу ззмеђу t_{1} и t_{2} дошло до нарушавања хомоге ности за неки константан износ c тада је кое фицијент нагиба ове криве једнак:

$$
\frac{l}{n} \sum_{t_{1}}^{t_{2}}\left(x_{t}+c\right)=\bar{x}+c
$$

односно, ако је у питању пропорционалан однос за константан износ фактора f :

Тако, сваки поремеһај нагиба ове праве указује на неправилност у колебању разлике података односно на њихову нехомогеност. Недостатак овог метода јесте у томе што не може да се утврди који од два низа података није хомоген али се са прилично великом препизпошћу може рећи да ли је и када промена настала
4. НУМЕРИЧКИ МЕТОДИ УТВРЂИВАЊА ХОМОГЕНОСТИ КЛИМАТОЛОІКИХ НИЗОВА
Код свих нумеричких метода је заједничко то да се примењууу разни статистички тестови и критеријуми на временски низ разлика или односа вредности истовремено измерених величина х и у на две станице које се упоређууу.

Spearman-ов ранг тест

Ово је један од метода познат као тест за стационарност низа података и посматра вред ности појединих чланова пиза и њихов положај у посматраном низу. Тако се за сваки члан низа израчунава разлика између његовог ранга и редног броја у низу
$d_{i}=m_{i}-i$
Одатле се одређује величина:
$u=r_{s} \sqrt{\frac{N-2}{1-r_{s}^{2}}}$, где је $r_{s}=1-\frac{6 \sum_{1}^{N} d_{i}^{2}}{N\left(N^{2}-1\right)}$
За ову величину се већ за $N>8$ може рећи да се понаша према Student-овој t-расподели са $N-2$ степена слободе, што даје могућност да се на овај начин потврди или одбаци хипотеза о се на овај начин потврди или одбаци

Метод Maronna \& Yohai

Основна претпоставка овог метода је да сваки од посматраних низова података има нормалну расподелу и да је стационаран. Посматрањем низова умулатих $\left(S_{x}, S_{y}, S_{x y}\right)$ сам варијанси и коваријанси $\left(S_{x}, S_{y}, S_{x y}\right)$ као и изведених величина F_{i}, D_{i}, T_{i}

$$
\begin{gathered}
F_{i}=S_{x}-\left(X_{i}-\bar{X}\right)^{2} n i / n-i, \quad i<n \\
D_{i}=\left[S_{x}\left(\bar{Y}-Y_{i}\right)-S_{x y}\left(\bar{X}-X_{i}\right)\right] n /\left[(n-i) F_{i}\right] \\
T_{i}=\left[i(n-i) D_{i}^{2} F_{i}\right] /\left(S_{x} S_{y}-S_{x y}^{2}\right)
\end{gathered}
$$

долази се до одређених закључака. До промене у средњој вредности низа долази у тренутку који щретходи моменту када величина T_{i}

достиже максимум а процењена величина те промене је једнака D_{i}

Поред ових метода можемо поменути некс сличне методе као urто су Von Neumann-oв тес разлика измефу сукцесивих вредности, Buis hand-ов тест кумулатиних сума као и раније често коришћени Helmert-ови и Abbe-ов критеријуми одступања појединачних вредности разлика (или односа) од њихове средње вредности.
У сваком случају, коришћене већег броја тес това или критеријума повећава квалитет доне сеног закључка.

На крају, неопходно је поменути и то да се на кон утврђивања ностојања нехомогености може утврдити ниво значајности уочене нли непарамета
5. РЕЗУЛТАТИ ИСПИТИВАЊ А

РЕЛАТИВНЕ ХОМОГЕНОСТИ НИЗОВА ПОДАТАКА ЗАСТАНИЦЕ СОМБОР И ЛЕСКОВАЦ

Ради испитивања хомогености низа података за станицу Сомбор коришћени су низови средњих годиишњих и средњих максималних температура за период 1950-1997. година. Као упоредне станице узете су у разматрање станице у Палићу, Кикинди и Римским Шанчевима које се од посматране станице налазе на удаљености мањој од 100 км а разлике надморске висине између њих не прелазе 15 m .
Израчунати коефицијенти корелације са подацима измереним у Сомбору за ове низове

	Палић	Кикинда	Р. ІІанчеви
$\mathrm{T}_{\text {ср }}$	0.98	0.98	0.97
$\mathrm{~T}_{\text {sax }}$	0.96	0.95	0.95

На основу графикона израчунатих и осредњених разлика $T_{\text {ср }}$ и $\mathrm{T}_{\text {мах }}$ за Сомбор и упоредне станице може се уочити неколико промена у колебању од којих је свакако најуочэьивија она која је настала око 1975. Године

Слика 2. Осмотрене и осредњене разлике средњих максималних температура ваздуха за Сомбор и Палић

На Сл. 1. и 2. су представљене разлике посматраних величина између станица у Сомбору и Палићу.

На њима се јасно може уочити промена, да је након тога Сомбор постао хладнији од Палића том периоду порасла, што даје индикацију да су

у том периоду порасле дневне амплитуде тем мературе. Помепута промена се посебно јасно види ако се за исти пар станица израчунају ку мулативне суме разлика $\mathrm{T}_{\text {ср }}$ и $\mathrm{T}_{\text {мах }}$ (Сл.3. и 4.).
Уколико се за дате вредности разлик израчунају параметри неопходни за Spearman ов ранг тест (Табела 1.) као коначан резулта

се добијају вредности $u_{T s r}=-4.01$ и закључак да се за ова два низа не може рећи да $u_{T \text { max }}=5.07$ које за $N-2=45$ степена сло- су релативно хомогени. боде и критичну вредност $\alpha=0.05$ даје

Након идентичних закључака на више различитих начина приступило се испитивању могућих узрока и утврђивању, ако је могуће, тачног тренутка нарушавања хомогености низа. Тако је за станицу Сомбор установљено да је у неколико наврата мењала локацију и то резултатима претходих анализа хомогености низова.

Лесковац

За апализирање хомогености низова података са ове станице су такође коришћене средње годишње и средње максималне температуре ваздуха за период 1965-1997. година. За поређење су употребљене станице Ниш и Куршумлија а израчунати коефицијенти корелације са подацима добијеним за Лесковац износе:

	Ниш	Куршумлија
$\mathrm{T}_{\text {ср }}$	0.94	0.92
$\mathrm{~T}_{\text {мах }}$	0.98	0.95

На исти начин као у претходној анализи се из података добија низ разлика $\mathrm{T}_{\text {ср }}$ и $\mathrm{T}_{\text {мах }}$ за парове станица као и њихове осредњене вредности. Из добијених резултата и њихових графичких приказа се може уочити неколико промена у колебањима ових параметара, од којих је, свакако, најкарактеристичнија она која се догодила крајем 70 -тих година.

Тако, на Сл. 5. и 6. видимо графички приказ разлика $T_{\text {ср }}$ и $\mathrm{T}_{\text {мах }}$ и њихових осредњених вредности за станице

Лесковац и Ниш. Уочавамо пораст разлика средњих годишњих и средњих максималних температура у периоду од око 1980 . године.

Табела 2. Израчунайии йарамейри
за Sреаттап -ов ранй ииесй за сйанице Нии и Лесковаи

	Tsr			Tmax		
	ΔT sr	rang	di	Δ Tmax	rang	di
1965	0.5	4.0	3.0	0.5	25.5	24.5
1966	0.4	1.0	-1.0	0.4	16.0	14.0
1967	0.7	16.0	13.0	0.5	25.5	22.5
1968	0.5	4.0	0.0	0.3	7.5	3.5
1969	0.5	4.0	-1.0	0.1	1.5	-3.5
1970	0.7	16.0	10.0	0.4	16.0	10.0
1971	0.7	16.0	9.0	0.4	16.0	9.0
1972	0.5	4.0	-4.0	0.4	16.0	8.0
1973	0.5	4.0	-5.0	0.5	25.5	16.5
1974	0.6	9.5	-0.5	0.4	16.0	6.0
1975	0.7	16.0	5.0	0.3	7.5	3.5
1976	0.7	16.0	4.0	0.3	7.5	-4.5
1977	0.6	9.5	-3.5	0.1	1.5	-11.5
1978	0.7	16.0	2.0	0.3	7.5	-6.5
1979	0.7	16.0	1.0	0.2	3.5	-11.5
1980	0.6	9.5	-6.5	0.3	7.5	-8
1981	0.6	9.5	-7.5	0.2	3.5	-13.5
1982	0.8	22.0	4.0	0.4	16.0	-2.0
1983	1.1	32.0	13.0	0.8	33.0	14.
1984	0.8	22.0	2.0	0.4	16.0	-4.0
1985	1.0	30.0	9.0	0.4	16.0	-5.0
1986	1.1	32.0	10.0	0.6	30.5	8.5
1987	0.8	22.0	-1.0	0.4	16.0	-7.0
1988	0.9	27.0	3.0	0.5	25.5	1.5
1989	0.9	27.0	2.0	0.5	25.5	0.5
1990	1.1	32.0	6.0	0.6	30.5	4.5
1991	0.6	9.5	-17.5	0.3	7.5	-19.5
1992	0.9	27.0	-1.0	0.5	25.5	2.5
1993	0.9	27.0	-2.0	0.4	16.0	-13.0
1994	0.9	27.0	-3.0	0.5	25.5	4.5
1995	0.8	22.0	-9.0	0.7	32.0	1.0
1996	0.6	9.5	-22.5	0.5	25.5	-6.5
997	0.8	22.0	11.0	0.4	16.0	-17.0
		$u=4.95$			$u=2.2$	

Ако сада, као и у претходној анализи, посма- 8.) уочавамо да постоје две промене нагиба кутрамо кумулативне суме ових разлика (Сл. 7. и мулативних линија и то око 1970. и 1978. године

Слика 7. Кумулативне разлике $\mathrm{T}_{\text {ср }}$ за Ниш и Лесковащ

Коришћењем Spearman-овог ранг теста долазимо до вредности $u_{T s r}=4.95$ и $u_{T \max }=2.22$ што је за $N-2=31$ степена слободе и критичну вредност $\alpha=0.05$ неприхватъиво па можемо закључити да ова два низа нису релативно хомогена (Табела 2.).

Након анализирања низова, прегледом расположиве документације за поменуте станице утврђено је да је станица Лесковац променила своуу локацију неколико пута а од тога два пута у посматраном периоду и то 1971. и 1978 . године.

6. ЗАКЉУЧАК

Утицај ностојања нехомогености климатолошких низова у нашој мрежи станица нипошто није занемарљьв. Обзиром да се у мерена и да дриличап број станияа има дугачак и непрекидан низ података посебно јо ражно обратити пожиу на хомотент ови ност ових низова.

Хомогеност података није обезбеђена самим тим што све на станици функционише квали-

- ostrotrene vrednosti ——trend -

Слика 8. Кумулативне суме разлика $\mathrm{T}_{\text {мах }}$ за Ниш и Лесковап

Табела 2. Израчунатч параметри за Spearmanов рант тест за станице

Ниш и Лесковащ

	Tsr			$T_{\text {max }}$		
1965	$\frac{\Delta T s r}{}$	rang	di	Tma		
$\frac{1965}{1966}$	0.5	4.0	$\frac{3.0}{-1.0}$	0.5	$\frac{25.5}{160}$	${ }^{24.5}$
1967	0.7	16.0	13.0	$\frac{0.5}{0.5}$	${ }^{25.5}$	$\frac{14.5}{22.5}$
1968	0.5	4.0	0.0	0.3	7.5	
1969	0.5	4.0	${ }_{-1}$	0.1	1.5	
970	0.7	16.0	10.0	0.4	16.0	
1971	0.7	16.0	9.0	0.4	16.0	9.0
1972	0.5	4.0	${ }_{-4.0}$	0.4	16.0	8.0
1973	0.5	4.0	-5.0	0.5	25.5	16.5
1974	0.6	9.5	$\stackrel{0.5}{ }$	0.4	16.0	6.0
1975	0.7	16.0	5.0	0.3	${ }_{7} 7.5$	
1976	0.7	16.0	4.0	0.3	7.5	-4.5
1977	0.6	9.5	${ }_{-3.5}^{-2 .}$	0.1	1.5	${ }^{-11.5}$
1978	0.7	16.0	2.0	0.3	7.5	-6.5
1979		16.0	1.0	0.2	3.5	-11.5
1980	0.6	9.5	-6.5	0.3	7.5	-8.5
1981	0.6	9.5	-7.5	0.2	3.5	-13.5
1982	0.8	22.0	4.0	0.4	16.0	-2.0
1983	1.1	32.0	13.0	0.8	33.0	14.0
1984	0.8	22.0	2.0	0.4	16.0	-4.0
1985	1.0	30.0	9.0	0.4	16.0	-5.0
1986	1.1	32.0	10.0	0.6	30.5	8.5
1987	0.8	22.0	-1.0	0.4	16.0	$\stackrel{-7.0}{ }$
1988	0.9	27.0	3.0	0.5	25.5	1.5
1989	0.9	27.0	2.0	0.5	25.5	0.5
1990	1.1	32.0	6.0	0.6	30.5	4.5
1991	0.6	9.5	-17.5	0.3	7.5	-19.5
1992	0.9	27.0	- -1.0	0.5	25.5	
1993	0.9	27.0	-2.0	0.4	16.0	13.0
1994	0.9	27.0	-3.0	0.5	25.5	-4.5
1995	0.8	22.0	-9.0	0.7	32.0	1.0
1996	0.6	9.5	-22.5	0.5	25.5	${ }^{-6.5}$
1997	0.8		-110	04	16.0	$\stackrel{-17.0}{ }$
		4=4.95			4=2.22	

тетно, исправно и према прописима. Понекад је 13 разних објективних разлога неопходно преместити станицу на другу локацију, преместити заклон или цео метеоролошки круг на друго место што доводи до већег или мањег поремећаја у хомогености података и такви низови су, практично, тешко употребљиви.
Да би се из ризнице постојећих података добила права слика о клими и њеним колебањима, веома је важно да се, осим редовног одржавања станице и њених инсрумената, птто ређе, и само уз јаке разлоге, мењају правила рада, локације станица или макар само осма-

трачи, јер ово све доводи до губитка драгоце них информација о клими тог краја. С друге стране, од велике важности је да се, ако је већ неизбежно, било која промена уводи по тачно утврђеним правилима, где се обавезно подра зумева вођење паралелних мерења на старој и новој локацији (као што је то случај са стани цом у Лесковцу где ностоје паралелна мерева од марта 1978. до фебруара 1979. године.) На тај начин се омогућава адекватно прилагођавање ова два низа климатолошких података и њихова ушотребљивост као једне једине щелине.

7. ЛИТЕРАТУРА

Guidelines on the quality control of surface climatological data, WMO, 1986;
Павле Вујевић: Климатолошка статистика, У ниверзитет у Београду, 1956;
Др. Брапка Пензар, Др. Берислав Макјанић: Основна статистичка обрада података у климарлогији, Загреб, 1980;
Драгољуб В. Ивановпћ : Метеоролошка статистика, Београд, 1976.

ПРОГРАМ ЗА ЛОГИЧКУ КОНТРОЛУ ДНЕВНИКА ГЈАВНЕ МЕТЕОРОЛОІІКЕ
СТАНИЦЕ

Драг̄ан Ђукић, дийл.мешй.
Рейублички хидромейеоролоики завод Србије, Кнеза Вишеслава бб,

11030 Беойрад, Југ̄ославија

The data in a report of a principle meteorological station are subjected to errors that might appear during measurements and observations, coding, calculations and reductions, entering the data from reports into measurements and observations, coding, calculations and reductions, entering the data from reports into
computer media and archiving, etc. A significant amount of errors, especially the large ones, could be easily computer media and archiving, etc. A significant amount of errors, especially the large ones, could be easily
found by taking into consideration that meteorological parameters take into account a limited group of values havin mutual and reciprocal correlatin. For this purpose, a program for logical control of station reports in program language CLIPPER under DOS is made with possibility to use it operationally even with the smallest PC platforms.

Подаци у диевнику Главне мейеоролоике сйанице су йодложани ирешкама које мойу насииайи ири мерењу иосмайрању, шифровању, израчунавану и свођену, уиисиваьу йодаиака у дневник, уносу и архивираву иодашака и дневника на рачунарске медиуме и др. велики број грешака, иогойову атрубик, моаууке је ефикасно йронаћи корисииећи чињеницу да мейеоролоики йарамейри узинају ойраничен скуй вредносйии и да међу нина йосиооји узајамна и међусобна ииоезаносий у иич сврху урабен је йрорррам за логичку конииролу дневника Главне мейеоролошке
 најслабијия РС йлайфоряама.

Увод

Програм за логичку контролу дневника ГМС је рађен према упутству "Контрола приземних метеоролошких података", издање СХМЗ-а из 1975. године и пројектном задатку "Логичка контрола дневника ГМС", Слободана Плазинића, из 1990. године

Програм је обухватио велику већину критеријума из програмског задатка. Изостављени су они критеријуми који нису били јасни, или се сматрало да су погрешни.

Програм је рађен за контролу података који се уносе из "жутог" дневника ГМС-е, који има три формата слогова 12,13 и 14 и предвиђеи је за контролу пакета података од једног месеца како би, због веће оперативности, контрола могла да ночне већ после првог унетог месеца а не након читаве године

Пре саме логичке контроле врши се пребацивање података из ASCI " ("аски") формата слогова 12,13 и 14 у три DBF фајла, где су разврстана ова три типа слогова, тако да су у првом DBF фајлу термински подади, у другом дневни а у трећем појаве

Код пребацивања ASCII слогова у DBF фајлове врши се дешифровање података и подаци добщјају цраве вредности, изузев код оних одређеност (нир видљивост висина једнозначна облака и др.). На овим фајовима су могуће брзе и лаке претраге, селекције (одабири) упиттв обраде, давде све што је типично за базе питй, обр нодатака.

Накои пребацивања у DBF фајлове, врии се контрола присутности потребних слогова, за коју није битан хронолошки редослед слогова.

После контроле присутности потребних слогова врши се логичка контрола која поред узајамне и међусобне повезаности метеоролошких параметара, садржи и купу вредности.

Опис програма
Програм је рађен у CLIPPER-y, програмском језику предвиђеном за рад са базама података, под DOS-ом, како би могле бити коришћене и

најслабије рачунарске копфигурације какс по уписују поруке о грешкама. Уколико нема снагзи процесора тако и по количини меморије за складиштење података.
Програм обухвата један изврини фајл, 3 DBF фајла и 7 помоћних фајлова који служе за копирање структура фајлова потребних за ра главног ирограма а налазе се на посебном директоријуму. По стартовању програма појављује се улазни екран који прдставља мени
са четири опције.

nimatolozk otersence
Слика 1, Екран за сйиарйоваъе уноса

Прва од њих, слика 1 , стартује програм за импортовање и конверзију података из текстуалног, ASCII, фајла у три DBF фајла.


```
    LNC,
        col
```


Слика 2, Екран за сииарииоваъе конйроле йосииојаьа свих йодайака

Друга ошија, слика 2 , контролише присутност свих слогова, односно термина и дана. Овде је нотребно унети бројчано месец који се контролише, због различитог броја дана у или 29). Такође је потребно унети број станище или 29). Такође је потребно унети број станище за сваки слог провериле ове вредности. Када је означена ова опција наведено је име текстуалног фајла у коме су дати резултати ове контроле. Име фајла је KPRISGMS.TXT и у случају да нема грешака те врсте фајл остаје празан.

Трећа опција, слика 3, стартује програма за логичку контролу. Када је означена ова опција наведено је име текстуалног фајла у који се

грешака фајл остаје празап.

Слика 3, Екран за сйарй
иарамейара дневника ПМС.
Четврта опција је излаз из програма и повратак у DOS.

Имнортовање података

Кутт" образащ дневника ГМС је у употреби од 1975 године и оп је рађен према тадашњим технолопким доститнућима рачунарске технике где су медијуми за складиштење нодатака биле бушене картонске картице. На свако је могло да стане 80 знакова и свака је представљала један слог. У тих 80 занкова едног слога требало је сместити сва осматрања једног термина из слога 12 или дневних вредности из слога 13 или све појаве у току дана на максимално четири картице слога 14. Да би све ово било оствариво прибегло се кодирању метеоролошких података. Избачене у децималде запете код сии параметара чим ее добило по једно место. Коришћене су шифр ма ноједине елементе из кьучева за хоризопталне видљивости се времеости код неколико десетина метара вредности од стотина километара изражавају са две шифре од 90 до 99 за визуелна осматрана ини оп 00 до 89 за инструментална мерења (шрема Међународном метеоролошком кључу 4377) Затим скраћени су записи великих бројева као штто је случај код вредности ваздушног притиска. Вредност вреднушшог ваздушнои неможе бити већа од нцр. $1100,0 \mathrm{mb}$, док највишии врхови Хималаја не би могли имати мањи притисак од 300 mb . Тако уместо пет цифара и децималне запете користе се четири цифре где се изоставља хиљада за вредности притиска веће од $999,9 \mathrm{mb}$, па се зна да 0131 представља вредност ваздушног притиска од $1013,1 \mathrm{mb}$.

Такав густ и кодирани формат је, за данашње рилике, непрактичаи, пепрегледан и сложе дању обраду и коришћење. Превазиђена су ограничења везана и за број занкова у слогу и

за број слогова, а у унотреби су магнетни и оптички медијуми за склсдиштење података са великом и скоро незамисливом густином паковања. Такође, користе се наменске базе података.

Из тих разлога постојећи кодирани ASCI фајл који садржи слогове 12,13 и 14 се конвертује у три DBF фајла са униформним слоговима где су подаци декодирани и где се на једноставан начин врше ажурирања, обраде и претраге. Овде је потребно унети име текстуалног фајла, слика4.

Inestern poomaran

niwatrate to ofitusense
Слика 4, Уӣий за унос имена ииексйчуалног фајла.

Контрола присутности слогова

За један дан морају постојати 24 слога типа 12 и 1 слог тина 13. Слогови тина 14 могу а и не морају постојати у зависности од тога да ли су регистроване појаве у току дана или не. На крају слога 13 , ASCII фајла, у 78 -ој колони се означава колико картица 14 ностоји, од 0 до максимално 4. Свака картица може да садрж одатке за 6 појава. Када се попуни прв оку дана могуће уписују у другу податке за 2 појаве

DBF фајлу са слогом 12 контролише се постојање сваког термина за сваки датум. У зависности који је месец у питаву мора ностојати 744,720 или за фебруар 672 слога односно 696 слогова ако је у питању преступна година. За случај да недостаје неки слог или постоји више слогова за неки термин одређеном датуму, у фајлу KPRISGMS.TXT, уписује се порука са датумом и термином за који недостаје слог или је слог дуплиран.
dan= 2 cas=23 nedostaje slog 12
dan= 2 cas=24 dupliran slog 12
Исти је случај код DBF фајла са слоговима 13 Испитује се постојање слогова за сваки датум Тих слогова има 31,30 или 28 односно 29 за фебруар у преступној години.
dan=28 nedostaje slog 13
dan=29 dupliran slog 13
Код DBF фајла са слогом 14 је нешто другачвја ситуација. Ту се може контролисати да ли ј орој регистрованих појава између 1 и 6 за случај да постоји једна картица 14, између 7 и 12 за случај две картице итд.
dan=21 Nedostaje slog 14 ili je
pogresan broj redova 14 u kartici 13
Могуће је погрешно уписивање броја картица 14 у слогу 13 , или је вишак картица, ако је уписано да их нема
dan=25 Pogresno je upisan broj redova 14 u kartici 13

Код контроле постојања свих слогова контролише се да ли сваки слог има тачн унету годину и број сатнице, тако да је по унети годину и опције поред месеца потребн унети годину и број станице, слика 5

Слика 5, Уииш за унос месеца, г̈одине и броја стиание.

Логичка контрола параметара

Грешке у дневнику Главне метеорлошке станице настају из више разлога, приликом мрева и осматрања, шифровања дневник, при уносу и архивирању података из дневника на рачунарске медијуме итд.

Веһина метеоролошких параметара има ограничен скуп вредности, тако да се велики број губих грешака може открити контролисањем да ли је елемент у оквиру дозвољених вредности
Такође, велики број метеоролошких параметара је у некој узајамној или међусобној вези. Та веза може бити егзактна или емпиријска. У право ова чињеница се користи за логичку контролу метеоролошких може се заклучети пз нараметар погрешан или више других параметра.

Овај програм контролише те везе и уколико утврђени критеријуми нису испуњени исписује е порука о грешши. Програм за логичку коіим се проверавају подацит Тамо ауа (услова) нису испуњени у питању је грешка.

Детаљно приказивање и објашњавање критеријума овога програма захтевало би много више простора него шето је овде иредвиђено, па се овде дају само кратки описи
Програм се састоји из више сегмената. У првом се контролишу параметри слога 12. Испитује се да ли су терминске вредности из скупа реташшје пимеђу шараметара у истом термй

у другом сегменту се врши исто испитивање у другом сегменту се врши исто

У трећем се испитује да ли параметри слога 14 припадају скупу дозвољених вредности. У питању су појаве забележене у току дана

у следећем сегменту се контролише међучасовна промењивост параметара у слог 12. То се односи на међучасовну промењивос иритиска и стања тла, као и стања тла везано за међучасовну промену температуре ваздуха.

у петом сегмешту се контролишу и пореде параметри у слоговима 12 и 13, значи дневни подаци са терминским.

у шестом сегменту се контролишу и пореде параметри слогова 12 и 14. Ту се испитује да ли обухваћенй терминии за непрекидне појаве у слогу 14 имају уписане те појаве у слогу 12.
У седмом сегменту се контролишу дневне суме надавима и испаравања са сумама од 07 до 19 сасова и ол 19 часова препходног до 07 часоиа тог дана.

И у задғем, осмом, сегменту исиитује се слагање облика појава падавина уписаних у слогу 13 са одговарајућим шифрама појава у слогу 14.

Контрола слогова 12

Видливост:

Шифре за хоризонталну видљивост код иизуелие продене узимају вредности од 90 до 99 или поље остаје празно ако се мерење не врши

Vid $=90-99 / \mathrm{BL}]$

Уколико ово није испуњено јавља се порука са даном, месеңом и часом у коме стоји грешка као и вредност која је уписана. То важи за сваку поруку о грешщи. На пример
1.10.u10 [Vid=90-99/BL] Vid=87

Затим уколико је видљивост шифрована са шшфрама од 90 до 93 , видльивост мања од 1 км мора да је регистрована нека од појава из група шадавина P54, P55, магли из P56 (3-6) или појаве $1-4$ из групе P58 (снежне, прашинске или пешчане мећаве).
$[$ Vid $=90-93 ; \mathrm{P}(54,55)=1-9 ; \mathrm{P}(56)=3-$
$6 ; D(58)=1-4]$
Облачност:
Шифре за родове облака по кључу Ch су у распону од 0-9 или ако их није могућі осмотрити у дневник се уписује X док се код уношења података у ASCI фајлове ставља црта "-" из щрактичних разлога.
[Ch=0-9/-]
Уколико је шифра за родове Ch облака већа од 0 , што значи да су осмотрени ти облаци, мора да је уписана и укупна количина облака 1 -8 осмина.
[Ch=1-9, $\mathrm{N}=1-8$]
Уколико је шпфра за родове Ch облака 7 Циростратус који покрива цело небо, следи да укупна покривеност неба мора да је 8 осмина.
[$\mathrm{Ch}=7, \mathrm{~N}=8$]
Уколико је шифра за родове Ch облака 8 Циростаратус који не покрива небо потпуно, а нема других облака, следи да укупна нокривеност неба мора да је мања од 8 осмина.

$$
[\mathrm{Ch}=8 ; \mathrm{Cm}=\mathrm{Cl}=0 ; \mathrm{N}=1-7]
$$

Шифре за родове облака по кључу $\mathbf{C m}$ су распону од $0-9$ или ако их није могуће осмотрити стоіи црта "_".

$$
[\mathrm{Cm}=0-9 /-]
$$

Уколико је пифра за родове $\mathbf{C m}$ облака 0 нема их, следи да је и количина тух облака 0 .
[$\mathrm{Cm}=0 ; \mathrm{Nm}=0$]

Уколико има Ст облака, шифре 1-9, следи да и Ако род облачшог слоја није могуће одредити количина тих облака мора да буде између 1 и 8 тада се висина слоја пшифује са 90. осмина.

$$
[\mathrm{Cm}=1-9 ; \mathrm{Nm}=1-8]
$$

Уколико није могуће осмотрити $\mathbf{C m}$ облаке, стоји црта --, следи да је количина СІ облака 8 осмина, или ни њих није могуће осмотрити па за њихову количину стоји 9

$$
[\mathrm{Cm}=-; \mathrm{Nl}=8,9]
$$

Ако су осмотрени само $\mathbf{C m}$ облаци, шифре 1-9 следи да укупна облачност мора да има вредности $1-8$ осмина.
$[\mathrm{Cm}=1-9, \mathrm{Ch}=\mathrm{Cl}=0, \mathrm{~N}=1-8]$
Уколико није могуће осмотрити $\mathbf{C m}$ облаке, стоји црта "." и количина СС облака је 8 осмина, или и њих није могуће осмотрити па за њихову количину стоји 9 , следи да за количину $\mathbf{C m}$ облака мора да стоји вредност 9
$[\mathrm{Cm}=-, \mathrm{Nl}=8,9 ; \mathrm{Nm}=9]$
ІІІифре за родове облака по кључу $\mathbf{C l}$ су раснону од 0-9 или ако ux није могуће осмотрити стоји црта "-"
$[\mathrm{Cl}=0-9 /-1$
Уколико су осмотрени $\mathbf{C l}$ облаци, укушна облачност мора да има вредност 1-8 осмина.
$[\mathrm{Cl}=1-9 ; \mathrm{N}=1-8$]
Уколико нема СІ облака, мора да је и количина Cl облака 0
$[\mathrm{Cl}=0 ; \mathrm{Nl}=0]$
Уколико није могуће осмотрити Cl облаке следи да за количину СІ и Ст облака мора да стоји 9 , а такође и за укупну облачност 9

$$
[\mathrm{Cl}=-; \mathrm{Nl}=9 ; \mathrm{Nm}=9 ; \mathrm{N}=9]
$$

Род најнижег облачног слоја је овде означен са $\mathrm{C1}$, а следећег са C 2 , да би се разликовали, а одговарајуне висине база HSHS1 и HSHS2. Шифре за род су у распону од $0-9$, ако су из неког разлога невидльии стоји црта "-", ако их ема поља су празна BL
[C1 $=0-9 /-/ \mathrm{BL}]$
$[\mathrm{C} 2=0-9 /-/ \mathrm{BL}]$

$$
[\mathrm{C} 1=-; \mathrm{C} 2=\mathrm{BL} ; \mathrm{HSHS} 1=90 ; \mathrm{HSHS} 2=\mathrm{BL}]
$$

Када није могуће одредити родове облака $\mathbf{C h}$, $\mathbf{C m}$ и $\mathbf{C l}$ тада и за род облачног слоја стоји црта.
[$\mathrm{Ch}=\mathrm{Cm}=\mathrm{Cl}=-$; $\mathrm{C} 1=-$
Када су осмотрени облаци из групе Ch са шифром 1-4 и нема других облака, тада за род блачног слоја мора да стоји пифра 0.
$[\mathrm{Ch}=1-4 ; \mathrm{Cm}=\mathrm{Cl}=0 ; \mathrm{Cl}=0$]
Када су осмотрени облаци из групе $\mathbf{C h}$ са шшфром 9 и нема других облака, тада за род облачног слоја мора да стоји шифра 1.
[$\mathrm{Ch}=9 ; \mathrm{Cm}=\mathrm{Cl}=0 ; \mathrm{Cl}=1]$
Када су осмотрени облаци из групе $\mathbf{C h}$ са шифром 5-8 и нема других облака, тада за род бблачног слоја мора да стоји шифра 2 и евентуално за други слој шифра 0
$\mathrm{Ch}=5-8 ; \mathrm{Cm}=\mathrm{Cl}=0 ; \mathrm{C} 1=2 ; \mathrm{C} 2=0, \mathrm{BL}$
Када су осмотрени облаци из групе $\mathbf{C m}$ са шифром 3-9 и нема облака из групе СІ, тада за род облачног слоја мора да стоји шифра 3.
$[\mathrm{Cm}=3-9 ; \mathrm{Cl}=0 ; \mathrm{C} 1, \mathrm{C} 2=3]$
Када су осмотрени облаци из групе $\mathbf{C m}$ са нифром 1 и нема облака из групе Сl, тада за род облачног слоја мора да стоји шифра 4

$$
[\mathrm{Cm}=1 ; \mathrm{Cl}=0 ; \mathrm{Cl}, \mathrm{C} 2=4]
$$

Када су осмотрени облаци из групе $\mathbf{C m}$ са шифром 2 и нема облака из групе $\mathbf{C l}$, тада за род облачног слоја мора да стоји шшфра 4 или 5.
$[\mathrm{Cm}=2 ; \mathrm{Cl}=0 ; \mathrm{C} 1, \mathrm{C} 2=4,5]$
Када су осмотрени облаци из групе $\mathbf{C m}$ са шифром 7 и нема облака из групе $\mathbf{C l}$, тада з род облачног слоја мора да стоји шифра 5
$[\mathrm{Cm}=7 ; \mathrm{Cl}=0 ; \mathrm{Cl}, \mathrm{C} 2=5]$
Када су осмотрени облаци из групе $\mathbf{C l}$ са шифром 1 , тада за род облачног слоја мора да стоји шифра 8.
$[\mathrm{Cl}=1 ; \mathrm{Cl}, \mathrm{C} 2=8]$

Када су осмотрени облаци из групе СІ са Када је висина облачног слоја шифрована са шифром 2 , тада за род облачног слоја мора да 90 , за род облачног слоја мора да стоји црта. стоји шифра 6 или 8.
$[\mathrm{Cl}=2,5 ; \mathrm{C} 1, \mathrm{C} 2=6,8]$
Када су осмотрени облаци из груше Cl с шифром 4, тада за род облачног слоја мора да стоји шифра 6.
$[\mathrm{Cl}=4 ; \mathrm{C} 1, \mathrm{C} 2=6]$
Када су осмотрени облаци из групе Cl са шифром 3 или 9 , тада за род облачног слоја мора да стоји шифра 9 .
$[\mathrm{C} 1=3,9 ; \mathrm{C} 1, \mathrm{C} 2=9]$
[HSHS1=90; C1=-]
Ако је на планинама висина облачног слоја пифрована са 99 , а планине се немогу видети због мрака, падавина или магле, у свим правцима, за количину ниских облака мора да стоји 0 .
[HSHS $1=99 ; \mathrm{DA}=9 ; \mathrm{NMP}=9 ; \mathrm{N} 3=0 ; \mathrm{Nl}=0]$
За укупну облачност мора да стоји нека од вредности од 0-9.
$[\mathrm{N}=0-9$]
Када су осмотрени облаци из групе $\mathbf{C l}$ са шифром 5 , тада за род облачног слоја мора да стоји шифра 6.

Ако је укупна облачност 0 , и количине облака из група Сl и $\mathbf{C m}$ мора да су једнаке 0 .
$[\mathrm{Cl}=5 ; \mathrm{C} 1, \mathrm{C} 2=6]$
$[\mathrm{N}=0 ; \mathrm{Nl}=0 ; \mathrm{Nm}=0]$
Ако је вредност укупне облачности између 1 и
Када су осмотрени обнаци из групе $\mathbf{C l}$ са 8 опда мора да су шифровани облаци у некој кифром б тада за род обтачног слоја мора да стоји шифра 7.
$[\mathrm{Cl}=6 ; \mathrm{C} 1, \mathrm{C} 2=7]$
Када су осмотрени облаци из групе $\mathbf{C l}$ са шифром 7, тада за род облачног слоја мора да стоји шифра 7 или 8.
$[\mathrm{Cl}=7 ; \mathrm{Cl}, \mathrm{C} 2=7,8]$
Када су осмотрени облаци из групе $\mathbf{C l}$ са шифром 8, тада за род облачног слоја мора да стоји шифра 6 или 8.

$$
[\mathrm{Cl}=8 ; \mathrm{C1}, \mathrm{C} 2=6,8]
$$

Шиирре за висину облачног слоја су у распону од $90-99$ или су поља празна.
[HSHS1,2 $=90-99 / B L]$
Ако су поља са висином облачног слоја празна, мора да су шразна и поља за род облачног слоја.
[$\mathrm{HSHS} 1=\mathrm{BL} ; \mathrm{HSHS} 2=\mathrm{BL} ; \mathrm{C} 1=0 ; \mathrm{C} 2=0]$
Када нема облака из група $\mathbf{C h}, \mathbf{C m}$ и $\mathbf{C l}$ на планинама или превојима, када су све планине откривене а постоји понеки облак на више страна, поље за висину облачног слоја остаје празно.
[$\mathrm{Ch}=0 ; \mathrm{Cm}=0 ; \mathrm{Cl}=0 ; \mathrm{Nl}=0 ; \mathrm{DA}=9 ; \mathrm{NMP}=0$ N3=0; HSHSI=BL]

од група $\mathbf{C h}, \mathbf{C m}$ или $\mathbf{C l}$

$$
[\mathrm{N}=1-8 ; \mathrm{Cl}=1-9 ; \mathrm{Cm}=1-9 ; \mathrm{Cl}=1-9]
$$

Ако је вредност укупне облачности 9 онда и количине облака из група $\mathbf{C l}$ и $\mathbf{C m}$ једнаке 9 , односно немогу се одредити

$$
[\mathrm{N}=9 ; \mathrm{Nl}=9 ; \mathrm{Nm}=9]
$$

За количину облака из групе $\mathbf{C l}$ мора да стоји вредност од 0-9.
[$\mathrm{N} 1=0-9$]
Ако за количину облака из груше Cl стоји вредност $1-8$, онда за родове облака из те групе мора да стоји вредност од 1-9.
$[\mathrm{Nl}=1-8 ; \mathrm{Cl}=1-9]$
Ако за количину облака из групе Cl стоји вредност 0 , онда за родове облака из те групе мора да стоји вредност 0
$[\mathrm{Nl}=0 ; \mathrm{Cl}=0]$
За количину облака из групе $\mathbf{C m}$ мора да стоји вредност од 0-9.
[$\mathrm{Nm}=0-9$]
Ако за количину облака из групе $\mathbf{C m}$ стоји вредност 0 , онда за родове облака из те групе мора да стоји вредност 0 .
$\mathrm{Nm}=0$; $\mathrm{Cm}=0$]
Ако за количину облака из групе $\mathbf{C m}$ стоји вредност 1-8, онда за родове облака из те групе мора да стоји вредност од $1-9$.

$$
[\mathrm{Nm}=1-8 ; \mathrm{Cm}=1-9]
$$

Ако је вредност укупне облачности 8, а за количину облака из групе $\mathbf{C m}$ стоји вредност 8 , онда мора за родове облака из те групе да стоји вредност од $1-9$, за количину облака из групе Cl , да стоји вредност 0 , и за родове облака из те рупе да стоји црта.
$[\mathrm{N}=8 ; \mathrm{Nm}=8 ; \mathrm{Nl}=0 ; \mathrm{Ch}=-\mathrm{Cm}=1-9]$
Када су на планинама вредности за укупну облачност, родове облака из груша $\mathbf{C h}, \mathbf{C m}$ и $\mathbf{C l}$ једнаке 0 и поља за висине облачних слојева разна, онда мора да поље за правац осмотрених облака на планинама и превојима буде празно или има вредности 1 или 9 , затим юље за облаке на планинама и превојмма буде празно или има вредност 9 и поже за развитак облака да буде празно или има вредност 0 .
$[\mathrm{N}=\mathrm{Nm}=\mathrm{Nl}=0 ; \mathrm{Ch}=\mathrm{Cm}=\mathrm{Cl}=0 ; \mathrm{HSHS} 1,2=\mathrm{BL}$
$\mathrm{DA}=\mathrm{BL}, 1,9 ; \mathrm{NMP}=\mathrm{BL}, 9 ; \mathrm{N} 3=\mathrm{BL}, 0]$
Ако укупна облачност има вредност од 1-8, а количина облака из група $\mathbf{C m}$ и CL стоји вредност 0, а за родове облака из тих група стоји вредност 0 , онда за родове облака из групе Сl мора да стоји вредност од 1-9,

$$
[\mathrm{N}=1-8 ; \mathrm{Nm}=\mathrm{Nl}=0 ; \mathrm{Cl}=\mathrm{Cm}=0 ; \mathrm{Ch}=1-9]
$$

ІІІфре којима се означава правац у којем је осмотрена облачност на планинама превојима су у распону од 0-9.
[$\mathrm{DA}=0-9$]
Шифре којима се означавају облаци на планинама и превојима су у распону од $0-9$. [NMP=0-9]

Ако је вредност шифре за облаке на планинама и превојима између 1 и 9 , онда мора длану шифроване врдности за родове облака из група $\mathbf{C m}$ или СІ у распону $1-9$.
[NMP $=1-9 ; \mathrm{Cm}=1-9 ; \mathrm{Cl}=1-9$]
Шифре којима се означава развитак облака на планинама и превојима су у распону од 0-9

Када није могуће одредити укупну облачност као и количине облака из група $\mathbf{C m}$ и $\mathbf{C l}$ шифре за правац и облаке на планинама ил превојима мора да имаји вредност 9 , а шифра за равитак 0 , или да су та поља празна
$[\mathrm{N}=9 ; \mathrm{Nm}=9 ; \mathrm{N}=9 ; \mathrm{DA}=\mathrm{BL}, 9 ; \mathrm{NMP}=\mathrm{BL}, 9$; $\mathrm{N} 3=\mathrm{BL}, 0$]
Шифре којима се означавају облаци осмотрени са вишег нивоа су у распону од $0-9$, може да тоји црта ако осматрање није могуће, или оље може да буде празно.

$[\mathrm{NV}=0-9 /-/ \mathrm{BL}]$

Вредности надмораке висине, у хектометрима горње површине облака могу бити у распону од 00-99, црте ако није могуһе осматрање, или је поље празно.

$$
[\mathrm{HH}=00 \div 99 /--/ \mathrm{BL}]
$$

Ако у пољу за облаке осмотрене са више нивоа стоји црта, онда и у пољу за висину горње поврнине мора да стоје црте.
[$\mathrm{NV}=-$; $\mathrm{HH}=-\mathrm{-}$]
Ако је поље за облаке осмотрене са вишег ивоа празно, онда и поље за висину горње површине мора да празно
$[\mathrm{NV}=\mathrm{BL} ; \mathrm{HH}=\mathrm{BL}]$

10-то минутни ветар.

Преовлађујући правац ветра за 10 -то минутн интервал дат је у декастепенима $00-36$, или стоји 88 када је инструмент у квару, или 99

$$
[D=00-36,88,99]
$$

Брзина ветра у целим м/с може бити у распону од $00-60$.
$[\mathrm{Vx}=00-60]$
Карактеристика ветра се шифрује вредностима од 0-9.
[$\mathrm{K}=0-9$]

Ако је тихо, шифра за карактеристику ветра мора да је 0 .
[$\mathrm{VX}=00 ; \mathrm{K}=0$]

Ваздушни притисак:

вредности ваздушног притиска на станици могу у интервалу од 700-1053 мб, или поље може да буде празно
[$700<=$ PST $<=1053 /$ BL] $]$

Tемшература:

Вредности температуре ваздуха могу бити у распону од -40 до $50^{\circ} \mathrm{C}$, или поље може да буде празно.
$[-40<=T<=50 / B L]$
У пољу за стање крпице мокрог термометра може да стоји ознака L , -, или да буде празно. $[\mathrm{L}=\mathrm{L},-, \mathrm{BL}]$

Ако је у пољу за ознаку стања крпице мокрог термометра ознака L, у пољу за температуру мокрог термометра не може бити већа вредност од 40 .

$$
[\mathrm{L}=\mathrm{L}, \mathrm{TM}<=40]
$$

Ако је у пољу за ознаку стања крпице мокрог термометра ознака -, у пољу за температуру мокрог термометра не може бити већа вредност од 10 .

$$
[\mathrm{L}=-, \mathrm{TM}<=10]
$$

Ако је поље за ознаку стања крпице мокрог термометра празно, у пољу за температуру мокрог термометра не може бити већа вредност од 45 .
$[\mathrm{L}=\mathrm{BL}, \mathrm{TM}<=45$]
Ако су температуре сувог и мокрог термометра веће од 0 , а релативна влажност ваздуха мања од 100%, температура сувог термометра мора да је већа од температуре мокрог термометра.
[T>=0;TM $>=0 ; \mathrm{U}<100 \% ; T>T M$]
Ако је у пољу за ознаку стања крпице мокрог термометра ознака L, температура сувог термометра мања од 0 , а у пољу за температуру мокрог термометра вредност већа од 0 а мања или једнака од 2, температура сувог ермометра мора да је већа или једнака температури мокрог термометра
$[\mathrm{L}=\mathrm{L} ; \mathrm{T}<0 ; 0<\mathrm{TM}<=2 ; \mathrm{T}>=\mathrm{TM}$]

Ако је у пољу за ознаку стања криице мокрог термометра ознака L, у пољу за температуру мокрог термометра вредност већа од 2 а мања или једнака 5 , апсолутана разлика темература сувог и мокрог термометра мора бити мања или једнака 0,1 .
$[\mathrm{L}=\mathrm{L} ; 2<\mathrm{TM}<=5 ; / \mathrm{T}-\mathrm{TM} /<=0.1]$
Ако је у пољу за ознаку стања крпице мокрог термометра ознака L, у пољу за температуру мокрог термометра вредност већа од 5 а мања сувог п мокрог термометр мора бити ман сувог и мокрог термометра мора бити мањ или једнака 0,2 .
$[\mathrm{L}=\mathrm{L} ; 5<\mathrm{TM}<=7 ; / \mathrm{T}-\mathrm{TM} /<=0.2]$
Ако је у пољу за ознаку стања криице мокрог Ако је у нову за ознаку ц уољу за температуру мермометра термометра вредност већа од 7 апсолутана разлика темература сувог и мокрог термометра мора бити мања или једнака 0,3 .
[$\mathrm{L}=\mathrm{L} ; \mathrm{TM}>7$; $(\mathrm{T}-\mathrm{TM})<=0.3]$
Релативна влажност ваздуха:
Дозвољене вредности релативне влажности ваздуха су од 5-100.
[$\mathrm{U}=5-100$]
Вредност уписане релативне влажности ваздуха сме да се разликује од израчунате по психрометраској формули за +-10 , за случај када се на станици не мери ваздушни притисак.
[$\mathrm{U}=\mathrm{Ur}+-10$]
Вредност уписане релативне влажности ваздуха сме да се разликује од израчунате по психрометраској формули за +-5 , за случај када се на станици мери ваздушни притисак.

[U=Ur+-5]

Стање тла:
ІІифре за стање тла су ураспону од 0-9.
$[\mathrm{E}=0-9]$

Атмосферске појаве:

Шифре за појаве колоне 54 су у распону од 1-9, или поље може бити празно.
[P54=1-9/BL]

Ако у польу за појаве колоне 54 шифра има вредност од 1-9, онда мора да су попунена поља за род и висину облачног слоја, затим да је вредност укушне облачности различита од 0 .

$$
[\text { P54 }=1-9 ; \text { Cl }<>\text { BL } ; H S H S 1<>B L ; N<>0]
$$

Ако у пољу за појаве колоне 54 шифра има вредност од $1-9$, онда мора да су попуњена поља за трајање падавина.
[P54=1-9;TR<>BL]
Ако у пољу за појаве колоне 54 шифра има вредности од $6-9$, онда у пољу за стање тла мора да је вредност различита од 0 .
$[P 54=6-9 ; E<>0]$
Ако у пољу за појаве колоне 54 шифра има вредности $2,4,5,7,8$ или 9 , онда температура ваздуха мора да је мања од 3
$[P 54=2,4,5,7,8,9 ; T<3]$
Ако у пољу за појаве колоне 54 шифра има вредности од 1,3 или 6 , онда температура ваздуха мора да је већа од 0

$$
[P 54=1,3,6 ; T>0]
$$

Ако у пољу за појаве колоне 54 шифра има вредности 1 или 2 , онда шифра за родове облака СІ мора да је 6 или 7 .
[P54=1,2;Cl=6,7]
Шифре за појаве колоне 55 су у распону од 1-9, или поље може бити празно

$$
[P 55=1-9 / B L]
$$

Ако у пољу за појаве колоне 55 шифра има вредност од 1-9, онда мора да су понуњена поља за род и висину облачног слоја, затим да је вредност укупне облачности различита од 0 .
[P55=1-9;C1<>BL;HSHS1<>BL;N<>0]
Ако у пољу за појаве колоне 55 шифра има вредност од 1-9, онда мора да су попуњена юоља за трајање падавина
[P55=1-9;TR<>BL]
Ако у пољу за појаве колоне 55 шифра има вредности 9, онда шифра за родове облака СІ мора да је 3 или 9.
$[\mathrm{P} 55=9 ; \mathrm{Cl}=3,9]$

Ако у пољу за појаве колоне 55 шифра им вредности од 8 или 9 , онда температура ваздуха мора да је већа од 0 .
$[\mathrm{P} 55=8,9 ; \mathrm{T}>0$]
Шифре за појаве колоне 56 су у распону од 1-9, или поље може бити празно.
[P56=1-9/BL]
Ако у пољу за појаве колоне 56 шифра има вредности 3 или 6 , а у пољима за родове облака Ch, Cm и Cl стоје црте, онда за укупну облачност мора да стоји 9.
$[\mathrm{P} 56=3,6 ; \mathrm{Ch}=-, \mathrm{Cm}=-, \mathrm{Cl}=-, \mathrm{N}=9]$
Ако у пољу за појаве колоне 56 шифра има вредност 2 , онда у пољу за видљивост мора да стоји шифра од 94-96
[$\mathrm{P} 56=2$; $\mathrm{V} \dot{\mathrm{I}} \mathrm{d}=94,95,96]$
Ако у пољу за појаве колоне 56 шифра има вредност 3 или 6 , онда у пољу за видљивост мора да стоји шифра од $90-93$
[P56=3,6;Vid=90,91,92,93]
Ако у пољу за појаве колоне 56 шифра има вредност 6 , онда температура ваздуха мора да је мања од 0 .
[P56=6; $T<0$]
Ако у пољу за појаве колоне 56 шифра има вредност 9, онда пифра за родове облака $\mathbf{C l}$ мора да је 3,7 или 9
$[\mathrm{P} 56=9 ; \mathrm{Cl}=3,7,9]$
Пифре за појаве колоне 57 су у распону од 1-9, или поље може бити празно.
[P57=1-9/BL]
Ако у пољу за појаве колоне 57 шифра има вредности од 4, 6, 7, 8, или 9, онда у пољу за стање тла мора да је вредност 4 .

$$
[\mathrm{P} 57=4,6,7,8,9 ; \mathrm{E}=4]
$$

Шифре за појаве колоне 58 су у распону од 1-9, или поље може бити празно.
$[$ P58 $=1-9 /$ BL $]$
Ако у пољу за појаве колоне 58 шифра има вредности 1 или 2 онда вредност

десетоминутне брзине ветра мора да је већа од 3, шифра у пољу за стање тла већа од 4 и температура ваздуха мања од 0 .
$[P 58=1,2 ; V x>3 ; E>4 ; T<0]$
Ако у пољу за појаве колоне 58 шифра има вредности 3 или 4, онда вретност десетоминутне брзине ветра мора да је већа од 3 и шифра у пољу за стање тла једнака 0 .
$[P 58=3,4 ; \mathrm{Vx}>3 ; \mathrm{E}=0]$
Ако у пољу за појаве колоне 58 шифра има вредност 5 , онда у пољу за стање тла мора да је вредност 0 .
[P58=5; $\mathrm{E}=0$]
Ако у пољу за појаве колоне 58 шифра има вредност 8, овда шифра за родове облака $\mathbf{C l}$ мора да је 3 или 9 .
$[\mathrm{P} 58=8 ; \mathrm{Cl}=3,9]$
Шифре за појаве колоне 59 су у распону од $0-8$, или поље може бити празно.
[P59=0-8/BL]
Ако у пожу за појаве колоне 58 шифра има вредност 1 или 3 , онда пифра за родове облака Cl мора да је $1,5,6,7$ или 8 .
$\{\mathrm{P} 59=1,3 ; \mathrm{Ch}=1,5,6,7,8]$

Сијање сушца:

Трајање скјања сунца у десетинама сати има вредности од $0,0-1,0$ или могу бити уписане вредности 7,7 8,8 или 9,9.
$[T S S=0,0-1,0 / 7,7 / 8,8 / 9,9]$
За термине $01,02,03,22,23$ и 24 трајање сијања сунца мора бити 0 .

$$
[\text { cas }=01,02,03,22,23,24 ; \text { TSS }=0]
$$

Када је укунна облачност једнака 8 трајање сијања сунца не може бити 1.
[$\mathrm{N}=8 ; \operatorname{TSS}<>1.0]$

Падавише:

Висина падавина може имати вредности од 0 99,0 или може бити уписано 999 или 888.999 се уписује за случај да није било могуће извршити

мерене, а 888 је случај тада вије било падарина, али због особина базе да ноље које је шразно већ му се аутоматски номоже да 0 па се та 0 разликована ол 0 када је бино надавина ти је коничина немерьива на іе ли је колична немерљива, па је из то га уведено 888.

$$
[\mathrm{VP}<=99.0 ; 999 ; 888]
$$

Када је за висину падавина нека вредност мањ или једнако 99 или 999 , трајање падавина мора да је различито од 0 .
[VP<=99.0;999; TR<>0]
Вредности за трајање падавина могу бити у распону од $00-60$, или може бити уписано 99 .

$$
[\mathrm{TR}=00-60 ; 99]
$$

Вредност за трајање падавина је 0 ако падавин није било.

$$
[\mathrm{TR}=0 ; \mathrm{VP}=888]
$$

Часовни ветар:

Вредност средње брзине ветра може бити у распону од 00-30 или може бити уписано 999 з случај да није било могуће извршити мерење.
[SR $\mathrm{V}=00-30,999]$
Вредност средње брзине ветра мора бити мања од максималне брзине.
[SR_V<MAX_V]

Вредност максималне брзине ветра може бити у распону од $00-50$, или може бити уписано 999 за случај да није било могуће извршити мерење.
[MAX_V=00-50,999]
Преовлађујући правац ветра може бити у распону од $00-36$, може бити уписано 99 када иреовлађујући правац није могуће одредити, 88 када је инструмент у квару, или поље може бити цразно.
[PRAV $=00-36,88,99 / B L]$
Ако је за вредност преовлађујућег правца уписано 00 , онда мора да су у пољима за средњу и максималиу брзину ветра уписане 0 .
$[\mathrm{PRAV}=00, S R \quad \mathrm{~V}=\mathrm{MAX} \mathrm{V}=0]$
[R07obl=1-9;BL]
Ако је у пољима за средњу и максималну брзину ветра уписано 999 , онда у пољу за правац ветра мора бити уписано 88 .
[SR_V=999;MAX_V=999; PRAV=88]

Контрола слогова 13
Екстремне температуре:
Максимална дневна температура ваздуха може имати вредности у распону од -40 до $50^{\circ} \mathrm{C}$.
[-40.0<Tmax<50.0]

Минимална дневна температура ваздуха може имати вредности у распону од - 40 до $35^{\circ} \mathrm{C}$.
$[-40.0<T \min <35.0]$
Минимална температура ваздуха на 5 цм може имати вредности у распону од -50 до $50^{\circ} \mathrm{C}$.

$$
[-50.0<\mathrm{Tm} 5 \mathrm{~cm}<50.0]
$$

Апсолутна разлика минималне температуре ваздуха и минималне на 5 мм мора бити мања 10.
$[/ T \mathrm{~min}-\mathrm{Tm} 5 \mathrm{~cm} /<=10.0]$

Минимална релативна влага:

Минимална релативна влажност ваздуха може имати вредности у распону од 5-100 \%.
[$5<=$ Umin $<=100$]

Падавине:

Количина падавина до 07 часова може имати вредности у распону од $0-200$, или може бити уписано 9999 , или 8888.

$$
[\text { R07vis<=200; }=9999 ;=8888]
$$

Ако је у поље за количину падавина до 07 часова ушисано 8888 или 9999 , онда мора да је поље за облик падавина празно.
[R07vis=9999,8888;R070bl=BL]
Облик количине падавина до 07 часова може имати вредности од $1-9$, или може бити празно.

Ако је у поље за количину падавина до 07 часова уписано 0.0 , онда мора да је у пољу за облик падавина уписана шифра 9 .
[R07vis=0.0;R07obl=9]
Количина падавина до 19 часова може имати рерности у раснону од $0-200$, или може бити уписано 9999 или 8888.
[R19vis<=200; $=9999$; $=8888$]
Ако је у поље за количину падавина до 19 часова уписано 0.0 , онда у одговарајућем пољу за облик падавина мора да је уписана шифра 9 .

$$
\text { [R19vis=0.0;R19obl }=9 \text {] }
$$

Ако је у поље за количину падавина до 19 часова уписано 8888 или 9999, онда одговарајуће поље за облик падавина мора да је празно.
[RI9vis=9999,8888;R19obl=BL]
Облик количине падавина до 19 часова може имати вредности од 1-9 или може бити празно.
$[$ R190bl $=1-9$; BL$]$
Дневне количине падавина могу имати вредности у распону од $0-300$, или може бити уписано 9999 или 8888 .
[R0707uk<=300; $=9999 ;=8888]$

Снежни покривач:

тепен иокривености тла снежним пожривачем у 07 часова може имати вредности од $1-8$ или поље може бити празно.
[SP07st=1-8;BL]
Ако је поље за степен покривености празно, онда и поље за карактеристику мора да буде празно.
$[$ SP07st $=\mathrm{BL}, \mathrm{SP} 07 \mathrm{ka}=\mathrm{BL}]$
Шифра за карактеристику површине снежног нокривача може имати вредности од $0-8$ или поље може бити празно.
$[S P 07 \mathrm{ka}=0-8 ; \mathrm{BL}]$

Укупна висина снежног покривача може имати вредности у распону од $0-300$ или поље може бити празно.
[SP07uk=0-300; BL]
Висина новог снега може имати вредности распону од 0-99 или поље може бити празно.

$$
[S P 07 n o=0-99 ; B L]
$$

Густина снежног покривача може имати вредности у распону од 0-1.00 или поље може бити празно.
[SP07gus=0-1.00;BL]
Ако густина снежног нокривача има вредности иззмеђу 0.01 и 1.00 , онда укупна висина снежног покривача мора да је вена или једнака 4.
[SP07gus=0.01-1.00; SP07uk $=>4]$
Садржај воде у снежном покривачу може имати вредности у распону од $0-999.9$, или поље може бити шразно
$[$ SP07svo $=0-999.9 ; \mathrm{BL}]$
Ако садржај воде има вредности између 0.1 и 999.9 , онда укупна висина снежног покривача мора да је већа или једнака 4
[SP07svo=0.1-999.9;SP07uk>=4]
Степен покривености тла снежним покривачем у 19 часова може имати вредности од $1-8$ или поље може бити празно.
[SP19st=1-8;BL]

Ако је поље за степеп покривености празно онда и поље за карактеристику мора да буде празно.

$$
[\mathrm{SP} 19 \mathrm{st}=\mathrm{BL}, \mathrm{SP} 19 \mathrm{ka}=\mathrm{BL}]
$$

Шифра за карактеристику површине снежног покривача може имати вредности од $0-8$ или поље може бити празно
[SP19ka=0-8;BL]
Укупна висина снежног покривача може имати вредности у распону од $0-300$ или поље може бити празно.
[SP19uk $=0-300 ; B L]$

Висина новог снега може имати вредности у распону од $0-99$ или поље може бити празно
[SP19no=0-99;BL]

Максимални ветар:

Вредност максималне брзине ветра може бити у распону од 0-50.0 или може бити уписано 999 .
[Vmax $=0-50.0 ; 999]$
Ако је у пољу за максималну брзину ветра уписано 999 , онда и у пољу за време мора да је уписано 999 .
[Vmax=999;VREM=999]
У пољу за правац максималног ветра могу бити уписане вредности од 00-36, 99 или поље може бити празно.
[VPRA $=00-36 ; 99 ; B L]$
Ако је у пољу за максималну брзину ветра уписано 999 , онда и у пољу за правац мора да је уписано 99.
[Vmax=999; $\mathrm{VPRA}=99$]
у полу за време јављања максималног ветра могу бити уписане вредности од 00.0-24.0 или 999.
[VREM $=00.0-24.0 ; 999]$
у пољу за метод мерења ветра могу бити уписане вредности од $1-6,9$ или поље може бити празно.
[MET=1-6,9,BL]

Испаравање

у пољу за испаравање у 07 часова могу бити ушисане вредности од $0-99.9$ или поле може бити празно
[ISP07kol=0-99,9;BL]
У пољу за испаравање у 19 часова могу бити уписане вредности од 0-99.9 или поље може бити празно.
[ISP19kol=0-99,9;BL]
У пољу за укупно испаравање часова могу бити уписане вредности од 0-99.9 или поље може бити щразно.

У пољу за метод мерења испаравања могу бити уписане вредности од 1-3 или поље може бити празно.
[ISPmet=1-3;BL]
Број редова са слогом 14:
У полу за број редова са слогом 14 могу бити уписане вредности 1-4, 8 или 9 .
[BRRED14=1-4;8;9]

Контрола слогова 14

У пољу за шифру појава могу бити уписане вредности 11-19, 21-29, 31-39, 41-49, 51-59, 61-69, 71,72 или 99.
[SIF=11-19;21-29;31-39;41-49;
51-59;61-69;71;72;99]
У пољу за интезитет појаве могу бити уписане вредности од $0-9$

$$
[I=0-9]
$$

Уколико је у пољу за шифру појаве уписано 99 онда у пољу за интезитет мора да је уписано 9 .

$$
[S I F=99 ; I=9]
$$

У пољу за почетак временске појаве могу бити уписане вредности од $0000-2400,4444,5555$, $6666,7777,8888$ или 9999.
[POCE $=0000-2359 ; 4444 ; 5555 ; 6666$;
7777;8888;9999]
У пољу за крај временске појаве могу бити ушисане вредности од $0000-2400,4444$ 5ит $6666,7777,8888$ или 9999.
[KRAJ=0000-2400;444;5555;6666;
7777;8888;9999]
У пољу за почетак временске појаве мора бити уписана мања или једнака вредност од вредности уписане у пољу за крај појаве

$$
[\mathrm{POCE}<=\mathrm{KRAJ}]
$$

Уколико је у пољу за шифру појаве уписано 99 , онда мора да је у пољима за почетак и крај појаве уписано 9999

Апсолутна разлика вредности ваздушног притиска између два суседна термина мора да је мања од 7.
[/PSTcas-PSTcas-1/<7]
Ако је у претходном термину шифра за стање тла била 0 , висина падавина у термину 0.0 или 0.1 , онда шифра за стање тла у термину мора да је различита од 2 .
[Ecas-1=0;VP<=0.1;<>999;Ecas<<>2]
Ако је у претходном термину шифра за стање тла била 3 , температура ваздуха у термину и претходном термину мања од -5 , онда шифра за стање тла у термину мора да је различита од 0 .
[Ecas-1=3;T<-5;Tcas-1<-5;Ecas<>0]
Ако је у претходном термину пифра за стање тла била 8, или 9, температура ваздуха у термину и претходном термину мања од -5, онда шифра за стање тла у термину мора да је већа или једнака 4.
[Ecas-1 $=8,9 ; T<-5 ;$ Tcas-1<-5; Ecas=>4]
Ако је у претходном термину шифра за стање тла била 8, или 9 , температура ваздуха у термину већа од -5 , онда шифра за стање тла у термину мора да је већа или једнака 2.
[Ecas-1=8,9;T>-5;Ecas=>2]
Контрола повезаности поља у слоговима 12 и 13

Вредност максималне дневне температуре ваздуха мора да је већа или једнака од одговарајућих терминских.
[Tmax=>Tterm.]
Вредност минималне дневне темшературе ваздуха мора да је мања или једнака од одговарајућих терминских.
[Tmin<=Tterm.]
Вредност максималне дневне брзине ветра мора да је једнака највећој терминској за тај дан.
[Vmax=max_V]

Вредност минималне релативне влажности ваздуха мора да је мања или једнака од одговарајућих терминских

[Umin<=U]

Вредност днавне количине падавина мора да је једнака суми одговарајућих терминских количина.
[R0707uk=SumaVP (08-07)]
Вредност количине падавина у 07 часова мора да је једнака суми одговарајућих терминских количина.
[R07vis=SumaVP (20-07)]
Вредност количине падавина у 19 часова мора да је једнака суми одговарајуһих терминских количина
[R19vis=SumaVP (08-19)
Ако су шифре за облик падавина у 07 часова у расюону од $1-7$, онда мора да је шифрована нека појава од 1-9 у колонама P54 или P55 у терминима од 20-07 часова
[R070bl=1-7; pojave P54, P55=1-9
od 20-07]
Ако су шифре за облик падавина у 19 часова у распону од $1-7$, онда мора да је шифрована нека нојава од 1-9 у колонама P54 или Р55 у терминима од 08-19 часова
[R19obl=1-7;pojave P54,P55=1-9
od 08-19]
Ако је шифра за облик падавина у 19 часова 8 , онда мора да је шифрована нека појава од 3-6 у колонама P56 или 1-9 у колони P57 у терминима од 08-19 часова.
[R19obl=8; pojave $\mathrm{P} 56=3-6$, P57 $=1-9$ od 08-19]

Ако је поље за степен покривености тла снежним покривачем у 07 часова празно, онда шифра за стање тла у термину 07 часова мора да има вредност од 0-4.
[SP07st=BL; E07=0-4]
Ако је у пољу за степен покривености тла снежним покривачем у 07 часова уписана вредност од $1-8$, онда шифра за стање тла у термину 07 часова мора да има вредност од 5-9.
$[$ SP07st=1-8;E07=5-9]
Ако је поље за степен покривености тла снежним покривачем у 19 часова празно, онда шифра за стање тла у термину 19 часова мора да има вредност од 0-4
[SP19st=BL;E19=0-4]
Ако је у пољу за степен покривености тла спежним покривачем у 19 часова уписана вредност од $1-8$, онда шифра за стање тла у термину 19 часова мора да има вредност од 5-9.
[SP19st=1-8;E19=5-9]
Контрола повезаности поља у слоговима 12 и 14

Ако за непрекидну појаву у слогу 14 нису шифроване одговарајуће појаве у колонама P54, P55, P56, Р57, P58 и P59 у обухваһеним терминима исписује се порука за сваки такав термин. На пример:
24.10.u
obuhvacen] $\underset{\text { P57 }}{\text { [P57 }} \quad \underset{\text { termin }}{\text { Sifra }=41} \quad \begin{gathered}\text { nije } \\ \mathrm{I}=5\end{gathered}$ $\begin{array}{ll}\text { obuhvacen] } \\ \text { Pocetak }= & \text { P57 }=\text { Kraj }=530\end{array}$

Контрола међудневне променљивости у слогу 13

Ако у пољу за укупну количину падавина стоји 8888, није било падавина, онда и у пољима за количине падавина до 19 односно 07 часова мора да стоји исто
[R0707uk=R19vis $d-1=$ R07vis=8888]
Укупна количина падавина мора да је једнака збиру количине падавина до 19 часова претходног дана и количине падавина до 07 часова тога дана.

R0707uk=R19vis d-1+R07vis
Ако у пољу за укупно испаравање стоји 888, није било испаравања, онда и у пољима за испаравање до 19 односно 07 часова мора да стоји исто
[1SP0707uk=1SP19kol $d-1=1 S P 07 \mathrm{kol}$ 888]

Вредност укупног испаравања мора да је једнака збиру испаравања до 19 часова претходног дана и испаравању до 07 часова тога дана.
[ISP0707uk=ISP19kol d-1+ISP07kol]

Контрола повезаности поља у слоговима 13 и 14

Ако у пољу за облик падавина у 07 часова у слогу 13 стоји шифра 1-7, онда у слогу 14 мора да стоји нека од шифара од 11-19 или 21-29 са одговарајућим интервалом трајања
[R070bl=1-7;sifre 11-19;21-29 u 14]
slogu 14]
Ако у нољу за облик падавина у 19 часова у слогу 13 стоји шифра 1-7, онда у слогу 14 мора да стоји нека од шифара од 11-19 или 21-29 са одговарајуһим интервалом трајања.
slogu 14]

Ако у пољу за облик падавина у 19 часова у слогу 13 стоји шифра 8, онда у слогу 14 мора да стоји нека од шифара $33-36$ или 41-49 са одговарајућим интервалом трајања

14]"
Ако у пољу за облик падавина у 07 часова у слогу 13 стоји шифра 8, онда у слогу 14 мора да стоји нека од шифара 33-36 или 41-49 са одговарајућим интервалом трајања.
[R07obl=8;sifre 33-36;41-49 u slogu 14]

Ако у пољу за висину новог снега у 07 часова у слогу 13 стоји нека вредност $00-99$, онда у слогу 4 мора да стоји нека шифра $18,19,21-27$ с одговарајућим интервалом трајања.
[SP07no=00-99;sifre
18;19;21-27 u slogu 14]

Ако у пољу за висину новог снега у 19 часова у логу 13 стоји нека вредност $00-99$, онда у слогу мора да стоји нека шифра $18,19,21-27$ са одговарајућим интервалом трајања.
[SP19no=00-99; sifre
18;19;21-27 u

Закључак
Програм за логичку контролу дневника ГМС је (слогове). Такође, показало се да се проналаз испитиван и коришћен последњих неколико и грешке које се јако тешко уочавају без година на подацима Метеоролошке опсерваторије ьеоград. Може се рећи да програм омогућава да се изврши далеко неуноредиво краће време

Велика већина грубих грешака се веома Велика венина грубих грешака се веома ефикасно проналази. Ефикасно се налазе и грешке код прерачунавања и свођења, као и параметара у различите делове дневника

Й
Из свих наведених разлога програм је намењен и прилагођен за коришћење на Главним метеоролошким станицама које имају рачунар раһен је за рад и на најслабқјим PC латформама под DOS-ом како би контрола вршила одмах по унетом месецу, ако би се исправке извршиле пре него што дневник нанусти станицу.

Литература:

СХМЗ, 1974: Уйуйсво за бележене йодайака у дневник осмайрања йлавне мейеоролоике Плазинић, С., 1990: Пројекӣни задайак лойичке конйроле дневника ГМС, РХМЗ Србије

SADIS-ОСОБИНЕ, МОГУЋНОСТИ И ПРИМЕНЕ

Радовановић Е. Драган, дипл. мет.
Савезна управа за контролу летена, Др. Ивана Рибара 91, 11070 Нови Београд

SDIS is an operational system dedicated primary to aeronautical meteorological information in line with ICAO world-wide provision. Operational data are disseminated without conflict or delay caused by dissemination of non-operational data.This work shortly describes the system, its adventages and implementation at the airport Belgrade.
SADIS je оперативни систем наменен првенствено за размену ваздухопловних метеоролоиких информација и развијен је под покровитезством ІСАО. Оперативни подаци се емитуу до крајьих корисника без закашнена и конфликата изазваних присуством неоперативних података. У раду је дат кратак приказ система, предности употреб́е оваквог и система као и опис конкретне конфигурације инсталиране на ад Београд.

Разлози који су довели до развоја SADIS

Светски прогностички систем WAFS (World Area ваздухопловних прогноза у глобалним, као и Forcasting System) је систем ICAO основан 1982 године на скупу о метеорологији и комуникацијама у Монтреалу, са задатком да, као обезбећује и испоручује информације о метеоролошким условима у сликовном метеоролошким условима у сликовном

Сателитске емисије из два Светска прогностичк Сентра (WAFC) једног у Лондону а другог Вашингтону, представљаауу примарне, Вашингтону, представьају примарне,
ваздухопловству намењене компоненте WAFS Оне су међуународни телекомуникациони сервис за слање ваздухопловних информација земљама чланицама ICAO.

Ваздухопловне информације које се шаљу путем сателита укьучују пре свега оперативн метеоролошке информације (OPMET) које с састоје од графичких приказа временске ситуације које непрекидно генеришу Регионални прогностички центри (RAFC), прогноза висинског ветра и температуре и значајних временских услова у облику дигиталних података у тачкама мреже (гридованих података) и графичких формата, као и словно-нумеричких порука.
 научна устова за уагређене свих асегат

локалним прогностичким центрима

Светске сателитске комуникације се развијају уз коришћене три INTELSAT сателита. Сједињене Америчке Државе йе користити пренос продуката из WAFC у Вашингтону у регион обе Америке, Пашифика и источне Азије, док he WAFC Лондон преко једног INTELSAT слати информације Европи, већем делу Азије, Алати информације Европи, векем делу Азије, облй Аустралији. Систем у Вашингтону зове се ISCS (International Satellite Comunications System), a лондонски SADIS (Satellite Distribution Syustem). SADIS и ISCS су један другом резерва (back up). На Слици 1. су показане локације сателита, са везама између Вашингтона и Лондона

Сателитске емисије продуката WAFS-а намењене су искључиво коришћењу у ваздухопловству и поједине земље овлашћење за њихов пријем траже y ICAO
Свака земља чланица ICAO сама одређуује дистрибуцију ОPMET инфомација корисницима на својој територији, као и средства, везе и информациони ток који ие се користити у ту одребује саветуіуъи се са својим наднежним

Слика 1. Локачије и прекривања сателита

метеоролошким органима, кога пе овластити за приступ сателитском преносу. Могући кориснмци су: авио превозници, јединице службе коитроле летења, јединице службе за трагање и спасавање, јединице службе ваздухопловних ииформацхја, саветодавни центри за тропске циклоне и вулкански пепео, и др

Наша земља налази се у области коју покрива система SADIS из светског прогностичког центра у Лондону и користи вихове продукте непрекидно од новембра 1997. године.

Свакодневно управљање SADIS преузео је на себе WAFC у Лондону, а предвиђено је да средње и дугорочно надгледаве SADIS преузме интеррегионална SADIS оперативна груна техничких стручњака, гако би се оситурало адекватно задовољеве свих потреба земаља чланица и самих корисника

WAFC Лондон је у блиској сарадњи са ICAO израдио Упутство за коришіење SADIS, како би обезбедио праве информације о набавци, инсталираву и приступању систему. Упутство списом, као и ошис успостављених станарда за ррисазиване Ово упутство које не се редовно догуњавати може да се набави у свии допунания у свим регионалнкм службама ICAO

Пријем продуката

Да би се обезбедио пријем SADIS, потребна је мала пријемна станица (VSAT - Very Small Aperture Terminal). То може бити или само мријемна VSAT (једносмерна) или пријемни и овратни систем (двосмерна VSAT). Двосмерни систем је развијен како би се омогућило слан OPMET у алфанумеричкој форми (као METAR TAF извештаји, упозорена о опасном времену н рути - SIGMET и спешцјални извештаји из ваздуха золасти где су постојеми земалсу AFTN Ваздухопловна стална телекомуникациона мрежа и MOTNE - Метеоролошка оперативна телекомуникациона мрежа.)

VSAT која је код нас инсталирана је само пријемна станица. Пријемна опрема састоји се од антенс мречника 2.4 m , постола, одговарајуиих каблова пријемне јединице која је инсталирана у згради. У прему достављена нам је потпуна документација ма монтажуу уз помоћ које је технича служба сам нисталирала опрему. За место инсталирања антен забран је раван кров. Постоље антене заузим
 оптереиено баластом тежине око 1800 кг како би се

За разлику од једносмерног пријемног система чије је кнсталтраве релативно лако и може га

бавити сам корисник уз незнатну техничку помо двосмерни систем изискује подршку Matra Marco (г је компанија коју је WAFC Лондо снабдеване пивање сателитске комуникаци VSAT је истих димензија као и једносмерна али постоје и неке важне разиике Енергија коіу емитује двосмерна станица може ступити у нттерференцију са локалним изворима зрачења

Приказивање продуката

Подаци са пријемне станище се испоручују крајњим корисницима у формату "отвореног индустријског стандарда X. 25 , који дозвољава да ее подаци обраде на најпогоднији начин. Ca VSA подаци се одашиљу брзином од 64 kbps , што могућава да се глобални GRIB од око 3.3 mb пренесе за нешто више од десет минута.

Да би се продукти SADIS приказали, потребно је да корисник располаже системом за обраду података. У том погледу корисник, који можда већ поседује погодну опрему, нема потребу да набавља неки посебан систем. Могућност избора фоза зы "отвореног тржишта" Ошис потрсбни
 ADIS. SADIS.

о укључује:

- Повезивање са X. 25 протоколима на 64 kbps из

VSAT и повраћај података преко двосмерне
везе;

- Обраду података у времену блиском реалном, декодирање GRIB-а, T4, и алфанумеричких кодова;
- Приказивање само релевантних карата
- Једноставно и лако коришћење;
- Приказивање поља ветра и температуре у позадини карте;
- Шдабирање области мапе за дату руту,
- Штампање целих карата на формату A4;
- Могућност проширења ради приказа BUFR и других поља података, као и пребацивање из једног кода у други.

Опис ннсталиране SADIS опреме на а/д Београд
Код избора система за приказивање определили смо се за набавку комлетног хардвера и софтвера од британске фирме TCDL, измеюуу неколико софтвер за приказ SADIS продуката. С обзиром на поменуту филозофију "отвореног тржишта" избор расположивог софтвера се стално увећава.

На слици бр. 2 дат је пример препоручене комлетне конфигурацује SADIS опреме. Управо оваква конфигурација је инсталирана на Аеродрому Београд.
Оваква конфигурација омогућава коплетану резерву (buck-up) свих компонената система осим самог тањира антене

82 Re2 Recommended Solution

As isstalled in Beeqgrate
is Weather Systems for the Worid
Слика 2. Конфигурачија SADIS опреме
Важно је напоменути да код пројектовања система првобитно је принтер био повезан преко Secondary и његове резерве треба добро обратити пажњу на WEATHERworkstation што је у случају сам технолошки процес који ће бити примењен у раду система. Примера ради на а/д Београд привременог отказа ове радне станице онемогућавало штампу и са друге радне станице.

Повезивањем принтера као мрежног принтера, онако како је приказано на Слици 2., добило се да свака радна станица има потпуно независан пријем и складиштење података као и могућност независног штампања продуката

Архитектура саме радне станице (PC) приказана је на Слици 3. Обадве радне станице су идентчне архитектуре са напоменом да је у мрежи, која је дефинисана као сервер а секунимарна станица Упаз података, означен на стици 3 иде преко антене, сплитера и пријемника све до картице за прихват података која се налази у самом РС. Софтвер за складиштење и обраду података организован је према шеми датој на слици 3 Оперативни систем под којим ради ради РС је UNIX што омогупава рад више процеса истовремено. Тако су активни процеси за прихват података (ingestors), за смештање у базу података (time based data stores), приказ у десктопу актуелних података (desk) коришћењем унапред дефинисаних графичких продуката (time free data store) а све то усклађује посебан процес (event hendler).

Овако конципиране, обадве радне станице имају независан пријем, складиштење и приказ продуката, тако да су у потпуности све време

активна резарва једна другој. Како би се обезбедио несметан рад са обе радне станице и при томе добијали увек исти продукти, после дефинисања нових графичких продуката на било којој станици они се под истим именом копирају и на другу радну станицу. Такође обадве станице приступају базама на примарној радној станици док је у лучау кали прмарне радле станц потрбно ов ископчати из мреже како би секундарна
приступала својој бази података.

Погодности употреб́е SADIS

У погодности употребе SADIS свакако спадају:

- Квалитетне карте за међународне летове

Ажурне оперативне метеоролошке информанје (ОРМЕТ);

- Поуздане комуникације;
- Поуздан и једноставан систем за коришћење и пријем података;
- Благовремено информисање
- Брз трансфер података;
- Бесплатни подаци за овлашћене кориснике
- Једноставна набавка и ниска цена система за пријем
Могућност избора система за приказ продуката.

Слика 3. Архитектура радне стаиице

WAFS продукти и друге OPMET информације се Ваздухопловне Службе и међусобно повезан са одашиъу без застоја изазваних неоперативним земаљским комуникационим везама ICAO. Такође информацијама. SADIS he стално бити је у потпуности повезан са WAFC у Вашингтону, и контролисан и од стране земаља чланица ICAO, оба центра су, за случај прекида у пријему и преко одговарајућих тела за планирање и емитовању података, у потпуности резерва један имплементацију. Он је витални део Сталне другом.

ТРЕНД СРЕДНЕ ГОДИЩНН ТЕМПЕРАТУРЕ ВАЗДУХА

Оливера Јовановић, дийл. мейо, Тихомир Пойовић, дийл.мей. Савезни хидромейеоролоики завод, Бирчанинова 6 Беойрад, Југ̄ославија

Abstract

This paper analizes the trends of mean annual air temperature of 27 main climatological stations on the territory of FR Yugoslavia. The periods of 10 to 30 years have been used for computing trends, by 10 years step, since 1951 successively. Trend value analysis of mean annual air temperature implies that trend value depends on the length of the sequence (20, 30 years), on the particular period (1951-80 or 1961-90) and on the particular region. Here is a great spatial-time variability of mean annual air temperature trend on the territory of FR Yugoslavia.

Абс $\bar{u} p a \kappa \bar{u}$

У овом раду, анализирани су йрендови средњих г̄одииних йемйерайура ваздуха са 27 г̄лавних климайолоиких сйианица на йодручју СР Југ̄ославије. Трендови су рачунайи за йериод
 зависи од дужине коришћеной низа, (20, 30 г̄одина), од конкрейной йериода (1951-80 или 1961-90) и йодруча. Просйорно временска йроменъивосий $\overline{\text { йренда средне годдинье ииемйерайиуре ваздуха }}$ а йодручју СР Југ̄ославије је велиса

увод

Температура ваздуха је значајан климатски параметар. Изучавање климе, како локалитета, тако и ширих просторних размера укључује израчунавање средње вредности тем пературе ваздуха за различити број година, најчешће онај број година којим тренутно располажемо. Тридесетогодишњь низови по атака сматрају се нормалним вредностима било које подручје. У пракси се најчешће користе просечне тридестогодишње вредности низова 1951-1980 или 1961-1990.

Проблеми везани за утицај урбанизације поручја, прекид хомогености низа мерења (замена ииструмента, локације мереша, осма рача...) или глобалних климатских колебањ при израчунавању средњих вредности темпера уре ваздуха се обично не узимају у разм трање.
Бројни научни и стручни радови баве се проб лематиком антроногеног утицаја на промену емпературе ваздуха. Резултати су у зависност тименеших метода разлиши, од зака мримењених метода различити, од закључка

је антропогени фактор најзначајнији фактор пораста температуре ваздуха у урбаним срединама (Thune 1996) до резултата да је антропогени утицај на пораст температуре ваздуха, ако се избаци утицај сунчеве активности, у Женеви $0.0^{\circ} \mathrm{C}$ а у Варнави $0.1^{\circ} \mathrm{C}$ (Boryczka, 1996).

Циљ овог рада је да прикажу разлике у вред ностима средње годишње температуре ваздуха на подручју СР Југославије и разлике у тренду средњих годишьих температура ваздух израчунате за различите временске низове

ПОДАЦИ

Средње годишње температура ваздуха са 27 главних климатолошких станица на подручју СР Југославије, за период 1951-1996. година.

МЕТОД

Линеарни тренд је рачупат за периоде различитог трајања од 10 до 30 година, кора ком 10 година, сукцесивно за све године од 1951. Линеарни тренд израчунат је методом

најмањих квадрата. Коришћена је функција облика

$$
Y=a_{0}+a_{1} * X
$$

где су:
$a_{0}=\frac{(\Sigma Y)\left(\Sigma X^{2}\right)-(\Sigma X)(\Sigma X Y)}{N \cdot \Sigma X^{2}-(\Sigma X)^{2}}$

$$
a_{1}=\frac{N \cdot \Sigma X Y-(\Sigma X)(\Sigma Y)}{N \cdot \Sigma X^{2}-(\Sigma X)^{2}}
$$

У низу 1951-1996 година, добијене су серије од 37 чланова десетогодишњих трендова средње годишње темиературе ваздуха, 27 чланова двадесетогодишњих трендова средње годишше температуре ваздуха и 17 чланова тридесетогодишьих тренова средње годишње температуре ваздуха

Анализа линеарних трендова сукцесивних низова метеоролошких параметара примењен је у раду Груза Г. (1994) и Јовановић О. (1996).

РЕЗУЛТАТИ

Добијене вредности клизних десетогодиш-них, двадесетогодишшьи и тридесетогол-ишњих трендова средње годишње температуре ваздуха чине низове од 37 односно 27 и 17 вредности. Анализа добијених резултата дата је у Табели 1 за десетогодишње трендове и у Табели 2. за тридесетогодишње трендове
Вредности трендова дате су у степенима целзијусовим на 10 година. У табелама су коришћене следеће ознаке:

мах максимална вредност тренда
god a почетна година периода (10 или 30)
min м минимална вредност тренд
god
почетна година периода (10 или 30)
$X s$: средња вредност тренда
σ : стандардна девијација

Максимални десетогодишњи тренд средње годишње температуре ваздуха је на целом анализираном подручју, са изузетком Нодгорме, у нед ноя соиишње температуре ваздуха су у иштрвалу од $10^{\circ} \mathrm{C} / 10$ година до $21^{\circ} \mathrm{C} / 10$ гонина Максимана рредност несетогониниег трена срение

годишње температуре ваздуха ($2,1^{\circ} \mathrm{C} / 10$ година) забележена је на подручју Сомбора, Кикинде и
Зрењанина Зрењанина
Највеһе негативне вредности десетогодиш-ње тренда средње годишше температуре ваздуха
 ретогодишних трентова сретие годинии емшературе вазпуха су у периолима 1951-1960 (на 13 станица) у перподу 1960-1969 (1 станица) периоду 1961-1969 (1 станиша) у нериоду 1967-1976 (5 станица) у периоду 1971-1980 станица)

Вредности највећих негативних десетогодшњих трендова средње годишње тмме ратуре ваздуха су у иитрвалу од $-0,6^{\circ} \mathrm{C} / 10$ година (Ваљево и Јозница) до $-1,1^{\circ} \mathrm{C} / 10$ година Највећа негативна вредност десетогодишње тренда средње годишње температуре ваздуха (, $1^{\circ} \mathrm{C} / 10$ година) забележена је на подручіу Никшића, Крушевда и Лесковца.

Вредности средњих десетогодишњих трендов редње годишне температуре ваздуха су нттрвалу од $-0,06^{\circ}$ С 10 г. (лесковац) до $0,21^{\circ} \mathrm{C} / 10$. (Нови Сад, Палић и Лозница)
Опсег стандардне девијација десетогодиш-њих трендова средње годишше темпе-ратуре заздухе је од $0.46^{\circ} \mathrm{C}$ у Димитровграду до $0.7^{\circ} \mathrm{C}$ у Лесковцу и Неготину

Максимални тридесетогодишњи тренд средњ годишње температуре ваздуха је на већини станица (20) у периоду 1967-1996.г, на осталих седам период је 1965-1994. Вредности макси алних тридесетогодиш-ьых трепдова средны 0° ०10
, jemar
Највећи пегативан тридесетогодишњи тренд средње годишње температуре ваздуха заележен је на 16 станица у периоду 1951-1980, а 11 станица у периоду 1957-1986. Вредност највећих негативних тридесетогодишњих тренова средње годишње температуре ваздуха су нтрвалу од $-0.5^{\circ} \mathrm{C} / 10$ г. (Лесковап) до $-0,1^{\circ} \mathrm{C} / 10$ одина (Нови Сад)

Вредности средњих тридесетогодишњих тренова средње годишње температуре ваздуха с позитивне на 6 станица (Београд, Лозница Нови Сад, Палић, Сомбор, Зрењанин, Златибор) у интрвалу од $0,01^{\circ} \mathrm{C} / 10$ г. (Златибор) до $0,09^{\circ} \mathrm{C} / 10$ г. (Палић). У Зрењанину и Улцињу средња вредност тридесетогодишњих трендова средње годишње температуре ваздуха је $0^{\circ} \mathrm{C} / 10$ г., на осталих 19 станица средња вреднос тренда је негативна, до $-0,28^{\circ} \mathrm{C} / 10$ г. у Лесковцу

Табела 1. Екстремне, средње вредности и стан дарна девијација десетогодишьих трендова реднь годишшь температуре ваздуха у пери olv 1951-199

	Max	god	Min	god	Xs	σ
Beograd	0.3	1967	-0.2	1997	0.04	0.14
Cuprija	0.1	1967	-0.4	1991	-0.14	0.14
Dimiovorgad	0.0	1967	-0.3	1951	-0.19	0.1
Kikinda	0.2	1965	-0.2	1957	-0.01	0.1
Krajeivo	0.1	1967	-0.2	1957	-0.06	0.09
Kгадиегтас	0.2	1967	-0.2	1951	-0.03	0.12
Kruserac	0.2	1967	-0.3	1951	-0.07	0.12
Leskovac	0.1	1967	0.5	1957	-0.28	0.10
Lozica	0.2	1967	0.2	1957	0.02	0.13
Negoit	0.3	1967	-0.3	1957	-0.02	0.20
Nikzicic	0.3	1965	-0.2	1951	-0.03	0.17
Nis	0.2	1967	-0.3	1951	-0.10	0.14
Novi Sad	0.2	1965	-0.1	1957	0.04	0.12
Palic	0.3	1965	-0.2	1951	0.09	0.16
Pec	0.2	1967	0.2	1957	-0.07	0.14
Podgorica	0.3	1967	0.3	1951	-0.02	0.18
Pożega	0.1	1967	0.2	1957	-0.06	0.09
Prisitina	0.2	1967	-0.3	1951	-0.12	0.14
Sienica	0.3	1967	0.4	1951	-0.01	0.19
S. Palank	0.3	1967	-0.3	1951	-0.03	0.18
Sombor	0.2	1965	-0.2	1951	0.03	0.15
Ulcinj	0.3	1967	-0.3	1951	0.00	0.19
Valjevo	0.2	1967	-0.2	1957	-0.01	0.15
Vraje	0.1	1967	-0.3	1957	-0.16	0.12
Vrsiac	0.1	1965	-0.3	1951	-0.03	0.10
Zlatioor	0.3	1965	0.3	1951	0.01	0.18
Zrenjanin	0.2	1967	-0.3	1951	0.00	0.16

Табела 2. Екстремне, средње вредностн и стан дарна девшјациіа тридесетогодишњих трендов средние годишъе темиературе ваздуга у пери
оду 1951-1996.

	Max	god	Min	god	Xs	σ
Beograd	0.3	1967	0.2	1957	0.04	0.14
Cuprija	0.1	1967	0.4	1951	0.14	0.14
Dimirovgrad	0.0	1967	-0.3	1951	-0.19	0.12
Kikinda	0.2	1965	-0.2	195	0.0	0.12
Kratievo	0.1	1967	-0.2	195	-0.06	0.09
Kragujevac	0.2	1967	-0.	1951	-0.0	0.12
Krusevac	0.2	1967	0.3	195	-0.07	0.1
Leskovac	0.1	1967	0.	195	-0.2	0.19
Loznica	0.2	1967	-0.2	1957	0.02	13
Negotin	0.3	1967	0.3	1957	-0.02	0.20
Niksicic	0.3	1965	0.2	1951	-0.03	0.1
Nis	0.2	1967	-0.3	1951	-0.10	0.14
Novi Sad	0.2	1965	-0.1	195	0.0	0.12
palic	0.3	196	-0.2	195	0.0	0.16
Pec	0.2	196	-0.2	195	-0.0	0.14
Podgorica	0.3	1967	-0.3	1951	-0.02	0.18
Pozezga	0.1	1967	-0.2	1957	-0.06	0.09
Prisitina	0.2	1967	-0.3	1951	-0.12	0.14
Sicica	0.3	1967	0.	195	-0.01	0.19
S. Palanka	0.3	1967	0.3	1951	-0.0	0.18
Sombor	0.2	1965	0.	1951	0.0	0.15
Ulcinj	0.3	67	-0.3	1951	0.0	0.19
Valievo	0.2	1967	0.2	1957	-0.0	0.15
Vranje	0.1	1967	0.3	1957	-0.1	0.1
Vrsiac	0.1	1965	-0.3	1951	-0.03	0.10
Zlatioor	0.3	1965	-0.3	1951	0.01	0.1
Zrenjanin	0.2	1967	0.3	1951	0.00	0.16

Опсег стандардне девијација десетогодиш-њих трендова средње годишње температуре ваздухе је од $0,09^{\circ} \mathrm{C}$ у Краљеву и Пожеги до $0,20^{\circ} \mathrm{C}$ у Не-
готину. готину.

Анализа вредности тренда средње годишње температуре ваздуха показује да вредност тренда зависи од дужине коришћеног низа, (20, 30 година), од конкретног периода (1951-80 или 1961-90) и подручја.

Тридесетогодишњи низови података сматрају се пормалним вредностима за било које подручје. у пракси се користе щросечне дручје. придестогодишње вредности низова 1951-1980 или 1961-1990. Од 27 анализираних станица. 21 станица има већу средњу годишњу температуру ваздуха у периоду 1951-80 у односу на период 1961-1990. Највећа разлика између просечних тридесетогодишњих вредности средње годишве температуре ваздуха је на станици 1980, док су на шест станица (Београд, Палић, Нови Сад, Ваљево, Неготин и Улцињ) разлике мале до $-0.1^{\circ} \mathrm{C}$, тј. топлији је период 1961-1990. Тренд средње годинње температуре ваздуха за свих 17 анализираних тридесетогодишњих низова средње годишње температуре ваздуха има највећу негативну вредност у периоду 1951 1980, на 16 станица на подручју СР Југославије.

На сликама 1 и 2 приказана је просторна расподела тренда средиих годишшьих температура ваздуха у периоду 1951-1980 (Сл.1.) и у периолу 1961-1990 (Сл2)

Вредност тренда средњих годишњих темшература ваздуха, у периоду 1951-1980, је подручју целе СР Југославије негативна. Највеһа негативна вредност тренда средњих годишњих температура ваздуха, у периоду 1951-1980, је у Лесковцу $-4,5^{\circ} \mathrm{C}$ на 100 година. Вредности преко $-3,0^{\circ} \mathrm{C}$ на 100 година, су у области Велике и Јужне Мораве и у Сјеници

Просторна расподела и вредности тренда средњих годишњих температура ваздуха, у периоду $1961-1990$, на подручју СР Југославије су веома различите. На северозападу земље, вредности тренда су позитивна до $+1,9^{\circ} \mathrm{C}$ на 100 година, у Палићу. На југоистоку земље, вредности тренда су негативне до $-2,6^{\circ} \mathrm{C}$ на 100 година, у Лесковцу, (Сл.2).

Слика 1. Расподела тридесетогодиппњих треннова средње годишње температуре ваздуха, пернод 1951-1980, у ${ }^{\circ}$ С на 100 година, на подручју СР Југославије.

На слици 3 је приказана просечна средња годишња температура ваздуха на подручЈу СР угославије, у периоду $191-1996$. година. Најладнија година била је 1956 , са просечном температуром ваздуха $9,8 \mathrm{C}$, а најтоплија 1994 . са носечном гомаратуром ваздуха 12,4 С. нросор 1951-1980, $109^{\circ} \mathrm{C}$, у 1090 , је $191^{\circ} \mathrm{C}$ шшш и $10 .{ }^{\circ} \mathrm{C}$. $108^{\circ} \mathrm{C}$ 990 , је за $01^{\circ} \mathrm{C}$ нижи и износи $10,8^{\circ} \mathrm{C}$

Слика 2. Расподела тридесетогодишывх трендова средње годишње температуре ваздуха период 1961-1990, у ${ }^{\circ} \mathrm{C}$ на 100 година, на тодручју СР Југославпје.

Просторно осредъени десетогодишњи, дваде сетогодишњьи и тридесетогодишњи трендови средње годишње температуре ваздуха за територију СР Југославије, период 1951-1996, приказани су на Слици 4 . Обележја 10,20 и 30 одговарају низовима десетогодишњих, двадесе тогодишњих и тридесетогодишњих трендова средње годишње температуре ваздуха за тери торију СР Југославије ,

Просторно осредњени десетогодишњи тренд има минималну вредност у периоду 1951－1960，－ $0,65^{\circ} \mathrm{C} 10$ година，а највећу вредност у периоду $985-1996,1,59^{\circ} \mathrm{C}$ на 10 година．

низова 1951－1970，односно 1951－1980，вредности у порасту за све наредне периоде，закључно са периодима 1977－1996，за двадесетогодишње ни зове и 1967－1996 за тридесетогодиише низове

Просторно осредњени двадесетогодишњи и тридесетогодишњи трендови имају од почетних

Слика 4 Просторно осредњени десетогодишњи，двадесетогодишњн и тридесетогодипњи трендови средње годишње температуре ваздуха за територију СР Југославије，период 1951－1996，（линије на слици 2．обележене 10,20 н 30 ），y° С па 10 годипа

ЗАК历УУАК

Максимална вредност десетогодишњег тренда средње годишње температуре ваздуха（ $2,1^{\circ} \mathrm{C} / 10$ година）забележена је на подручју Сомбора， Кикинде и Зрењанина
Од 27 анализираних станица， 21 станица има већу средњу годишњу температуру ваздуха у периоду 1951－80 у односу на период 1961－1990．新这边а разлика између просечних тридесе－
 не чомлшіи период 1951－1980，док су на шест
 Неготин и Улцињ）разлике мале до $-0.1^{\circ} \mathrm{C}$ ，тј топлији је период 1961－1990．Тренд средње топлији је период 1961－1990．Тренд средње годишње температуре ваздуха за свих 17 триде－
сетогодишњих низова средње годишше тем пературе ваздуха има највећу негативну вред－ ност у периоду 1951－1980，на 16 станица на по－ дручју СР Југославије．

Просторно осредњени двадесетогодишњи и тридесетогодишњи трендови имају од ночетних низова 1951－1970，односно 1951－1980，вредности у порасту за све поред но перне，зажљуне са 1976，за дай

Просторно временска променљьивост тренда средње годишње температуре ваздуха на по－ дручју СР Југославије је велика，за тридесе－ тогодишње низове од
$-5^{\circ} \mathrm{C}$ до $+3^{\circ} \mathrm{C}$ на 100 година
Максимални тридесетогодишњи тренд средње годишње темшературе ваздуха је на веһини станица（20 од анализираних 27）у периоду 1967－1996．г．Године након 1980．и ране деведе－
сете（које су обухваћене овим периодом）су и на подручју северне хемисфе и на подручју планете Земље регистроване као екстремно топле（Виников 1994）．

ЛИТЕРАТУРА

1．Vinnikov K．Ya．at all（1994）：Global and hemispheric temperature anomalies from instrumental surface air temperature records，Trends ‘ 93 ，a compendium of data on global change，Corbon Dioxide Information Analysis Center，Oak Ridge，Tennessee，pp 616－628

2．Gruza G．V．（1994）：Observed and Expected Climate Change in Europe and its Potential Impacts，WCIPR Regional Association VI，Oslo

3．Thune W．（1996）：The urban heat island effect as a factor of global heating．International confference on urban climatology，Essen，Germany，pp 48

4．Boryczka J．（1995）The tendency of natural changes of the earth＇s climate identification of its causes，Pro－ ceedings of the international conference on climate dynamics and the global change perspective，Cracow，pp 293－299

5．Jovanovi）O．，Popovi\} T., 1996: Analysis of Total Annual Precipitation Trends in Belgrade（1888－1994）， $17^{\text {th }}$ International Conference on Carpathian Meteorology，pp． 143－146，Visegrad，Hungary

АУTOMATUЗAHMJA METEOPOJOHIKHX OCMATPAHA

Милан М. Вуламиовиһ,
Савезна уйрава за конйроау леиіења,
Др. Ивана Рибара 91,
11070 Беог̈рад, Југ̈ославија

Automation of meteorological observation by implementation PC in logging observed data.
Абсйрак"й
Ауӣомайизација мейеоролоиких осмайрања увођенем Пц-а за вођење дневника ГМСми, обраду и йредају оскойрених йодайика.

Увод

Познато је да метеорологија и као наука и као Да би се постигла тачност мерења врши се педелатност зависи од осматрања, одн. мерења и то далеко више него нека друга научна област или друштвена делатност. Ослањање на осматрања захтева да осматрања буду редовна, а осмотрени подаци тачни и поуздани. Да би се ово остварило потребно је да се на метеоролошкој осматрачкој станици располаже са прецизним и поузданим инструментима (по могуһности електронским), да се инструменти (који подлежу баждарењу) редовно баждаре, да осматрања врше стручно оспособљени осма трачи, који треба да обављају свој посао крајње одговорно, да се осматрања редовно и тачно бележе у дневнике осматрања и на крају да се редовно раде и предају договорени извештаји (SYNOP, METAR, ...). Не испуњавање наведених услова доводи до тога да при статистичким обрадама, или при другим применама осмотрених величина, уносимо ногрешне или у најмању руку сумњиве податке, а самим тим на излазу добијамо нетачне или сумњиве податке у мери колико су нетачни унети подаци

Недостаңи постојећег система осматрања

Данас, на метеоролошким станицама, код нас у Југославији, углавном, располажемо са технолошки застарелим инструментима, који немају уов немометара мли оии су претешио еле
 инструмената је немогућност ниховог увезив ња у аутоматске метеоролошке системе.

риодично баждарење инструмената. За веһину инструмената то баждарење се своди на израду корекционих табела или графикона за које се ПРЕДПОСТАВЈЬА да ће бити коришћени приликом вршења осмата у смислу кориговања грешака осматрања. Проблем баждарења и његове примене је још израженији у случају аутоматских метеоролошких система. По наишм прописима, и у случају аутоматских метеоролошких система, сензори за мерење одговарајућих метеоролошких елемената су, такође, подложни баждарењу. Проблем је следени: Имамо аутоматски систем који, како му већ само име говори, аутоматски врши мерење метеоролошких елемената и даје њихов приказ на мониторима на местима корисника. Међутим, корисник мора "ручно" да изврши корекцију мриказаних података, посебно за сваки баждарени сензор. На овај начин је доведена у питање цела аутоматика осматрања.
За архивирање осмотрених података користе се дневници ГМСт (Главне Метеоролошке Станице), који су уведени далеких педесетих је иромене у саису доживели неке значајш е промене у смису прианавава но нај
 у дневвих се ручно уносе текући подачи од стране сменског осматрача и ири томе узимајуطи у обзир вотико је потребно да се упесе појатага, може се само нагађати уолиғо се унесе ррешака. На мрају меседа, на савеснмм и уредром станишам врши се мрешисивање "радног" дневника у дневник који ће бити послат у

СХМЗ на обраду. Тешко је и предмоставити колико се на овај начии увесе нових, додатних, грешака, јер у том смислу никада нису вршене неке озбиљније анализе

Приликом разматрања свих ових фактора, који доприносе стварању нетачиих података, тре ба узети у обзир да и коришпење разних табе прерачунавања осмотрених метеоролошших
 извор грешаша

Предлог решевя проблема

Да би се нашред наведении проблеми решили, уз минимално могућа улагања. потребжо је изградити такав софтверски накет који би задовољио следеће захтеве:

- Да ради на јевтиним и опште прихваһеним платформама. Таква платформа, у наиој земљи, је свакако PC који поседује најмање следеће карактеристике:
- Процесор 80486
- RAM 16 MB
- HD 200 MB
- Оперативни систем Windows 95

Свака боља конфигурација, од наведене, омогућшће удобнији рад апиикатввног софтвера, нарочито у пољу графике. Цена овакве једне платформе сигурио не прелази цену једног живиног барометра.

- Да омогући једноставан и лак уиос "сирових" осмотрених података
- Да врши обраду и дораду свих "сирових" података, нир. израчунавање температуре тачке росе или QFE притиска. Прия обради ових података апликација мора сама, аутоматски, да врши корекције података у односу на листе баждарења.
- Да врши верификацију података на више нивоа: основну верификацију при уносу података од стране осматрача, касније приликом обраде података и коначно непосредно пре уноса у базу података.
- Да је максимално прилагодлива кориснику, т. да је могуће, без софтверских захвата, мењати све параметре који дефипииу апликацију и њен рад, нпр. тип метеоролопше станице, име и бројну ознаку станиде, над-

морску висину станице и барометра, висину прагова ПСС, оријентацију ПСС итд.

- Да може да ради без употребе електронских сензора, тј. да само врши функцију архивирања и верификације ручно унетих податауово пребациване у унаврев одређену баз у репубнином или савезнод одређену базу у републичком
лошком заводу.
- Да има могућност лаког и једноставног прикључивања сензора, без додатних захвата у софтверу, ради аутоматског осматрања оних метеоролошких елемената за које, да" нас у свету, постоје развијени сензори. На тај начин апликација треба да из свог по"Аутоматск, које се може дефинисати као "Аутоматски метеоролонки дневник", попређе у крајње стање, које можемо дефинисати као "Аутоматски метеоролошки систем"

МСт98

Пошто сам дуго година радио на аеродрому као прогностичар и како ми је посао био тесно наслоњен на актуелно осмотрене податке, био сам у могуһности да сагледам све проблеме око осматрања метеоролонких података. Задмих неколико година радим у Оделењу за план развој што ми је омогућило да упознам разне утоматске метеоролошке системе. Имао сам наст да учествујем у изради једног аеродромког метеоролошког система за коју сам урадио оперативне захтеве и алгоритам за процему RVR-а. На основу ових искустава, а сагледавајући недостатке решења постојећих аутомат ких система осматрања, па и оних које само ретендууу да то буду, дошао сам до сазнања да ееч "аутоматски готово код сви метеоро мошких система односи искључиво на електронске сензоре и обједињен приказ мерења на монитору PC-a. На тај начин се сужава појам аутоматског метеоролонког система. Аутоматски метеоролошки систем не чини, превасходно хардвер, тј. електронски сензори, рачунар и линије за повезивање. Аутоматски систем, пре свега, дефинише софтвер и он је тај који одредуе како не гомила сензора и електронике бити међусобно увезана и шта һе тако увезана представльти. Овако измењено схва-
 хардвсра на софтвер. Ако тако посматрамо стем без иједног електронског сензора. Наравно, ствари не могу толико појеннораритй

данашвем вивоу технологије неопходни су и ралним цртама да би се тек могао стећх увид у електрощскв сензори. Међутим, овако схваћен аутоматски систем омогућава нам да имамо велику аутоматизақиуу метеоролошких осматрања уз употребу класичних сензора, а да виши или потпуни степен аутоматизације можемо ностићк қаснхуим додавањем појединачних сензора.
Узвмајућбк све предходно у обзир, кренуо сам израду софтвера који би највећим делом мате ријализовао наведена разматрања. Софтвер ј јом сам кревуо крајем 1996. год.

МСт98 може да ради без иједнот прикљученог сензора б тада ради у тзв. моду "Аутоматски метеоропошжи дневии " Каснијим доцававем тојединих сензора и њиховом заменом за руч но уношење осмотрених података он се по својој фувкпвіи све више удаљава од тефшни ције "Аутоматског метеоролонког двевнига" а све више приближава дефиницији " Аутомат ске метеоролоике станице", одн. пуном ауто матском метеоролошком систему.

У основној изведби систем МСт98 чини: РС Windows 95 (или NT) оперативни систем, ашли кација МСт98 и модем. У пуној изведби систем чини: ПІІ, HT оперативни систем (евентуално Win95), МСт98 апликација, модем, аквизидиони блок, електронски сензори. Обе изведбе система је могуқе увезати у мрежу.

Слика 1

Основве опис аиликадије МСт98

Пошно је простор за овај чланак веома огра ничен, приказ апликације за аутоматизацију метеоролошких осматрања је дат само у гене

нен рад и њене могућност.

прилшком демонстрације њеног рада

У основи МСт98 представљају следећи екрани (слика 1)

- Системски параметри,
- Стање система,
- Унос осматрања
- Дневник ГМСт,
- QAM подаци, и
- Остали подаци.

Састенскн параиетри (слива 2). у оквиру овог екрана дата је могућност дефинисања свих нараметара апликације. Параметри су подељсни у следеће групе:

Општи параметри,

- Посебни шараметри,
- Баждарење,
- RVR,
- Сензори, и
- Осматрач.

Слика 2
Општи и посебви параметри дефинишу основне функције ашликације, као и основне податке о конкретној метеоролошкој станиди

Гругу параметара под називом баждарење чине параметри који се уносе са табела баждарења добпјених щриликом баждарења одређеног сензора у лабораторији СХМЗ-а (слика 3). Па-

раметри баждарења се увосе у посебан образац посебно за свакх баждарени сепзор. Ове нараметре апликацваа користв у једном ивтер оладионом полиному, којл служуя за ворекрия осмотрених података оп срране осматрада pa.

Групу параметара под именом $R V R$ чмяе параметри који се користе у бзрачунававву, тачшије процени RVR-а. Те параметре углавном предтављају подади о травсмисометрина мерачп ма позадинског светла, подадци са изокащдел них дијаграма пвичних й дентралешх светала ПССидр.

групи сензори дати су параметрм о семори ма. Ови параметри дају основве податқе о дрикьученом сензору. Затим, ти иараметри дају податке о томе да ли је сензор приквучен у слстем, ако јесте да ли је поставюен иа аутомат
 раметар служи у случајевима када користимо сензоре који нису електронски $\overline{1}$ 耳е мопу систе а своја израчунавава користи попатке о тум сензорима. Типичан пример је барометар.

Групу параметара под имевом Осматрач иине нараметри који представљају шодатке о осма трачима који врше метеороношка осматрава на станици

Сташе систена. Овај екран иружа потпуни уввд у стање система (аплмкапија, пржквупени сензори, оперативни систем и прр.). У оквкру овог ехрана једино је могуве стеча увшл у стање система, али не и вршеве пзмева ва систе my.

Унос осматрава (слыка 4). Гледажо са пози ције осматрача, ово је најважнијш екран п у коришћењу апликапије он he заузпматти преко 90% рада апликације.

Слика 3

у оввқру овог екрана врии се унос метеороло ивквх осматрања. У почетној фази унос је искључиво ручни, а прикльучењем појединих сензора ручни унос се смањује на најмању могућу меру.
Екран омогућава унос свих метеоролошких елемената, који се данас уносе у Дневник м МСт, и још неквх додатних, који су везани за себио је решеи пробием уношена обачности

у окввру овог дела програма врши се верифиқамија податага на два нивоа Прво, приииком непосредног уноса података оп стране осматрача и други пут приликом смештања податаха у базу У првом случају врши се основна контрола поцатака на бази могућих вредности а у другом случају контрола се врши на основу међусобних поређења различитих података и нихове искључивости или повезаности. Нпр. ако је податак о садашњем времену сумаглица клы магла, онда се он не слаже са податком о виддбивостии 10 км, или са брзином ветра, рецимо $10 \mathrm{~m} /$ сеп. Сваки такав податак биће враћен осматрачу на исцравку. Осматрач сад може да исщрави вредшост било којег од датих метеоролошких елемената п на тај начин разреши неусаглашеност..

Слика 4

Поред уноса осматрања и верификације унетих модатака у овом делу апликације се врши и формираве шифрованих извештаја типа SNOP и METAR, као и њихов трансфер путем модема ва вазначену адресу. Извештаје формира сама алиадија на осно унапред задаи методологије, а осматрачу се даје само на уви б евентуалне поправке

Дневник ГМСт (слика 5). у оквиру овог екрана имамо могућност избора између две врсте облика дневника: Први облик је ново щредложена верзија дневника, која је прилагођена овом програму, а и могућностима исписа на потојећим шттамначима, док је други облик ураен тачно према постојећем дневнику.

Овај екран нам даје могућност прегледа унетих података, али не и могућност за њихову измену. Подади могу на се претражују и филтрира у на више начина.

Из овог екрана се, према потреби, врши шттам пање осмотрених података, тј. појединачних термина осматрања, 24 часовног осматрања (једна страна дневника), или целог дневника односно осматрања за цео месещ.

QAM подада. Ово су подаци који се односе искључиво на ваздухопловна метеоролошка осматрања. Приказ ових података је прилагоен потреба непосредног метеоролошког обез ве ења летења. Тренутно у Југослвији имамо ма) који се баве искључиво осматрањем и приказом овог типа података

Приказ QAM података је могуће вршити помо һу два екрана, први екран даје приказ укупно

стања на аеродрому (RVR , висина базе облака, смер и брзина ветра, и др.), док други екран приказује стање релевантних метеоролошких елемената и осталих параметара везаних непосредно за изабрани щраг ПСС (обично одај који се користи за полетање/слетање)
Остали подаци. Овај екран служи за приказ података који тематски нису могли да се сврстају у неки од предходних екрана, а вихово потна вање може имати неког значаја за осматрача

Слика

АУТОМАТUЗОBAHA METEOPOЛOUIKA OCMATPAЊA HA AEPOДРОМММА

Миялии Т. Косиини, дийл. мей.
Савезиа уйрава за гсонииролу пейена, Пр. Меана Рибара 91, 11070 Нови Беог̄рад

bstract

Meteorological observations at the aerodromes are in air navigation safety function. That's why it is much more demanded for measured data to be accurate, representative, continuos and reliable, than for other types of meteorological observations. In order to satisfy these demands automated weather stations are installed at the aerodromes more and more. Complexity of the configuration of such stations isthe consequence of the location and specific meteorological parameters that are measured or evaluated. In this work are described demands for projection and installation of automated weather stations at the aerodromes and, as an example, automated weather station at aerodrome Beograd is described.

Айсииракй
Меииеоролоика осиайрана на аеродронина у функчиии су безбедносиии ваздуиног̆ саобраћаја. Збой йог̆а су захйеви да изнерени неиеоропоики йодачии буду ийтчни, рейрезенииаииивни, нейрекидни и йоуздани већи нег̈о код осииалих ерсиия неитеоропоиких оснайрана. Да би се ови закииеви задововили, све виие се на аеродромииа инсииаирају ауиомаииске меииеоропоике сиианце. Споженосии конфиеурацие оваквих сииница иоследица је локаццје и врсиие меииеоролоиких иаранешара који се иере или ироченују. у раду су оиисани захииеви који се
 дроиу и, као йринер, ойисанаје єуйолайска мейеоролоика сиианица на аеродрому Веогррад.

Захтеви за метеоролошким
осматрањима на аеродромима

Метеоролошки услови су одувек утицани на све фазе лета ваздухопнова. Развој технологхје израде и опремање ваздухоплова савременом навигационом опремом умавио је њихову осетљивост на неке од метеоролошких фактора и омогућио летене у много сложенијим метеоролошким условима. Мевутим, утицај значајан елемент безбериости вазнушиег сао брађаја, и њему се у ваздучоповству приије велика пажња. Квалитетним и потпуним мете оролошким обезбеђенем дазушшог сао браћаја значајо се доприноси пеговој безбед ности и економичности.

Утицај метеоролошких фактора на лет ваздухоплова различит је у различитхм фазама лета. Током полетања и слетања зжачајии су: видљивост, облачност, ветар, температура ваздуха, атмосферски притисак, турбулевдијја иі залеђивање. При лету на рутии потребно је располагати подацима о: температури ваздуха,

ветру, облачним системима, турбуленцији и залеђивању. У овом раду ћемо разматрати проблем метеоролошких осматрања на аеродромима, којима се обезбеђују метеоролошки подаци потребни за полетање и слетање.

Врсте метеоролошких осматрања
на аеродромима
На свим аеродромима отвореним за јавни ваздушни саобраћај формиране су метеролошке станице на којима се врше метеролошка осматрања. На овим аеродромима рие се редовна и специјална ваздухопловна метеоролошка осматрања. Зависно од нотреба и установљене праксе, на појединим аеродроосматрања и ове станище су укључене у мрежу лавних метеоронониих станица

Обим и врста ваздухопловних метеоролошких осматрања зависи од категорије аеродрома
(САТ). Наиме, аеродроми се према својој сспособљености за полетање и слетање деле на
 јом аеродрома на пиа, 1 и и нс. Категоријом аеродрома одређена је вредност метеи/или дозвољено полетање и слетање ваздухушнова у вогену метеоролошших елемената категорија одреьује миниматне вренности ме теоролошге видливости иии видзивосту дуж полетно-слетне стазе, висине базе облака или вертикалне видљивости и максималне вредности брзине ветра, при којима је, за одређени тип ваздухоплова, дозвољено полетање и слетање. На основу ових захтева, али и потреба израде анализе и прогнозе времена, ваздухопловна осматрања обухватају осматрања: тем пературе п влажности ваздуха, атмосферског притиска, смера и брзине ветра, метеоролошке видљивости и висине базе облака. Међутим, за потребе САТ II и САТ III, обавезно се врши и одређивање видљивости дуж полетно-слетне стазе (RVR).

За потребе синонтичких и климатолошких осматрања, тамо где се она врше, осматрања су проширена у складу са техничким регулативама Светске метеоролошке организације (WMO).

Захтеви за метеоролошким осматрањима на аеродромим

Основи захтеви за метеоролошким осмарањима на аеродромима, који треба да буду пспуњени приликом

метеоролонког саобраћаја, су: ачност
епрезевтатввност
непрекиднос

Тачност се остварује инсталирањем сензора за мерење одговарајућих метеоролошких мереве пара у складу са критеријумима прописаним од стране Светске метеоролошке организације и Међународне организације за цивилну ваздушну пловидбу (ICAO).

Репрезентативност се настоји постићи инсталирањем сензора у зони аеродрома на локацијама репрезентативним за операције полетања и слетања

Непрекидност подразумева да ваздухопловни корисници у сваком тренутку располажу са потребним подацима за извршење операција полетања и/или слетања. Овај захтев се задовољава инсталирањем аутоматизованих мете-

оролошких система који имају максимално могућу резерву у свим значајним елементим конфигурације.

Поузданост аутоматских метеоролошкиу станица подразумева најдуже могуће време измеуу два квара, али и што је могуће краћ хтева уградна и кориинене кралитетие иро фесионалне опреме најчешћ од афирмшсани и поузданих произвођача Такође, потребно ј и поузданих произвођача. Такође, потребно је детаљну техничку документацију, што не омогућити ефикасно одржавање

Обрада измерених података

Корисници ваздухопловних метеоролошких информација су бројни п различити. Условно, они се деле на кориснике у оквиру аеродрома: посаде ваздухоплова, контрола летења, аеро дромско предузеће и други и кориснике изва аеродрома (посаде ваздухоплова у лету и ко рисници на другим аеродромима). Информа ције се достављају у различитим облицима, али се увек тежи да информација буде у облику у коме ће је корисник неносредно користити, са минималмим ангажовањем. Тиме се доприноси да се ваздухопловни корисници максимално посвете основном послу (извршење лета вођење ваздухоплова, одржавање маневарских и других површина на аеродрому итд.) У циљу задовољења ових тежни, захтева се врло висок степен рачунарске обраде осмотрених података, тако да корисник добија "готову" информациуу. Со, опет, подразумева доста сложене софтверске пакете који ће подржавати за
хтеване функпије система хтеване функције система

Обрада измерених података обухвата њихову логичку контролу, израчунавање потребних изведених величина, израду одговарајућих шифрованих извештаја, приказ потребних информација у захтеваном облику, дисиминацију информапија у оквиру и изван аеродрома нарушавања техничког стања система) и друго

Дистрибуција метеоролошких информација
Дужина полетно-слетних стаза је обично између 2.000 м и 3.000 м. Имајући у виду да се сензори за мерење метеоролошких параметара значајних за ваздушни саобраћај инсталирају бочно од и у продужетку полетно-слетних стаза, потребно је обезбедити енергетску сигналну кабловску инсталацију које ће омогућити рад сензора и пренос измерених

вредности до јединице за обраду података Надаље, информације о метеоролошким рисииа та аеродрому Наше до бројих ко метеоролошким параметрима значајчшм за операчије полетана и слеташа (дриенин ветар ридивост видљивост туж нолетво-стетие стазе - PVR п висшиа бээе обтакарертиатва ришииост) мораіу етеутровским вутем бшти стављени на раснолагаже кочтрони летена истовремено х на исти начин како су пршказани у метеоролошкој служби.
Аутоматизована израда ваздухопловних пи других метеоролошких извештаја подразумева п њихиву дисиминациуу до вашиооалног телекомуникационог центра изван аеродрома, како би извештаји о времену бхли па располагању у међународној размени

Дистрибуцдја метеоролошких икформацқја добијених аутоматском метеоролошком станицом захтева, дакле, испуюене одговарајућих техничких услова. То, у великој мери, инстали рање аутоматизованог метеоролошког систем на аеродрому чини сложеним и захтева врло обимне и скупе принремне радове.

Аутоматска метеороношка станщда
на аеродрому Београд
у оквиру подизања категорије на аеродрому Београд на САТ ІІ, током 1997. године, Савезна управа за контролу летења, као орган надлежан за нослове метеоролошко бема набарина је и сасранаја ва аеродроаутоматизована метеоролошка осматрања Ошисом внстанираног стстена ноуазанено оако су испуиеши захтеви и препоруие дефини сани у досадашнем взагаву

На слици је шематски приказана конфвгурација система. Систем садржи: 1. сензоре,
2. јединицу за прикупљање података,
3. радне станице,
4. удаљене терминале и
5. осталу опрему

1. Сензори

Трансмисометар - Инсталирана су три уређаја типа SKOPOGRAPH FLAMINGO на следећим локацијама: обе зоще додира мри слетаву (TDZ), 300 m од прага полетио-слетме стазе (ПСС), и на средини ПСС, око 120 m бочно од осе ЛСС. Уређаји имају базну линиуу 50 m (рас тојање између предајника м пријемника свет лосног снона), итто омогуһава одређивање

видљхвости дуж ПСС (RVR - Runway Visual Range) у интервалу од $33,3 \mathrm{~m}$ до 2.000 m . уређајем се мери транзитивност атмосфере
(MOR - Meteorological Optical мисометрима на крајевима Папе). Ha транссу сензори а на крајевима НСС имсталирани У $_{3}$ податак о м који систем добиа са контроног израчунава се RVR уређај шосетуіе грејач и, вентилатор за заштиту оптичких делова од контаминације и орошавања. Такође, софтвер ски се врши компензаија зашрьаности оитичких делова.

Силометар - Служи за мерење висине базе облака п/или вертикалне видљивости, на принципу емитовања ласерског снопа. Инсталирана су два уређаја тиша AVIATOR LD - 12, у оси ПСС, на растојању око 1,000 м од прагова ПСС. Уређај мери висину три слоја облака , у интервалу од 0 до 4.000 m , вертикалну видъивост и извештава о максимално могућој висини мерења. На ове сензоре су уграђени грејачи й вептилатори за заштиту оптичких делова од контаминације и орошавања. Такође, софтверски се врши компензација запрљаности оптичких делова.

Сензори за ветар - Мери се брзина и правац ветра, сензорима инсталираним у висини TDZ, на растојању 155 m , односно 170 m бочно од осе ПСС. Сензори се налазе на лако ломљивим стубовима висине 10 m . Покретни делови сензора имају уграђене грејаче којима се спречава њихово замрзавање. На врху стубова налазе се двоструке сипнале светилке за обележавање препрека, које се укључују аутоматским пресег мерена брзине ветра је ол 0 w/ до 75 а

Сензори у метеоролошком кругу
Сидзоривост и садалошке време - Уређај FUMOSENS VI PW, на принципу двоструке предаје/пријема светлосног снопа (forwardscatter meter), врши мерење видљивости од 0 m до 20.000 м и идентификације врсте и интензитета дадавина Служи као извор информапија за аутокалибрацију трансмисометара.

Температура и влажност ваздуха - Електронски севзори на стубу висине 2 м.

Температура земљишта - Пет дубинских електронских термометара, на дубинама $10 \mathrm{~cm}, 20$ $\mathrm{cm}, 30 \mathrm{~cm}, 50 \mathrm{~cm}$ и 1 m .

Количинаа падавина - Електронски кишомер са неограниченим акпацитетом мерења. Има систем загревања за мерење падавина.

Пқранометар - Инсталиран на крову метеоролошке станице, мери интензитет и дужину сунчевог зрачења.

Барометар - Електронски барометар (SETRA) инсталиран је на спољњем зиду метеоролошке станице.
2. Јединида за прикупљање података

Зависно од удаљености инсталираног сензора, у односу на централну јединицу за прикупљање података, на појединим сензорима су инсталиране јединице за прикупьање података (DCU). Сваки сензор или DCU је, модемском везом, повезан са централном јединидом за прикупљање података (CDCU)

Ценрална јединица за прикупљање података служи за прикупљање, обраду и концентрацију података мерења. Сваки сензор или DCU је, преко одговарајућег типа картиде, засебним сигналнним каблом, повезан са CDCU. Одговарајућа група картица је исте софтверске конфигурације, тако да је једноставним прикључењем преносног кабла могуће њено повезивање са неким другим сензором. CDCU је повезана и са извором информација о јединственом времену контроле летења, интензитету светала дуж ПСС и правцу ПСС у упо-

3. Радне станиде

Инсталиране су три радне станице: две осматрачке (OWS) и једна прогностичка (FWS). То cy PENTIUM персонални рачунари који раде под UNIX оперативним системом.

Осматрачке радше станице су инсталиране у метеоролошкој станици и непрекидно пред" стављају једка другој резерву. При отказу једне од њих, друга аутоматски преузима функцију. контролу сензора, чувају податате и врие и врше трибуџшју метеоролошких порука према прогностичкој радној станици и удаљеним терминалима. OWS израчунава RVR, QFE (притисак на нивоу ПСС) и QNH (притисак на средњем нивоу мора), температуру тачке росе, компоненте бочног ветра и врше аутокалибрацију траисмисометара. Са њих је могућ потпуни увид у стање сензора и сетовање посебних тест услова. Омогућеп је ручни унос података, како опих који се мере сензорима, када за то постоји разлог, тако и оних који се не могу мерити инсталираним сензорима. Такође, могуће је уносити и друге врсте порука. OWS врше формирање извеиттаја

METAR - редовви метеоролошки извештај з ваздухомиовство
SYNOP изеш о ариемиии оролошким осматранима
SPECI - извештај о специјалним осматрањим за ваздухопловство и СLIMAT извештаја. Извешғгаји се формирају и емитују у размену
аутоматски, према унапред дефинисамим аутоматски, према унапред дефинисамим критеријумима и терминима. Могућа је ручна
интервенција у погледу измене и емитовања било ког извештаја
Израђени извештаји којима је потребно додати TREND прогнозу емитууу се на прогностичку радну станиду. Ca OWS штампају се информа ције о стању и грешкама у раду сензора.

Прогностичка радна станида је инсталирана у погностичкој служби и омогућава увид тање времена, статус сензора и рад на мете оролошким извештајима формираним на OWS Ha FWS се формирају извештаји типа.
TAF - погноза времена за аеродром, SIGMET ииформација о метеоролонким појавама значајним за ваздухопловство у области ин формисања (FIR) и
TREND делови METAR и SPECI извештаја.
Сви извештаји одлазе у размену након контроле и потврде извршене на FWS. FWS представља сервер система за удаљене терминале, базу свих података мерења за период до 30 дана и са ње се може вршити графички приказ и анализа расположивих података мерења. Са FWS се, тако末е, могу штампати статистички извештаји (стање сензора, ошшта база пода така, системски подаци), издате специјалне поруке (на пр. "животиње на ПСС"), извештај

4. Удалени терминали

Могуће је увезати неограничен број терминала код различитих ваздухопловних корисника. У овом систему су инсталирани терминали у конроли летења, у торњу и прилазној контроли летења, као и у операцивном центру ЈАТ (два терминала). Теминал у торњу контроле летења има екран од течног кристала, како би се сиречила рефлексија сунчевих зрака и деловима дана. Конфигурација изгледа екрана разликује се према врсти корисника, тако пто су приказане све потребне информације, са распоредом који пајвише одговара кориснику Поред тога, једап терминал се налази у те хничкој сали и намењен је надзору над радом система. Сви терминали су персонални рачунари Pentium или 486 и раде под DOS оп еративним системом.

Терминали у коитроли летења повезани су са WS и OWS независним линијама, тако да је обезбеђен непрекидан доток информација са система.

5. Остала опрема

Услов непрекидности рада целокупног система нодразумева непрекидно електрично напајање јениницама са елрекино санане (UPS) које безбенуіу аутономшуу рада нјјане 30 минута ушрос томе што се нашајау из тзв. no break система.

Уз систем је набављена и одговарајућа опрема

ЗАКЈУУАК

Тешко је рећи да се за ваздухошловна мете- рад мора се обезбедити одговарајућа, не мала, оролошка осматрања захтевају већа тачност, ноузданост и репрезентативност него за остала метеоролошка осматрања, јер би се могло помислити да се тиме умањује значај ових друсих. Међутим, критеријуми безбедности у ваздушном саобраћају намећу специфичну опрему, доста сложенију конфигурацију и ком млекснији приступ надзору и одржавању аутоматских метеоролошких станица. Тежња да с оствари пуна репрезентативност осматрањ словльава инсталирање сензора на локацијама ародрома које се налазе на растојањима од пет и више километара. За напајање инсталираних сензора, као и за пренос података, мора се обезбедити квалитетна и врло разуђена кабловска инсталација. Систем усложњава велики број сензора исте намене. Све виталне компоненте система су дуплиране ради превазилажења проблема кварова. За поуздани

испитивање стања система и његових кварова.Систем поседује функцију аутокалибрације трансмисометара, као најзначајнијих сензора за одржавање аеродрома у функцији САТ II. Аутокалибрација се врни тако што систем са уређаја за одређивање видљивости FUMOSENS VI PW добија информацију да је видљивост већа од 10 km . Ca OWS се аутоматски врши симулирање различитих вредности смањења видљивости и проверава тачност мерења MOR и израчунавања RVR за симулиране вредности. у случају одстушања услове, систем врши аутокалибрапију трансмисометра Тестиране се врин свакнт 10 манс нута све док је видљивост веһа од 10 км

количина резервних делова. Технич задужено за одржавање система мора бити високо обучено и присутно 24 сата дневно. (У Немачкој, на пример, проблем дежурства техничких екипа на аеродромима решен је инсталирањем два комплетна, међусобно независна система, а дежурна екипа надзире целу регију са 10 до 20 станица.) Обрада података је неупоредиво сложенија него код класичних синоптичких аутоматских станица, дистрибуција података до корисника у оквиру аеро дрома веома је разуђена. Сви ти услови знатно увећавају цену аеродромске аутоматске станице, у односу на класичну, и представљају ограничавајући фактор у опремању аеродром ских метеоролошких станица аутоматизованим системима.

ОДСТУПАНЕ СТВАРНЕ ОД ДЕФИНИСАНЕ ПРЕЦИЗНОСТИ МЕРЕНА МЕТЕОРОЛОНКИХ ЕЛЕМЕНАТА

Прредрай Пеийровии, меий. миеххн.
рейублички хидромейеоролоики завод Србије, Киеза Вииеслава 66 11030 Беойрад, Југ̈ославија

Abstract
Meteorological data quality depends on more factors such as measurement method, type of instruments, quality and skills of the observer, even precise measuring. It is difficult to obtain the highest quality of all these factors in practice and thus the occurance of data with low quality cannot be avoided.
The examination of meteorological data measurement precision gives the review of its quality. This attribute, which is not easy to determine by using standard methods, gives the area of their application. Change of this attribute often marks a interrpution of data homogeneity.
Абсйракиии

Квалиииеиии меиеоропоиких иодайака зависи од виие фаиикора као шийо су мейод мереюва
 Уйракси је веома иеиико обезбедийи највиии квалиииеийи ових факииора, йа је йојава йодайтка иижег̀ квалииейи неизбежна
Исйиииваве йречизносиии мерень мейеоролоикикииодайака даје увид у нихов квалииеий Овај аиирибуии, коии се не може лако одредииии сииандрднин методоиа, одребује обин йринене иода ииака. Промена овог̆ айрибуйа чесйо указује на йрекид колог̄еносийи низа йодайака

ПДРЕБИВАњЕ ПРЕЦИЗНОСТИ

мерењА

Предизност мерења неке метеоролошке величине се дефинише према врсти елемента чија се вредност мери, а у складу са тим и према скали инструмента која је одређена према потребној прецизности мерења те величине. Већина метеоролошких инструмената има такву скалу на којој је обезбеђена прецизност мерења од једног десетог дела единице мере. Тако се, на пример, ваздушн притисак мери са прецизношћу од 0.1 mb , тем пература ваздуха са прецизношћу $0.1^{\circ} \mathrm{C}$, а цадавине и испараване са прецизношћу 0.1 mm .

Функције расподеле вредности неких мете ролошких елемената углавном имају облии риблнжан облику звонасте асиметричне рие, нге асиметрија ншіе веника (Иванови, 1976). Та функција је непрекидна и тежи нуи на крајевима свог домена $(-\infty,+\infty)$. У пракси, вредности функције имају нуле на екстремни вредностима низа. Интервал између тих вредости се може изделити на неколико десетин итервала чија је дужина једнака дужин мерие јединице елемента. Како је сваки од тих интервала издељен на десет једнаких делова, имамо јединичне интервале величине дефини-

сапе прецизности мерења метеоролошког елемента. Функција расподеле се може приближно једнако тачно описати користећи тачке на једнаким растојањима као птто је дужина једног интервала (вредност мерне јединиде), без обзира на тачку од које почињу ти интервали. Ово практично значи да је функција расподеле приближно иста разма (децималну вредност мерне јединице) појединачно, јер у сваком од тих случајева функција задржава приближно исти облик. Тако, збир сваког првог, другог и редом сваког следећег од тих подинтервала (децималних вредности) биће једнак једној десетини збира целе функције расподеле. Из овога следи став да су у свакој расподели вредности неког елемента честине вредности сваке од децимала једнако вероватне, односно да је вероватноћа за било коју децималну вредност 10%. Доказ овог става се практично може добити пребро јавањем јавлања за сваку децималну вредност појединачно. Разматрање стварне прецизности мерења неког метеоролошког елемента се заснива на управо тим чињеницама
Прегледањем извештаја о измереним вред ностима, у појединим случајевима уочен је

велики број јављања оних вредности децимал них места која су видно обележена на скали нструмента. Пребројавањем децималних ме та заиста се запажа неправилна, односно не једнака расподела честина њихових вредности на овом запажању заснива се одређивање арецизности мерења метеоролошког еле нента методом дедималних места
ОПИС МЕТОДА ОДРЕЂИВАЊА ПРЕЦИЗНОСТИ МЕРЕЊА

Низ који се разматра треба да има најмање око 100 чланова, док је највећи број чланова низа ограничев избором дужине анализираножз три киматононга термина доволн је раз мтрати један месечни извештај за древн зредности низ треба да буде око три месепа за количину шадавина шест месеии до годину
 ности од препизности анализе ове врсте.

Најпре се одреди дужина низа података и тај број дели са 10 , добијајући тако очекивани број осмотрених података са истом децималном вредношћу. Затим се врши одређивање апсолутне честине сваког децималног места за одабрани низ података, добијајући стварни број осмотрених података са истом дедималном вредношћу. За сваку од децималних вредности израчунава се апсо лутна разлика и те вредности се саберу за све мотрених нодатака где пије поститнута дефинисана предизност, односно број "непредизних" података. Овај број је двоструко већи од стварног, јер се на овај начин једна непрецизно осмотрена вредност јавља два пута први пут се јавља као "вишак" код честина оних децималних вредности које су више зас тупљене, а самим тим јавља се и "мањак" код честина оних дедималних вредности које су мање заступъене.

у идеалном случају, све децималне вредности су једнако заступъене, па је овај збир једнак нули. У реалном случају, број непрецизних података је већии од нуле. Појава "непре цизних" података проузрокује "деформисање" скале инструмента одредене на оспову осмо трених вредности (график 1). Самим тим, ост варена прецизност мерења је мања од дефини сане. Оваква "деформисана" скала намеће увођење појма ефективни подеок која се дефинише као средња дужина подеока на скали инструмента одребеној на основу остварене предизности мерења мете оролошке величипе.

Одређивање величине ефективног подеока
Нека је број чланова низа осматрања N естина јављања једне децималне вредности је у идеалном случају $N_{i}=\frac{N}{10}$, односно очекивани број осмотрених података са истом децималном вредношћу. Нека је стварни број осмотрених података са истом дешималном вредношћу n_{i}. Разлика апсолутних вредности

График 1. "Деформисане " скале одређене ирема осмойреним вредносйима на осмайраюа

ових бројева је $x_{i}=\left|N_{i}-n_{i}\right|$, а збир тих разлика је

$$
n=\sum_{i=1}^{10} x_{i}=\frac{N}{10}-\sum_{i=1}^{10}\left|n_{i}\right|
$$

Овај израз представља двоструки број осмо трених података где није постигнута дефини сана прецизност, штт значи да је стварни број "непрецизних" података једнак $n_{r}=\frac{n}{2}$

Број "прецизних" података представља разлику између укупног броја свих података и броја "непрецизних" нодатака. Однос "прецизних" података и броја чланова низа се коисти као фактор "увећања најмањег подеока до величине ефективног подеока. Дакле, еличина ефективног подеока се израчунава из израза

$$
d=\frac{1}{\frac{N-n_{r}}{N}} \cdot 0.1
$$

који, после замене одговарајућих вредности и уређывања једначине, гласи

$$
d=\frac{0.2 N}{2 N-n}
$$

Из дефиниције ефективног подеока следи став да величина ефективног подеока мора бити најмање 0.1 , колико може бити у идеалном сллучају, јер је

$$
\frac{N-n_{r}}{N} \leq 1
$$

Такође, величина ефективног подеока не може бити већа од 1 . Наиме, у случају идеално "непрецизних" мерења, односно у случају да се мереже вршило са прецизнопћу целих подеока, без десетих делова, све децималне вредности су исте и једнаке нули. У том случају, само једна десетина свих података је "прецизна ${ }^{\text {у }}$ у наведеном смислу, што подразумева максимално девет десетина "непрецизних" података у низу. Заменом одговарајућих вредности у једначини добијамо $d=1$
$У_{\text {тидајп на величишу ефективног подеока }}$
Појава праввлности честине јављања специфичних децималних вредности зависи од метода осматрања и начина израде скале инструмента. Наиме, ваздушни притисак се на барометру очитава посредним путем,
свођењем очитане вредности на $0^{\circ} \mathrm{C}$. Уз то, свођењем очитане вредности на $0^{\circ} \mathrm{C}$. Уз то, скала на барометру је таква да су веома јасно уочљиви како подеоци на основној скали, тако и десети делови подеока на нонијусној плочиди
Међутим, код терминске темшературе чешће се јављају нарне децимале, и то за до 10% од укавилности је управо скала психрометарског термометра чији су најмањи подеочи дати шреизвошьу $02^{\circ} \mathrm{C}$ бужско ого, ма долиго извежбано за правилно очитававе инстру мевта, тежи па врх живе у капилари доведе у висину шајближег подеока на скали Такође је висину најолижег подеока на скали. Такође је изражена код очитане целе вредности, која је нешто чешиа од осталих парних вредности односно ређе појаве децималних вредности 1 и 9. То је доказ да величина подеока на скали утиче на израженију појаву ове врсте. Ова појава је мање изражена у случају података о испаравању, јер иако су подеоци на скали од 0.2 mm , они су знатно крупнији и лакше је очитати прецизну вредност.

Занимљиво је напоменути да је ефективни подеок у случају температуре мокрог термоме-

тра мањи него код података о температури очитаној на сувом термометру психрометра. Ова разлика није велика, а интересантно је да се чешће јавља код података са станица са професионалним особлем. Могући разлог за ову појаву је аспирирање психрометра, при чему се темшературе оба термометра мењају у мањој или веһој мери, а за резултат се узима средња вредност. Није искључена ни појава да осматрач, у циљу добијања бољих података о влажности ваздуха, прибегава "уклапању" вреднта у темвире вредности које моо термометра у оквире вредпоси које може осмотрити и другим инструменима, како би добио квамижестуј подаха

Подаци о екстремним температурама имају другу врсту правилности расподеле честина јављања специфичних децималних вредности Наиме, овде се чешће јављају децималне вред9 , односно 4 и 6) су нешто мање заступьене у осмотреним подапима Узрок ове појаве је исти. Међутим, у случају станиша на којима осматрања врши сарадник, честа је појава осматрања мањих честина свих осталих дешималзнатно мањих честина свих осталих децималпреовлаһују целе вредности са депималом 0 Овде узрок никако не може бити исти, већ се ради о недовољно квалитетиом, често и нестручном осматрању. Не искључује се ни могућност изостављених осматрања, односно бележење података без осматрања инструмента.

График 2. Величина ефекииивног йодеока за сиианице са различиииом йрецизноићу мереньа

Ова врста правилности расподеле честина јављања спедифичних децималних вредности нарочито је изражена у случају података о минималној температури на 5 cm . Иако се ради о истом инструменту као и за одређивање минималне температуре на 2 m извад тла, додатни узрок може бити у неугодном ноложају

инструмента, испод нивоа ока осматрача, уз могућност мањег приближавања ока осматрача скали инструмента. Није искључено да се овде може радити и о мање савесном осматрању ове величине, јер се овој величини чак ни у редовним извештајима (SYNOP) не посвећује више пажње (даје се у целим мерним јединицама уместо са прецизношћу од једног децималног места)

Класификадија података према величини ефективног нодеока

Величина ефективног подеока се може разматрати и као грешка одређивања средњих вредности низа података. У идеалном случају, ова грешка је 0.1, али је услед појаве ефективно
подеока она нешто већа.

Пошто се подаци се разликују према величини ефективног подеока, могуће је извршити њихову класификацију према овом мерилу. Ова класификација се може вршити емпиријски анализом веома великих низова података. Осодређених врста иравилности растодеде честина специфичних дециманих вредности

Код најмањих величина ефективног подеока не појављује се правилност расподеле честина јављања специфичних децимала, или се појављује у тако малој мери да је практично немогуће остати без ове правилности. Ови подаци су најпрецизније очитани и јављају се у извештајима професпоналних метеоролошких станица и мањем броју станица на којима осматрачи нису професионални метеоролози.

Ефективни подеок је величине 0.10 до 0.15 ос новних мерних јединица.
Следећа група извештаја пришада оним извештајима где је величина ефективног подеока толерантна за израчунавање средњих вредности и суме вредности низа, али одређивање броја дана са карактеристичном вредношћу неке величине више није поуздано. Из емпиријских разматрања добија се да је величина ефективних подеока у овом случају од 0.15 до 0.25 основних мерних јединица.
Извештаји са веома непоузданим подацима су они код којих су средње вредности, односно суме вредности те величине несигурне, а број
дана са карактеристичним вредностима дана са карактеристичним вредностима ног подеока у овом суччау врена се одекив 050 Извештаји код којшх је врешност ео
 неушотребдиви неупотребљиви

НЕКЕ ПРИМЕНЕ ОДРЕЂИВАФА ПРЕЦИЗНОСТИ МЕРЕЊА

Осим класификације података, овом методом се може испитати и хомогеност низа података.

На хомогеност низа података утиче велики број фактора, међу којима су и они који се често не могу детектовати применом стандардних метода испитивања хомогености низа. То су промена најмањег дефинисаног подеока, промена стручног профила осматрача и слично.

1936194019441948195219561960196419681972197619801984198819921996 График 3. Годишне вредносйи величине ефекииивног йодеока ваздуиноъ йрийиска, Беог̄рад, од 1936. до 1997. године

деок није променио сразмерно промени мерне

График 4. Годиине вредносйии величине ефекииивних йодеока екссиремне ииемйерайире ваздуха, йадавине и йерминске ииемйерайчре ваздуха, Кукавица, йериод од 1965. до 1997. годдине

Промена најмањег дефинисаног подеока може бити услед промене мерне јединице, промене реда величине прецизности мерења неке мента и слично Промена мерне јенинице проузрокује веники број промена што је јенан оц неизбежних генератора грешака Низови података за исту метеоролошку величину морају бити шредстављени у новим мерним јеринипама На дример од 1.1.1981 године, реличине притиска у метеороногиіи менају мерну јединищу па се уместо старе (милиметар живиног стуба) сористи нова званична мерна живиног суииа (мишбар косио хо званична мерна износи (милибар, односно хектопаскал), која
$1 \mathrm{mmHg}=1.3332236 \mathrm{mb}=1.3332236 \mathrm{hPa}$
Сви дотадашњи подаци о притиску морају бити прерачунати у нове мерне јединице, што уједно значи и да се најмањи дефинисани подеок се ноједие вре. Овим пераянавањем " пубе
 једине дедималне вредности. Величина ефекмерну јединину која је била мане прецизна Оваква промена се може ридети нз графизона вредности величине ефектиниг родеона вредносн величие ефекивног подеока 1936. до 1997 . голине (график 3)

Овде се мора напоменути да се ефективни по

јединице. То је последица неједнаких "губитака " појединих децималних вредности унутар подеока који означава целу мерну јединицу. вознат мора се узети однос ових величина својим децималним местима па теи оша шрис тупити овом одре申ивашу. На пример, добро би било узети интеррал од 4 mb што шриближно

 Рачуииа се комтит

Промена стручног профила осматрача је у неким случајевима веома уочљива, иако се друге климатолошке величине не мењају. Временом дрелазе у станипе вишег реда (или обрнуто) Тада се често мењају и осматрачи у складу са њиховом квалификованоһу за обављање сложенијих (или једноставнијих) задатака осматрања. Карактеристичап је пример промене на станиди Кукавица, која је до 1990 . године радила као климатолошка станица на којој је осматрао сарадник. Када је надлежност над овом станицом припала Регионалном центру нротивградне заштите, односно метеоролошки квалификованим осматрачима, квалитет осматрања се знатно поправио, што се види из значајног смањења величине ефеткивног нодеока.

Прецизност инструмента не мора бити важна промена у раду станице и самим тим одлучујућа за квалитет метеоролошких пода- благовремено интервенисати у случају пада така, јер податак бележи осматрач. Лош осматрач са добрим метеоролошким инструментима често вреди мање него метеоролошка станица која аутоматски бележи податке, чак и када је прецизност мерења мања, уколико је инструмент квалитетно баждарен. Ова претпоставка се може проверити тек после дужег периода истовременог рада аутоматске бъем на истој локацији у истим условима.
За мање доступна подручја често ће бити довољно добро имати поуздане аутоматске метеоролошке станиде чак и оне прецизности коју виду редовно одржавање овако поставлене опреме. Избор сарадника који осматра ведо вољно кралитетно је већи губитах не само драгочених метеоролошших толатата, вен материјалпи.

Овај показатељ поузданости метеоролошких података може дати увид у квалитет рада појединих метеоролошких станица, без обзира на њихов обим рада. Тако се може уочити свака

ЛИТЕРАТУРА

Ивановић, Драгољуб В. - Метеоролошка статистика, Хидрометеоролошка техничка школа, Београд, 1976.
Petrovic, P. - Measurement Precision As A Cause Of Inhomogeneities In Weather Data Time Series, Second Seminar for Homogenization of Surface Climatological Data, Budapest, 1998.
нутство за метеоролошка мерења и осматрања, Савезни хидро-метеоролошки завод, Београд

[^0]: СПоменКо Ј. мИХалЛовит
 иодРАГ ОБРдовит
 МИРОСЛАВ СТАРЧЕВИЋ
 АЛЕКСАНДАР ОПРА
 ПРОМЕНЕ TEMIIEPATYPE ВАЗДУХА У БЕОГРАДУ И инДЕКСА СОЛАРНО-ГЕОМАГНЕТСКЕ
 АКТИВНОСТИ У ПЕРИОДУ $1958-1988$. ГОДИНЕ

 ## ииросЛава УНК

 ИВАНА ТОЖИТ
 ГодишњИХ СУМА ПАДАВИНА

[^1]: Напомена: У циљу поређења разних типов реагенаса, активнст на сликама 1 и 2 је дата по еединици масе сребројодида. Активност по единици масе пиротехничке смесе може се добити множењем ове величине са масеним уде лом сребројодида у смеси

 На западном тржишту су пре, током, а и после овог периода коришћене формулације Olin X1005 са 53% сребројодата и Olin WM105, sa 44

[^2]: у анализама, концептуални модел омогућује контролу квалитета података

[^3]: 21 сунчев циклус)

